Guest User

Untitled

a guest
Sep 4th, 2025
21
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 11.67 KB | None | 0 0
  1. Here is a Unicode version of the provided proof.
  2.  
  3. ***
  4.  
  5. ### **A Rigorous Proof of the Sharp Quantitative Stability for the LΒΉ-PoincarΓ©-Wirtinger Inequality on the Circle**
  6.  
  7. **Abstract**
  8. We present a rigorous and self-contained derivation of the sharp LΒΉ-PoincarΓ©-Wirtinger inequality on the unit circle 𝕋, utilizing the median to measure oscillation. We establish that the sharp constant is 1/4, correcting the value proposed in the original conjecture, and characterize the extremizers as the manifold of two-level step functions on complementary arcs of length 1/2. We then prove the sharp linear quantitative stability of this inequality: the LΒΉ-distance to the manifold of extremizers is bounded by exactly 1/4 of the deficit. The proof relies on fundamental tools, including the layer cake representation and the coarea formula, which are rigorously derived. The stability argument crucially depends on a selection principle, established rigorously via the Bath-Tub Principle, which ensures the commutativity of integration and maximization in this context.
  9.  
  10. ---
  11.  
  12. ### **1. Introduction**
  13.  
  14. We study the LΒΉ-PoincarΓ©-Wirtinger inequality on the unit circle 𝕋 = ℝ/β„€. This inequality bounds the LΒΉ-oscillation of a function f in the space of bounded variation (BV(𝕋)) by its total variation, Var(f).
  15.  
  16. **Theorem 1.1 (Sharp Inequality and Extremizers)**
  17. For any f ∈ BV(𝕋), the following sharp inequality holds:
  18. > inf_{cβˆˆβ„} ||f - c||₁ ≀ (1/4) Var(f)
  19.  
  20. Equality holds if and only if f belongs to the manifold of extremizers 𝓔, consisting of functions Sₐ,ᡦ,β‚œ (defined up to measure zero) for a β‰  b ∈ ℝ and Ο„ ∈ 𝕋, which take value b on an arc of length 1/2 starting at Ο„, and value a on the complement.
  21.  
  22. **Definition 1.2 (Deficit)**
  23. The absolute PoincarΓ© deficit of f ∈ BV(𝕋) is:
  24. > E(f) := Var(f) - 4 inf_{cβˆˆβ„} ||f - c||₁ β‰₯ 0
  25.  
  26. **Theorem 1.3 (Sharp Quantitative Stability)**
  27. For any f ∈ BV(𝕋), the LΒΉ-distance to the manifold of extremizers satisfies the sharp inequality:
  28. > inf_{Sβˆˆπ“”} ||f - S||₁ ≀ (1/4) E(f)
  29.  
  30. ---
  31.  
  32. ### **2. Preliminaries and Analytical Tools**
  33.  
  34. **2.1. BV Functions and the Median**
  35.  
  36. **Definition 2.1 (Bounded Variation and Perimeter)**
  37. f ∈ LΒΉ(𝕋) is in BV(𝕋) if its total variation Var(f) is finite:
  38. > Var(f) := sup{∫_𝕋 f(x)Ο†'(x)dx : Ο† ∈ CΒΉ(𝕋), ||Ο†||_∞ ≀ 1}
  39.  
  40. A measurable set E βŠ‚ 𝕋 has a finite perimeter if its characteristic function πŸ™_E ∈ BV(𝕋). The perimeter is P(E) := Var(πŸ™_E). On 𝕋, a set of finite perimeter is (up to measure zero) a finite union of k disjoint arcs, and P(E) = 2k.
  41.  
  42. **Definition 2.2 (Median)**
  43. A median m𝒻 of f ∈ LΒΉ(𝕋) satisfies:
  44. > meas({f β‰₯ m𝒻}) β‰₯ 1/2 and meas({f ≀ m𝒻}) β‰₯ 1/2
  45.  
  46. **Lemma 2.3**
  47. m𝒻 is a median of f if and only if it minimizes the function G(c) = ||f - c||₁.
  48.  
