Not a member of Pastebin yet?
                        Sign Up,
                        it unlocks many cool features!                    
                - #include <utilities/sunTimes.h>
 - /* +++Date last modified: 05-Jul-1997 */
 - /* Updated comments, 05-Aug-2013 */
 - /*
 - SUNRISET.C - computes Sun rise/set times, start/end of twilight, and
 - the length of the day at any date and latitude
 - Written as DAYLEN.C, 1989-08-16
 - Modified to SUNRISET.C, 1992-12-01
 - (c) Paul Schlyter, 1989, 1992
 - Released to the public domain by Paul Schlyter, December 1992
 - */
 - /* The "workhorse" function for sun rise/set times */
 - int sunTimes::__sunriset__( int year, int month, int day, double lon, double lat,
 - double altit, int upper_limb, double *trise, double *tset )
 - /***************************************************************************/
 - /* Note: year,month,date = calendar date, 1801-2099 only. */
 - /* Eastern longitude positive, Western longitude negative */
 - /* Northern latitude positive, Southern latitude negative */
 - /* The longitude value IS critical in this function! */
 - /* altit = the altitude which the Sun should cross */
 - /* Set to -35/60 degrees for rise/set, -6 degrees */
 - /* for civil, -12 degrees for nautical and -18 */
 - /* degrees for astronomical twilight. */
 - /* upper_limb: non-zero -> upper limb, zero -> center */
 - /* Set to non-zero (e.g. 1) when computing rise/set */
 - /* times, and to zero when computing start/end of */
 - /* twilight. */
 - /* *rise = where to store the rise time */
 - /* *set = where to store the set time */
 - /* Both times are relative to the specified altitude, */
 - /* and thus this function can be used to compute */
 - /* various twilight times, as well as rise/set times */
 - /* Return value: 0 = sun rises/sets this day, times stored at */
 - /* *trise and *tset. */
 - /* +1 = sun above the specified "horizon" 24 hours. */
 - /* *trise set to time when the sun is at south, */
 - /* minus 12 hours while *tset is set to the south */
 - /* time plus 12 hours. "Day" length = 24 hours */
 - /* -1 = sun is below the specified "horizon" 24 hours */
 - /* "Day" length = 0 hours, *trise and *tset are */
 - /* both set to the time when the sun is at south. */
 - /* */
 - /**********************************************************************/
 - {
 - double d, /* Days since 2000 Jan 0.0 (negative before) */
 - sr, /* Solar distance, astronomical units */
 - sRA, /* Sun's Right Ascension */
 - sdec, /* Sun's declination */
 - sradius, /* Sun's apparent radius */
 - t, /* Diurnal arc */
 - tsouth, /* Time when Sun is at south */
 - sidtime; /* Local sidereal time */
 - int rc = 0; /* Return cde from function - usually 0 */
 - /* Compute d of 12h local mean solar time */
 - d = days_since_2000_Jan_0(year,month,day) + 0.5 - lon/360.0;
 - /* Compute the local sidereal time of this moment */
 - sidtime = revolution( GMST0(d) + 180.0 + lon );
 - /* Compute Sun's RA, Decl and distance at this moment */
 - sun_RA_dec( d, &sRA, &sdec, &sr );
 - /* Compute time when Sun is at south - in hours UT */
 - tsouth = 12.0 - rev180(sidtime - sRA)/15.0;
 - /* Compute the Sun's apparent radius in degrees */
 - sradius = 0.2666 / sr;
 - /* Do correction to upper limb, if necessary */
 - if ( upper_limb )
 - altit -= sradius;
 - /* Compute the diurnal arc that the Sun traverses to reach */
 - /* the specified altitude altit: */
 - {
 - double cost;
 - cost = ( sind(altit) - sind(lat) * sind(sdec) ) /
 - ( cosd(lat) * cosd(sdec) );
 - if ( cost >= 1.0 )
 - rc = -1, t = 0.0; /* Sun always below altit */
 - else if ( cost <= -1.0 )
 - rc = +1, t = 12.0; /* Sun always above altit */
 - else
 - t = acosd(cost)/15.0; /* The diurnal arc, hours */
 - }
 - /* Store rise and set times - in hours UT */
