Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- #include <utilities/sunTimes.h>
- /* +++Date last modified: 05-Jul-1997 */
- /* Updated comments, 05-Aug-2013 */
- /*
- SUNRISET.C - computes Sun rise/set times, start/end of twilight, and
- the length of the day at any date and latitude
- Written as DAYLEN.C, 1989-08-16
- Modified to SUNRISET.C, 1992-12-01
- (c) Paul Schlyter, 1989, 1992
- Released to the public domain by Paul Schlyter, December 1992
- */
- /* The "workhorse" function for sun rise/set times */
- int sunTimes::__sunriset__( int year, int month, int day, double lon, double lat,
- double altit, int upper_limb, double *trise, double *tset )
- /***************************************************************************/
- /* Note: year,month,date = calendar date, 1801-2099 only. */
- /* Eastern longitude positive, Western longitude negative */
- /* Northern latitude positive, Southern latitude negative */
- /* The longitude value IS critical in this function! */
- /* altit = the altitude which the Sun should cross */
- /* Set to -35/60 degrees for rise/set, -6 degrees */
- /* for civil, -12 degrees for nautical and -18 */
- /* degrees for astronomical twilight. */
- /* upper_limb: non-zero -> upper limb, zero -> center */
- /* Set to non-zero (e.g. 1) when computing rise/set */
- /* times, and to zero when computing start/end of */
- /* twilight. */
- /* *rise = where to store the rise time */
- /* *set = where to store the set time */
- /* Both times are relative to the specified altitude, */
- /* and thus this function can be used to compute */
- /* various twilight times, as well as rise/set times */
- /* Return value: 0 = sun rises/sets this day, times stored at */
- /* *trise and *tset. */
- /* +1 = sun above the specified "horizon" 24 hours. */
- /* *trise set to time when the sun is at south, */
- /* minus 12 hours while *tset is set to the south */
- /* time plus 12 hours. "Day" length = 24 hours */
- /* -1 = sun is below the specified "horizon" 24 hours */
- /* "Day" length = 0 hours, *trise and *tset are */
- /* both set to the time when the sun is at south. */
- /* */
- /**********************************************************************/
- {
- double d, /* Days since 2000 Jan 0.0 (negative before) */
- sr, /* Solar distance, astronomical units */
- sRA, /* Sun's Right Ascension */
- sdec, /* Sun's declination */
- sradius, /* Sun's apparent radius */
- t, /* Diurnal arc */
- tsouth, /* Time when Sun is at south */
- sidtime; /* Local sidereal time */
- int rc = 0; /* Return cde from function - usually 0 */
- /* Compute d of 12h local mean solar time */
- d = days_since_2000_Jan_0(year,month,day) + 0.5 - lon/360.0;
- /* Compute the local sidereal time of this moment */
- sidtime = revolution( GMST0(d) + 180.0 + lon );
- /* Compute Sun's RA, Decl and distance at this moment */
- sun_RA_dec( d, &sRA, &sdec, &sr );
- /* Compute time when Sun is at south - in hours UT */
- tsouth = 12.0 - rev180(sidtime - sRA)/15.0;
- /* Compute the Sun's apparent radius in degrees */
- sradius = 0.2666 / sr;
- /* Do correction to upper limb, if necessary */
- if ( upper_limb )
- altit -= sradius;
- /* Compute the diurnal arc that the Sun traverses to reach */
- /* the specified altitude altit: */
- {
- double cost;
- cost = ( sind(altit) - sind(lat) * sind(sdec) ) /
- ( cosd(lat) * cosd(sdec) );
- if ( cost >= 1.0 )
- rc = -1, t = 0.0; /* Sun always below altit */
- else if ( cost <= -1.0 )
- rc = +1, t = 12.0; /* Sun always above altit */
- else
- t = acosd(cost)/15.0; /* The diurnal arc, hours */
- }
- /* Store rise and set times - in hours UT */
- *trise = tsouth - t;