  49. *Proof.*
  50. The function G(c) is convex. We analyze its right and left derivatives.
  51. The right derivative G'(c⁺) is:
  52. > G'(c⁺) = lim_{hβ†’0⁺} (1/h) ∫_𝕋 (|f(x) - (c+h)| - |f(x) - c|) dx
  53. > G'(c⁺) = ∫_{{f>c}} (-1)dx + ∫_{{f≀c}} (1)dx
  54. > G'(c⁺) = meas({f ≀ c}) - meas({f > c})
  55. > G'(c⁺) = meas({f ≀ c}) - (1 - meas({f ≀ c})) = 2 meas({f ≀ c}) - 1
  56.  
  57. Similarly, the left derivative G'(c⁻) is:
  58. > G'(c⁻) = ∫_{{fβ‰₯c}} (-1)dx + ∫_{{f<c}} (1)dx
  59. > G'(c⁻) = meas({f < c}) - meas({f β‰₯ c})
  60. > G'(c⁻) = (1 - meas({f β‰₯ c})) - meas({f β‰₯ c}) = 1 - 2 meas({f β‰₯ c})
  61.  
  62. A point c minimizes the convex function G(c) if and only if G'(c⁻) ≀ 0 ≀ G'(c⁺).
  63. * G'(c⁻) ≀ 0 ⇔ 1 - 2 meas({f β‰₯ c}) ≀ 0 ⇔ meas({f β‰₯ c}) β‰₯ 1/2
  64. * G'(c⁺) β‰₯ 0 ⇔ 2 meas({f ≀ c}) - 1 β‰₯ 0 ⇔ meas({f ≀ c}) β‰₯ 1/2
  65.  
  66. These are precisely the conditions defining a median.
  67.  
  68. **2.2. Layer Cake Representation and the Median Identity**
  69.  
  70. **Lemma 2.4 (Layer Cake Representation)**
  71. For a non-negative measurable function g on 𝕋:
  72. > ∫_𝕋 g(x) dx = βˆ«β‚€^∞ meas({x : g(x) > t}) dt
  73.  
  74. *Proof.*
  75. Using g(x) = βˆ«β‚€^∞ πŸ™_{{t:g(x)>t}}(t) dt and Tonelli's theorem to swap integration order.
  76.  
  77. Let Eβ‚œ = {f > t}. Let s(E) = min(|E|, 1 - |E|).
  78.  
  79. **Lemma 2.5 (Median Identity)**
  80. For any f ∈ LΒΉ(𝕋) and any median m𝒻:
  81. > ||f - m𝒻||₁ = ∫_{-∞}^∞ s(Eβ‚œ) dt
  82.  
  83. *Proof.*
  84. Let m = m𝒻.
  85. > ||f - m||₁ = ∫_𝕋 (f - m)⁺ dx + ∫_𝕋 (m - f)⁺ dx
  86.  
  87. Applying the Layer Cake representation (Lemma 2.4):
  88. > ∫_𝕋 (f - m)⁺ dx = βˆ«β‚€^∞ |{f - m > t}| dt = βˆ«β‚˜^∞ |{f > s}| ds = βˆ«β‚˜^∞ |Eβ‚›| ds
  89. > ∫_𝕋 (m - f)⁺ dx = βˆ«β‚€^∞ |{m - f > t}| dt = ∫_{-∞}ᡐ |{f < s}| ds
  90.  
  91. We analyze s(Eβ‚œ):
  92. * If t β‰₯ m, then |{f ≀ t}| β‰₯ |{f ≀ m}| β‰₯ 1/2. So |Eβ‚œ| = 1 - |{f ≀ t}| ≀ 1/2. Thus, s(Eβ‚œ) = |Eβ‚œ|.
  93. * If t < m, then |Eβ‚œ| = |{f > t}| β‰₯ |{f β‰₯ m}| β‰₯ 1/2. Thus, s(Eβ‚œ) = 1 - |Eβ‚œ| = |{f ≀ t}|.
  94.  
