silver2row

Some sample to make motors TURN?

Jun 10th, 2021
979
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. // This program is free software: you can redistribute it and/or modify
  2. // it under the terms of the GNU General Public License as published by
  3. // the Free Software Foundation, either version 3 of the License, or
  4. // (at your option) any later version.
  5. // This program is distributed in the hope that it will be useful,
  6. // but WITHOUT ANY WARRANTY; without even the implied warranty of
  7. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  8. // GNU General Public License for more details.
  9. // You should have received a copy of the GNU General Public License
  10. // along with this program. If not, see <http://www.gnu.org/licenses/>.
  11.  
  12. #include <stdio.h>
  13. #include <stdint.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <unistd.h>
  17. #include <fcntl.h>
  18. #include <sys/mman.h>
  19.  
  20. //Comment/uncomment the #includes statements depending on your BeagleBone version:
  21. //#include "RcAioPRU_POCKET_bin.h"
  22. //#include "RcAioPRU_BBBMINI_bin.h"
  23. #include "RcAioPRU_BBBLUE_bin.h"
  24.  
  25. #define NUM_RING_ENTRIES 300
  26. #define RCOUT_PRUSS_RAM_BASE 0x4a302000
  27. #define RCOUT_PRUSS_CTRL_BASE 0x4a324000
  28. #define RCOUT_PRUSS_IRAM_BASE 0x4a338000
  29. #define RCIN_PRUSS_RAM_BASE   0x4a303000
  30.  
  31. #define ARRAY_SIZE(_arr) (sizeof(_arr) / sizeof(_arr[0]))
  32.  
  33. #define PWM_FREQ 50
  34.  
  35. struct ring_buffer {
  36.         volatile uint16_t ring_head;
  37.         volatile uint16_t ring_tail;
  38.         struct {
  39.                 volatile uint32_t s1;
  40.                 volatile uint32_t s0;
  41.         } buffer[NUM_RING_ENTRIES];
  42. };
  43.  
  44. struct pwm {
  45.         volatile uint32_t enable;
  46.         volatile uint32_t ch1_hi_time;
  47.         volatile uint32_t ch1_t_time;
  48.         volatile uint32_t ch2_hi_time;
  49.         volatile uint32_t ch2_t_time;
  50.         volatile uint32_t ch3_hi_time;
  51.         volatile uint32_t ch3_t_time;
  52.         volatile uint32_t ch4_hi_time;
  53.         volatile uint32_t ch4_t_time;
  54.         volatile uint32_t ch5_hi_time;
  55.         volatile uint32_t ch5_t_time;
  56.         volatile uint32_t ch6_hi_time;
  57.         volatile uint32_t ch6_t_time;
  58.         volatile uint32_t ch7_hi_time;
  59.         volatile uint32_t ch7_t_time;
  60.         volatile uint32_t ch8_hi_time;
  61.         volatile uint32_t ch8_t_time;
  62.         volatile uint32_t ch9_hi_time;
  63.         volatile uint32_t ch9_t_time;
  64.         volatile uint32_t ch10_hi_time;
  65.         volatile uint32_t ch10_t_time;
  66.         volatile uint32_t ch11_hi_time;
  67.         volatile uint32_t ch11_t_time;
  68.         volatile uint32_t ch12_hi_time;
  69.         volatile uint32_t ch12_t_time;
  70.         volatile uint32_t time;
  71.         volatile uint32_t max_cycle_time;
  72. };
  73.  
  74. volatile struct ring_buffer *ring_buffer;
  75. volatile struct pwm *pwm;
  76.  
  77. static const uint32_t TICK_PER_US = 200;
  78. static const uint32_t TICK_PER_S = 200000000;
  79. static const uint32_t TICK_DURATION_NS = 5;
  80.  
  81. int main (void)
  82. {
  83.    unsigned int ret, s0, s1, min_s0 = 0xffffffff, min_s1 = 0xffffffff, max_s0 = 0, max_s1 = 0;
  84.    uint32_t mem_fd = open("/dev/mem", O_RDWR|O_SYNC|O_CLOEXEC);
  85.    ring_buffer = (struct ring_buffer*) mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCIN_PRUSS_RAM_BASE);
  86.    pwm = (struct pwm*) mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCOUT_PRUSS_RAM_BASE);
  87.    uint32_t *iram = (uint32_t*)mmap(0, 0x2000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCOUT_PRUSS_IRAM_BASE);
  88.    uint32_t *ctrl = (uint32_t*)mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCOUT_PRUSS_CTRL_BASE);
  89.    uint64_t time_ns;
  90.    close(mem_fd);
  91.  
