Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import ij.ImagePlus;
- import ij.plugin.filter.Convolver;
- import ij.process.FloatProcessor;
- import ij.process.ImageProcessor;
- import ij.IJ;
- // Get the list of open images in ImageJ
- String[] imageList = IJ.getOverlayList();
- int numImages = imageList.length;
- // Check if there are open images
- if (numImages == 0) {
- IJ.log("No images are open in ImageJ.");
- } else {
- IJ.log("Starting deconvolution using Wiener space regularization algorithm for " + numImages + " image(s).");
- // Deconvolution parameters
- double regularization = 0.1; // Regularization parameter
- // Process each image in the list
- for (int i = 0; i < numImages; i++) {
- String imageTitle = imageList[i];
- IJ.log("Processing image: " + imageTitle);
- try {
- // Load the original image
- ImagePlus originalImage = IJ.getImage();
- // Create a duplicate of the original image to store the deconvolution result
- ImagePlus deconvolvedImage = originalImage.duplicate();
- String deconvolvedTitle = "Deconvolved_" + imageTitle;
- deconvolvedImage.setTitle(deconvolvedTitle);
- // Get the image processors
- ImageProcessor originalIP = originalImage.getProcessor();
- ImageProcessor deconvolvedIP = deconvolvedImage.getProcessor();
- // Calculate the power spectrum of the original image
- FloatProcessor originalPowerSpectrum = calculatePowerSpectrum(originalIP);
- // Calculate the Wiener filter
- FloatProcessor wienerFilter = calculateWienerFilter(originalPowerSpectrum, regularization);
- // Perform the convolution with the Wiener filter
- Convolver convolver = new Convolver();
- convolver.setNormalize(true);
- convolver.convolve(originalIP, wienerFilter);
- // Update the pixels of the deconvolved image
- deconvolvedIP.setPixels(originalIP.getPixels());
- // Show the deconvolved image
- deconvolvedImage.show();
- } catch (Exception e) {
- IJ.log("Error processing the image: " + imageTitle);
- e.printStackTrace();
- }
- }
- IJ.log("Image processing finished.");
- }
- // Function to calculate the power spectrum of an image
- private FloatProcessor calculatePowerSpectrum(ImageProcessor ip) {
- FloatProcessor fp = ip.convertToFloatProcessor();
- fp.multiply(255.0);
- fp.power(2.0);
- fp.transformFFT();
- fp.swapQuadrants();
- fp.log();
- return fp;
- }
- // Function to calculate the Wiener filter
- private FloatProcessor calculateWienerFilter(FloatProcessor powerSpectrum, double regularization) {
- int width = powerSpectrum.getWidth();
- int height = powerSpectrum.getHeight();
- float[] powerPixels = (float[]) powerSpectrum.getPixels();
- float[] wienerPixels = new float[width * height];
- for (int i = 0; i < powerPixels.length; i++) {
- float power = powerPixels[i];
- float wiener = power / (power + (float) regularization);
- wienerPixels[i] = wiener;
- }
- return new FloatProcessor(width, height, wienerPixels);
- }
Advertisement
Comments
-
Comment was deleted
-
- The provided code is an implementation of a deconvolution algorithm using the Wiener space regularization technique in ImageJ. Here's a summary of what it does:
- 1. It checks if there are open images in ImageJ. If there are no open images, it logs a message indicating that.
- 2. If there are open images, it logs a message indicating the start of the deconvolution process.
- 3. It defines a regularization parameter for the deconvolution process.
- 4. For each open image, it performs the following steps:
- a. Retrieves the original image.
- b. Creates a duplicate of the original image to store the deconvolved result.
- c. Retrieves the image processors for the original and deconvolved images.
- d. Calculates the power spectrum of the original image.
- e. Calculates the Wiener filter based on the power spectrum and the regularization parameter.
- f. Performs convolution on the original image using the Wiener filter.
- g. Updates the pixels of the deconvolved image with the convolved result.
- h. Displays the deconvolved image.
- 5. If an error occurs during the processing of an image, it logs an error message and prints the stack trace.
- 6. Once all images have been processed, it logs a message indicating the end of the image processing.
- The code also includes two helper functions:
- 1. `calculatePowerSpectrum`: Calculates the power spectrum of an image by converting it to a float processor, scaling the pixel values, performing FFT transformation, swapping quadrants, taking the logarithm, and returning the resulting float processor.
- 2. `calculateWienerFilter`: Calculates the Wiener filter based on a power spectrum and a regularization parameter. It computes the filter for each pixel by dividing the power by the sum of the power and the regularization value, and returns a float processor containing the filter values.
- Overall, this code performs deconvolution using the Wiener space regularization algorithm on open images in ImageJ.
Add Comment
Please, Sign In to add comment