  95. The term ∫_{-∞}ᡐ |{f < s}| ds equals ∫_{-∞}ᡐ |{f ≀ s}| ds because the set of levels s where |{f=s}| > 0 is countable and thus has measure zero.
  96. Combining the integrals:
  97. > ||f - m𝒻||₁ = βˆ«β‚˜^∞ |Eβ‚›| ds + ∫_{-∞}ᡐ (1 - |Eβ‚›|) ds = ∫_{-∞}^∞ s(Eβ‚œ) dt
  98.  
  99. **2.3. The Coarea Formula**
  100.  
  101. **Lemma 2.7 (Coarea Formula)**
  102. For f ∈ BV(𝕋):
  103. > Var(f) = ∫_{-∞}^∞ P(Eβ‚œ) dt
  104.  
  105. *Proof Outline.*
  106. The proof is in two steps, using approximation by smooth functions.
  107. 1. **Var(f) ≀ ∫ P(Eβ‚œ) dt:** Using the Layer Cake representation f(x) = βˆ«β‚€^∞ πŸ™_{Eβ‚œ}(x) dt and the definition of Var(f).
  108. > |∫_𝕋 f(x)Ο†'(x) dx| = |∫_𝕋 (βˆ«β‚€^∞ πŸ™_{Eβ‚œ}(x) dt) Ο†'(x) dx|
  109. > = |βˆ«β‚€^∞ (∫_𝕋 πŸ™_{Eβ‚œ}(x) Ο†'(x) dx) dt| ≀ βˆ«β‚€^∞ |∫_𝕋 πŸ™_{Eβ‚œ}(x) Ο†'(x) dx| dt
  110. > ≀ βˆ«β‚€^∞ P(Eβ‚œ) ||Ο†||_∞ dt ≀ βˆ«β‚€^∞ P(Eβ‚œ) dt.
  111. Taking the supremum over Ο† gives the inequality.
  112.  
  113. 2. **∫ P(Eβ‚œ) dt ≀ Var(f):** Using a sequence of smooth functions fβ‚– β†’ f in LΒΉ such that Var(fβ‚–) β†’ Var(f). For smooth functions, the formula holds: Var(fβ‚–) = ∫ P(Eβ‚œ(fβ‚–)) dt. By lower semicontinuity of the perimeter and Fatou's Lemma:
  114. > ∫ P(Eβ‚œ(f)) dt ≀ ∫ lim inf_{kβ†’βˆž} P(Eβ‚œ(fβ‚–)) dt
  115. > ≀ lim inf_{kβ†’βˆž} ∫ P(Eβ‚œ(fβ‚–)) dt = lim inf_{kβ†’βˆž} Var(fβ‚–) = Var(f).
  116. Combining both inequalities proves the formula.
  117.  
  118. ---
  119.  
  120. ### **3. The Sharp Inequality and Stability**
  121.  
  122. **3.1. Geometric Inequalities**
  123.  
  124. **Lemma 3.1 (Sharp Isoperimetric Inequality on 𝕋)**
  125. For any set of finite perimeter E βŠ‚ 𝕋, P(E) β‰₯ 4s(E). Equality holds if and only if E is an arc of length 1/2.
  126.  
  127. *Proof.*
  128. A set E with finite perimeter is a union of k β‰₯ 1 arcs. So P(E) = 2k β‰₯ 2.
  129. Also, s(E) = min(|E|, 1-|E|) ≀ 1/2.
  130. Therefore, 4s(E) ≀ 4(1/2) = 2 ≀ P(E).
  131. Equality holds if and only if P(E) = 2 (so k=1, E is an arc) and s(E) = 1/2 (so |E| = 1/2).
  132.  
  133. **Proof of Theorem 1.1**
  134. Combine the Coarea Formula (2.7), the Isoperimetric Inequality (3.1), and the Median Identity (2.5):
  135. > Var(f) = ∫_{-∞}^∞ P(Eβ‚œ) dt β‰₯ ∫_{-∞}^∞ 4s(Eβ‚œ) dt = 4 ||f - m𝒻||₁
  136. This is the desired inequality, since m𝒻 minimizes ||f - c||₁. The equality case follows from the equality case of Lemma 3.1 for almost every level t.