  92.    // This loop checks that the IEP counter is really started. If not, the PRU is reset, the program is reload and PRU restarted
  93.    // To report pwm->time and pwm->max_cycle_time, the PRU program must be compiled with -DDEBUG option, for example:
  94.    // pasm -V3 -c RcAioPRU.p RcAioPRU_BBBLUE -DBBBLUE -DDEBUG
  95.    // This is made for you by 'make debug' followed by 'make test'
  96.    do {
  97.       printf("The PRU will be reset\n");
  98.       // Reset PRU 1
  99.       *ctrl = 0;
  100.       //You might uncomment this to identify more easily where the program ends in the IRAM
  101.       //memset(iram, '\0', sizeof(PRUcode) + 128);
  102.       // Load firmware
  103.       memcpy(iram, PRUcode, sizeof(PRUcode));
  104.       // Start PRU 1
  105.       *ctrl |= 2;
  106.       pwm->ch1_t_time = TICK_PER_S / PWM_FREQ;
  107.       pwm->ch2_t_time = TICK_PER_S / PWM_FREQ;
  108.       pwm->ch3_t_time = TICK_PER_S / PWM_FREQ;
  109.       pwm->ch4_t_time = TICK_PER_S / PWM_FREQ;
  110.       pwm->ch5_t_time = TICK_PER_S / PWM_FREQ;
  111.       pwm->ch6_t_time = TICK_PER_S / PWM_FREQ;
  112.       pwm->ch7_t_time = TICK_PER_S / PWM_FREQ;
  113.       pwm->ch8_t_time = TICK_PER_S / PWM_FREQ;
  114.       pwm->ch9_t_time = TICK_PER_S / PWM_FREQ;
  115.       pwm->ch10_t_time = TICK_PER_S / PWM_FREQ;
  116.       pwm->ch11_t_time = TICK_PER_S / PWM_FREQ;
  117.       pwm->ch12_t_time = TICK_PER_S / PWM_FREQ;
  118.       pwm->enable=0xffffffff;
  119.       printf("IEP counter: 0x%08x\n", pwm->time);
  120.    } while (pwm->time == 0xffffffff);
  121.  
  122.    while(1) {
  123.       for(unsigned int a = 0; a < NUM_RING_ENTRIES; a++) {
  124.          s0 = ring_buffer->buffer[a].s0;
  125.          s1 = ring_buffer->buffer[a].s1;
  126.          if(s0 > max_s0) {max_s0 = s0;}
  127.          if(s1 > max_s1) {max_s1 = s1;}
  128.          if(s0 < min_s0) {min_s0 = s0;}
  129.          if(s1 < min_s1) {min_s1 = s1;}
  130.       }
  131.       s0 = ring_buffer->buffer[ring_buffer->ring_tail].s0;
  132.       s1 = ring_buffer->buffer[ring_buffer->ring_tail].s1;
  133.       time_ns = ((double)pwm->time) * ((double)TICK_DURATION_NS);
  134.       printf("max ct: %3u cycles time: %11lluns head: %u tail: %3u s0: %7u s1: %7u s01: %7u jitter_s0: %uns jitter_s1: %uns\n", pwm->max_cycle_time, time_ns, ring_buffer->ring_head, ring_buffer->ring_tail                                 , s0 * TICK_DURATION_NS, s1 * TICK_DURATION_NS, (s0+s1) * TICK_DURATION_NS, ((max_s0-min_s0) * TICK_DURATION_NS), ((max_s1-min_s1) * TICK_DURATION_NS));
  135.       // uint32_t value = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
  136.       // pwm->ch1_hi_time = value;
  137.       // pwm->ch2_hi_time = value;
  138.       //pwm->ch1_hi_time = 1500 * TICK_PER_US;
  139.       pwm->ch1_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
  140.       pwm->ch2_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
  141.       pwm->ch3_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
  142.       pwm->ch4_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
  143.       pwm->ch5_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
  144.       pwm->ch6_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
  145.       pwm->ch7_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
  146.       pwm->ch8_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
  147.       pwm->ch9_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
  148.       pwm->ch10_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
  149.       pwm->ch11_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
  150.       pwm->ch12_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US);
  151.       usleep(1000000);
  152.       min_s0 = 0xffffffff;
  153.       min_s1 = 0xffffffff;
  154.       max_s0  = 0;
  155.       max_s1  = 0;
  156.    }
  157.    return 0;
  158. }
RAW Paste Data