- *tset = tsouth + t;
- return rc;
- } /* __sunriset__ */
- /* The "workhorse" function */
- double sunTimes::__daylen__( int year, int month, int day, double lon, double lat,
- double altit, int upper_limb )
- /**********************************************************************/
- /* Note: year,month,date = calendar date, 1801-2099 only. */
- /* Eastern longitude positive, Western longitude negative */
- /* Northern latitude positive, Southern latitude negative */
- /* The longitude value is not critical. Set it to the correct */
- /* longitude if you're picky, otherwise set to to, say, 0.0 */
- /* The latitude however IS critical - be sure to get it correct */
- /* altit = the altitude which the Sun should cross */
- /* Set to -35/60 degrees for rise/set, -6 degrees */
- /* for civil, -12 degrees for nautical and -18 */
- /* degrees for astronomical twilight. */
- /* upper_limb: non-zero -> upper limb, zero -> center */
- /* Set to non-zero (e.g. 1) when computing day length */
- /* and to zero when computing day+twilight length. */
- /**********************************************************************/
- {
- double d, /* Days since 2000 Jan 0.0 (negative before) */
- obl_ecl, /* Obliquity (inclination) of Earth's axis */
- sr, /* Solar distance, astronomical units */
- slon, /* True solar longitude */
- sin_sdecl, /* Sine of Sun's declination */
- cos_sdecl, /* Cosine of Sun's declination */
- sradius, /* Sun's apparent radius */
- t; /* Diurnal arc */
- /* Compute d of 12h local mean solar time */
- d = days_since_2000_Jan_0(year,month,day) + 0.5 - lon/360.0;
- /* Compute obliquity of ecliptic (inclination of Earth's axis) */
- obl_ecl = 23.4393 - 3.563E-7 * d;
- /* Compute Sun's ecliptic longitude and distance */
- sunpos( d, &slon, &sr );
- /* Compute sine and cosine of Sun's declination */
- sin_sdecl = sind(obl_ecl) * sind(slon);
- cos_sdecl = sqrt( 1.0 - sin_sdecl * sin_sdecl );
- /* Compute the Sun's apparent radius, degrees */
- sradius = 0.2666 / sr;
- /* Do correction to upper limb, if necessary */
- if ( upper_limb )
- altit -= sradius;
- /* Compute the diurnal arc that the Sun traverses to reach */
- /* the specified altitude altit: */
- {
- double cost;
- cost = ( sind(altit) - sind(lat) * sin_sdecl ) /
- ( cosd(lat) * cos_sdecl );
- if ( cost >= 1.0 )
- t = 0.0; /* Sun always below altit */
- else if ( cost <= -1.0 )
- t = 24.0; /* Sun always above altit */
- else t = (2.0/15.0) * acosd(cost); /* The diurnal arc, hours */
- }
- return t;
- } /* __daylen__ */
- /* This function computes the Sun's position at any instant */
- void sunTimes::sunpos( double d, double *lon, double *r )
- /******************************************************/
- /* Computes the Sun's ecliptic longitude and distance */
- /* at an instant given in d, number of days since */
- /* 2000 Jan 0.0. The Sun's ecliptic latitude is not */
- /* computed, since it's always very near 0. */
- /******************************************************/
- {
- double M, /* Mean anomaly of the Sun */
- w, /* Mean longitude of perihelion */
- /* Note: Sun's mean longitude = M + w */
- e, /* Eccentricity of Earth's orbit */
- E, /* Eccentric anomaly */
- x, y, /* x, y coordinates in orbit */
- v; /* True anomaly */
- /* Compute mean elements */
- M = revolution( 356.0470 + 0.9856002585 * d );
- w = 282.9404 + 4.70935E-5 * d;
- e = 0.016709 - 1.151E-9 * d;
- /* Compute true longitude and radius vector */
- E = M + e * RADEG * sind(M) * ( 1.0 + e * cosd(M) );
- x = cosd(E) - e;
- y = sqrt( 1.0 - e*e ) * sind(E);
- *r = sqrt( x*x + y*y ); /* Solar distance */
- v = atan2d( y, x ); /* True anomaly */