  137.  
  138. **3.2. Quantitative Stability**
  139.  
  140. Let Ξ΄(E) := P(E) - 4s(E) be the isoperimetric deficit. Let 𝓒 be the manifold of arcs of length 1/2. Let d(E, 𝓒) := inf_{Iβˆˆπ“’} |E Ξ” I|.
  141.  
  142. **Lemma 3.3 (Sharp Linear Quantitative Isoperimetry)**
  143. > d(E, 𝓒) ≀ (1/4) Ξ΄(E)
  144.  
  145. *Proof.*
  146. Let E be a union of k β‰₯ 1 arcs. P(E) = 2k. Let s = s(E) = min(|E|, 1-|E|).
  147. The distance to 𝓒 is bounded by the measure difference from 1/2: d(E, 𝓒) ≀ |1/2 - |E||. Since s ≀ 1/2, this is bounded by 1/2 - s.
  148. We check the inequality:
  149. > 1/2 - s ≀ (1/4) Ξ΄(E) = (1/4) (2k - 4s) = k/2 - s
  150. This is equivalent to 1/2 ≀ k/2, which is true since k β‰₯ 1. If k=1 (E is an arc), equality holds, proving sharpness.
  151.  
  152. **Lemma 3.4 (Deficit Decomposition)**
  153. > E(f) = ∫_{-∞}^∞ Ξ΄(Eβ‚œ) dt
  154.  
  155. *Proof.*
  156. > E(f) = Var(f) - 4 ||f - m𝒻||₁
  157. > = ∫ P(Eβ‚œ) dt - ∫ 4s(Eβ‚œ) dt = ∫ (P(Eβ‚œ) - 4s(Eβ‚œ)) dt = ∫ Ξ΄(Eβ‚œ) dt.
  158.  
  159. **Corollary 3.5**
  160. From Lemmas 3.3 and 3.4:
  161. > ∫_{-∞}^∞ d(Eβ‚œ, 𝓒) dt ≀ ∫_{-∞}^∞ (1/4) Ξ΄(Eβ‚œ) dt = (1/4) E(f)
  162.  
  163. **3.3. The Selection Principle via the Bath-Tub Principle**
  164.  
  165. We need to show there is a *single* arc I* that is simultaneously close to *all* level sets Eβ‚œ.
  166.  
  167. **Proposition 3.6 (Selection Principle via Commutativity)**
  168. Let (I, M) be the essential range of f. Then:
  169. > min_{Iβˆˆπ“’} ∫_I^M |Eβ‚œ Ξ” I| dt = ∫_I^M min_{I'βˆˆπ“’} |Eβ‚œ Ξ” I'| dt = ∫_I^M d(Eβ‚œ, 𝓒) dt
  170.  
  171. *Proof.*
  172. We use the Bath-Tub Principle. Let h_E(I) = |E ∩ I|.
  173. Note that |E Ξ” I| = |E| + |I| - 2|E ∩ I| = |E| + 1/2 - 2h_E(I).
  174. Minimizing |E Ξ” I| over I ∈ 𝓒 is equivalent to maximizing h_E(I).
  175. The equality in Proposition 3.6 is equivalent to:
  176. > max_{Iβˆˆπ“’} ∫_I^M h_{Eβ‚œ}(I) dt = ∫_I^M max_{I'βˆˆπ“’} h_{Eβ‚œ}(I') dt
  177.  
  178. Let's analyze both sides. Assume f β‰₯ 0, so I=0.
  179. * **LHS**: By Fubini's theorem:
  180. > βˆ«β‚€^M h_{Eβ‚œ}(I) dt = βˆ«β‚€^M (∫_I πŸ™_{Eβ‚œ}(x) dx) dt = ∫_I (βˆ«β‚€^M πŸ™_{{f(x)>t}}(x) dt) dx = ∫_I f(x) dx.
  181. So, LHS = max_{|I|=1/2} ∫_I f(x) dx.
  182. * **RHS**: The maximal overlap is max_{I'} h_{Eβ‚œ}(I') = min(|Eβ‚œ|, 1/2).