 - *trise = tsouth - t;
 - *tset = tsouth + t;
 - return rc;
 - } /* __sunriset__ */
 - /* The "workhorse" function */
 - double sunTimes::__daylen__( int year, int month, int day, double lon, double lat,
 - double altit, int upper_limb )
 - /**********************************************************************/
 - /* Note: year,month,date = calendar date, 1801-2099 only. */
 - /* Eastern longitude positive, Western longitude negative */
 - /* Northern latitude positive, Southern latitude negative */
 - /* The longitude value is not critical. Set it to the correct */
 - /* longitude if you're picky, otherwise set to to, say, 0.0 */
 - /* The latitude however IS critical - be sure to get it correct */
 - /* altit = the altitude which the Sun should cross */
 - /* Set to -35/60 degrees for rise/set, -6 degrees */
 - /* for civil, -12 degrees for nautical and -18 */
 - /* degrees for astronomical twilight. */
 - /* upper_limb: non-zero -> upper limb, zero -> center */
 - /* Set to non-zero (e.g. 1) when computing day length */
 - /* and to zero when computing day+twilight length. */
 - /**********************************************************************/
 - {
 - double d, /* Days since 2000 Jan 0.0 (negative before) */
 - obl_ecl, /* Obliquity (inclination) of Earth's axis */
 - sr, /* Solar distance, astronomical units */
 - slon, /* True solar longitude */
 - sin_sdecl, /* Sine of Sun's declination */
 - cos_sdecl, /* Cosine of Sun's declination */
 - sradius, /* Sun's apparent radius */
 - t; /* Diurnal arc */
 - /* Compute d of 12h local mean solar time */
 - d = days_since_2000_Jan_0(year,month,day) + 0.5 - lon/360.0;
 - /* Compute obliquity of ecliptic (inclination of Earth's axis) */
 - obl_ecl = 23.4393 - 3.563E-7 * d;
 - /* Compute Sun's ecliptic longitude and distance */
 - sunpos( d, &slon, &sr );
 - /* Compute sine and cosine of Sun's declination */
 - sin_sdecl = sind(obl_ecl) * sind(slon);
 - cos_sdecl = sqrt( 1.0 - sin_sdecl * sin_sdecl );
 - /* Compute the Sun's apparent radius, degrees */
 - sradius = 0.2666 / sr;
 - /* Do correction to upper limb, if necessary */
 - if ( upper_limb )
 - altit -= sradius;
 - /* Compute the diurnal arc that the Sun traverses to reach */
 - /* the specified altitude altit: */
 - {
 - double cost;
 - cost = ( sind(altit) - sind(lat) * sin_sdecl ) /
 - ( cosd(lat) * cos_sdecl );
 - if ( cost >= 1.0 )
 - t = 0.0; /* Sun always below altit */
 - else if ( cost <= -1.0 )
 - t = 24.0; /* Sun always above altit */
 - else t = (2.0/15.0) * acosd(cost); /* The diurnal arc, hours */
 - }
 - return t;
 - } /* __daylen__ */
 - /* This function computes the Sun's position at any instant */
 - void sunTimes::sunpos( double d, double *lon, double *r )
 - /******************************************************/
 - /* Computes the Sun's ecliptic longitude and distance */
 - /* at an instant given in d, number of days since */
 - /* 2000 Jan 0.0. The Sun's ecliptic latitude is not */
 - /* computed, since it's always very near 0. */
 - /******************************************************/
 - {
 - double M, /* Mean anomaly of the Sun */
 - w, /* Mean longitude of perihelion */
 - /* Note: Sun's mean longitude = M + w */
 - e, /* Eccentricity of Earth's orbit */
 - E, /* Eccentric anomaly */
 - x, y, /* x, y coordinates in orbit */
 - v; /* True anomaly */
 - /* Compute mean elements */
 - M = revolution( 356.0470 + 0.9856002585 * d );
 - w = 282.9404 + 4.70935E-5 * d;
 - e = 0.016709 - 1.151E-9 * d;
 - /* Compute true longitude and radius vector */
 - E = M + e * RADEG * sind(M) * ( 1.0 + e * cosd(M) );
 - x = cosd(E) - e;
 - y = sqrt( 1.0 - e*e ) * sind(E);
 - *r = sqrt( x*x + y*y ); /* Solar distance */
 - v = atan2d( y, x ); /* True anomaly */
 - *lon = v + w; /* True solar longitude */