- *lon = v + w; /* True solar longitude */
- if ( *lon >= 360.0 )
- *lon -= 360.0; /* Make it 0..360 degrees */
- }
- void sunTimes::sun_RA_dec( double d, double *RA, double *dec, double *r )
- /******************************************************/
- /* Computes the Sun's equatorial coordinates RA, Decl */
- /* and also its distance, at an instant given in d, */
- /* the number of days since 2000 Jan 0.0. */
- /******************************************************/
- {
- double lon, obl_ecl, x, y, z;
- /* Compute Sun's ecliptical coordinates */
- sunpos( d, &lon, r );
- /* Compute ecliptic rectangular coordinates (z=0) */
- x = *r * cosd(lon);
- y = *r * sind(lon);
- /* Compute obliquity of ecliptic (inclination of Earth's axis) */
- obl_ecl = 23.4393 - 3.563E-7 * d;
- /* Convert to equatorial rectangular coordinates - x is unchanged */
- z = y * sind(obl_ecl);
- y = y * cosd(obl_ecl);
- /* Convert to spherical coordinates */
- *RA = atan2d( y, x );
- *dec = atan2d( z, sqrt(x*x + y*y) );
- } /* sun_RA_dec */
- /******************************************************************/
- /* This function reduces any angle to within the first revolution */
- /* by subtracting or adding even multiples of 360.0 until the */
- /* result is >= 0.0 and < 360.0 */
- /******************************************************************/
- #define INV360 ( 1.0 / 360.0 )
- double sunTimes::revolution( double x )
- /*****************************************/
- /* Reduce angle to within 0..360 degrees */
- /*****************************************/
- {
- return( x - 360.0 * floor( x * INV360 ) );
- } /* revolution */
- double sunTimes::rev180( double x )
- /*********************************************/
- /* Reduce angle to within +180..+180 degrees */
- /*********************************************/
- {
- return( x - 360.0 * floor( x * INV360 + 0.5 ) );
- } /* revolution */
- /*******************************************************************/
- /* This function computes GMST0, the Greenwich Mean Sidereal Time */
- /* at 0h UT (i.e. the sidereal time at the Greenwhich meridian at */
- /* 0h UT). GMST is then the sidereal time at Greenwich at any */
- /* time of the day. I've generalized GMST0 as well, and define it */
- /* as: GMST0 = GMST - UT -- this allows GMST0 to be computed at */
- /* other times than 0h UT as well. While this sounds somewhat */
- /* contradictory, it is very practical: instead of computing */
- /* GMST like: */
- /* */
- /* GMST = (GMST0) + UT * (366.2422/365.2422) */
- /* */
- /* where (GMST0) is the GMST last time UT was 0 hours, one simply */
- /* computes: */
- /* */
- /* GMST = GMST0 + UT */
- /* */
- /* where GMST0 is the GMST "at 0h UT" but at the current moment! */
- /* Defined in this way, GMST0 will increase with about 4 min a */
- /* day. It also happens that GMST0 (in degrees, 1 hr = 15 degr) */
- /* is equal to the Sun's mean longitude plus/minus 180 degrees! */
- /* (if we neglect aberration, which amounts to 20 seconds of arc */
- /* or 1.33 seconds of time) */
- /* */
- /*******************************************************************/
- double sunTimes::GMST0( double d )
- {
- double sidtim0;
- /* Sidtime at 0h UT = L (Sun's mean longitude) + 180.0 degr */
- /* L = M + w, as defined in sunpos(). Since I'm too lazy to */
- /* add these numbers, I'll let the C compiler do it for me. */
- /* Any decent C compiler will add the constants at compile */
- /* time, imposing no runtime or code overhead. */
- sidtim0 = revolution( ( 180.0 + 356.0470 + 282.9404 ) +
- ( 0.9856002585 + 4.70935E-5 ) * d );
- return sidtim0;
- } /* GMST0 */
Advertisement
Add Comment
Please, Sign In to add comment