  183. So, RHS = βˆ«β‚€^M min(|Eβ‚œ|, 1/2) dt.
  184.  
  185. The required equality is therefore:
  186. > max_{|I|=1/2} ∫_I f(x) dx = βˆ«β‚€^M min(|Eβ‚œ|, 1/2) dt
  187.  
  188. This is precisely the statement of the **Bath-Tub Principle (Lemma 3.7)**, which states that the integral of a function over a set of a given measure is maximized by taking a superlevel set of the function. The RHS is the layer cake representation of this maximal value. This proves the commutativity.
  189.  
  190. **3.4. Proof of Theorem 1.3 (Sharp Quantitative Stability)**
  191.  
  192. *Proof.*
  193. Let f ∈ BV(𝕋) with essential range (I, M).
  194. 1. **Construct the approximant S***:
  195. We choose the arc I* ∈ 𝓒 that achieves the minimum in Proposition 3.6 (i.e., it maximizes the integral overlap with the level sets). We define the extremizer S* with levels a=I and b=M on the arc I*:
  196. > S*(x) = MΒ·πŸ™_{I*}(x) + IΒ·πŸ™_{(I*)^c}(x).
  197.  
  198. 2. **Calculate the LΒΉ-distance**:
  199. We use Cavalieri's principle (a layer-cake formula for the difference of functions):
  200. > ||f - S*||₁ = ∫_{-∞}^∞ |{f > t} Ξ” {S* > t}| dt
  201.  
  202. The level sets of S* are I* for t ∈ (I, M) and empty otherwise. So we integrate over (I, M):
  203. > ||f - S*||₁ = ∫_I^M |Eβ‚œ Ξ” I*| dt
  204.  
  205. 3. **Apply the Selection Principle**:
  206. By our choice of I*, this is the minimum possible value:
  207. > ||f - S*||₁ = min_{Iβˆˆπ“’} ∫_I^M |Eβ‚œ Ξ” I| dt
  208.  
  209. By the Selection Principle (Proposition 3.6), we can swap the minimum and the integral:
  210. > ||f - S*||₁ = ∫_I^M d(Eβ‚œ, 𝓒) dt
  211.  
  212. 4. **Apply Integrated Isoperimetry**:
  213. From Corollary 3.5, we have the bound:
  214. > ∫_I^M d(Eβ‚œ, 𝓒) dt ≀ (1/4) E(f)
  215.  
  216. 5. **Conclusion**:
  217. Combining the steps, we have:
  218. > inf_{Sβˆˆπ“”} ||f - S||₁ ≀ ||f - S*||₁ ≀ (1/4) E(f)
  219.  
  220. This proves the theorem.
  221.  
  222. 6. **Sharpness**:
  223. Consider a function f_Ξ΅ that is +A on an arc of length 1/2 - Ξ΅, -A on the opposite arc of length 1/2 - Ξ΅, and connected by two linear ramps of width Ξ΅.
  224. * Var(f_Ξ΅) = 4A.
  225. * Median m = 0.
  226. * ||f_Ξ΅||₁ = A(1-2Ξ΅) + 2Β·(AΞ΅/2) = A(1-Ξ΅).
  227. * Deficit E(f_Ξ΅) = Var(f_Ξ΅) - 4||f_Ξ΅||₁ = 4A - 4A(1-Ξ΅) = 4AΞ΅.
  228. * The closest extremizer S* is Β±A on arcs of length 1/2. The LΒΉ distance is the area of the two small triangles on the ramps that differ from S*.
  229. * inf_{Sβˆˆπ“”} ||f_Ξ΅ - S||₁ = 2 Β· (Area of one triangle) = 2 Β· (1/2 Β· base Β· height) / 2 = AΞ΅.
  230. We check the inequality:
  231. > AΞ΅ ≀ (1/4) (4AΞ΅)
  232. This becomes AΞ΅ = AΞ΅, showing that the constant 1/4 is sharp.
Advertisement
Add Comment
Please, Sign In to add comment