 - if ( *lon >= 360.0 )
 - *lon -= 360.0; /* Make it 0..360 degrees */
 - }
 - void sunTimes::sun_RA_dec( double d, double *RA, double *dec, double *r )
 - /******************************************************/
 - /* Computes the Sun's equatorial coordinates RA, Decl */
 - /* and also its distance, at an instant given in d, */
 - /* the number of days since 2000 Jan 0.0. */
 - /******************************************************/
 - {
 - double lon, obl_ecl, x, y, z;
 - /* Compute Sun's ecliptical coordinates */
 - sunpos( d, &lon, r );
 - /* Compute ecliptic rectangular coordinates (z=0) */
 - x = *r * cosd(lon);
 - y = *r * sind(lon);
 - /* Compute obliquity of ecliptic (inclination of Earth's axis) */
 - obl_ecl = 23.4393 - 3.563E-7 * d;
 - /* Convert to equatorial rectangular coordinates - x is unchanged */
 - z = y * sind(obl_ecl);
 - y = y * cosd(obl_ecl);
 - /* Convert to spherical coordinates */
 - *RA = atan2d( y, x );
 - *dec = atan2d( z, sqrt(x*x + y*y) );
 - } /* sun_RA_dec */
 - /******************************************************************/
 - /* This function reduces any angle to within the first revolution */
 - /* by subtracting or adding even multiples of 360.0 until the */
 - /* result is >= 0.0 and < 360.0 */
 - /******************************************************************/
 - #define INV360 ( 1.0 / 360.0 )
 - double sunTimes::revolution( double x )
 - /*****************************************/
 - /* Reduce angle to within 0..360 degrees */
 - /*****************************************/
 - {
 - return( x - 360.0 * floor( x * INV360 ) );
 - } /* revolution */
 - double sunTimes::rev180( double x )
 - /*********************************************/
 - /* Reduce angle to within +180..+180 degrees */
 - /*********************************************/
 - {
 - return( x - 360.0 * floor( x * INV360 + 0.5 ) );
 - } /* revolution */
 - /*******************************************************************/
 - /* This function computes GMST0, the Greenwich Mean Sidereal Time */
 - /* at 0h UT (i.e. the sidereal time at the Greenwhich meridian at */
 - /* 0h UT). GMST is then the sidereal time at Greenwich at any */
 - /* time of the day. I've generalized GMST0 as well, and define it */
 - /* as: GMST0 = GMST - UT -- this allows GMST0 to be computed at */
 - /* other times than 0h UT as well. While this sounds somewhat */
 - /* contradictory, it is very practical: instead of computing */
 - /* GMST like: */
 - /* */
 - /* GMST = (GMST0) + UT * (366.2422/365.2422) */
 - /* */
 - /* where (GMST0) is the GMST last time UT was 0 hours, one simply */
 - /* computes: */
 - /* */
 - /* GMST = GMST0 + UT */
 - /* */
 - /* where GMST0 is the GMST "at 0h UT" but at the current moment! */
 - /* Defined in this way, GMST0 will increase with about 4 min a */
 - /* day. It also happens that GMST0 (in degrees, 1 hr = 15 degr) */
 - /* is equal to the Sun's mean longitude plus/minus 180 degrees! */
 - /* (if we neglect aberration, which amounts to 20 seconds of arc */
 - /* or 1.33 seconds of time) */
 - /* */
 - /*******************************************************************/
 - double sunTimes::GMST0( double d )
 - {
 - double sidtim0;
 - /* Sidtime at 0h UT = L (Sun's mean longitude) + 180.0 degr */
 - /* L = M + w, as defined in sunpos(). Since I'm too lazy to */
 - /* add these numbers, I'll let the C compiler do it for me. */
 - /* Any decent C compiler will add the constants at compile */
 - /* time, imposing no runtime or code overhead. */
 - sidtim0 = revolution( ( 180.0 + 356.0470 + 282.9404 ) +
 - ( 0.9856002585 + 4.70935E-5 ) * d );
 - return sidtim0;
 - } /* GMST0 */
 
Advertisement
 
                    Add Comment                
                
                        Please, Sign In to add comment