SpaceQuester

Untitled

Nov 10th, 2025
105
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
C 5.36 KB | None | 0 0
  1. #define _USE_MATH_DEFINES
  2. #include "math.h"
  3. #include <stdlib.h>
  4. #include <stdio.h>
  5. #include <locale.h>
  6. #include <time.h>
  7. #include <stdbool.h>
  8.  
  9. #define N 7
  10.  
  11. #define Ca  f[0]
  12. #define IP3 f[1]
  13. #define z   f[2]
  14. #define V   f[3]
  15. #define m   f[4]
  16. #define n   f[5]
  17. #define h   f[6]
  18.  
  19. double f[N];
  20.  
  21. double k[N][4];
  22. double phi_k1[N];
  23. double phi_k2[N];
  24. double phi_k3[N];
  25.  
  26. double c_0 = 2;
  27. double c_1 = 0.185;
  28. double v_1 = 6;
  29. double v_2 = 0.11;
  30. double v_3 = 2.2;
  31. double v_4 = 0.0;
  32. double v_5 = 0.025;
  33. double v_6 = 0.2;
  34. double k_1 = 0.5;
  35. double k_2 = 1;
  36. double k_3 = 0.1;
  37. double k_4 = 1.1;
  38. double a_2 = 0.14;
  39. double d_1 = 0.13;
  40. double d_2 = 1.049;
  41. double d_3 = 0.9434;
  42. double d_5 = 0.082;
  43. double alpha_G = 25;
  44. double beta_G = 500;
  45. double alpha = 0.8;
  46. double tau_IP3 = 7.143;
  47. double IP3_star = 0.16;
  48. //double d_Ca = 0.001;
  49. //double d_IP3 = 0.12;
  50.  
  51. double C = 1; // muF/cm^2
  52. double g_K  =  35; // mS/cm^2
  53. double g_Na =  40; // mS/cm^2
  54. double g_L  = 0.3; // mS/cm^2
  55. double E_K  = -77; // mV
  56. double E_Na =  55; // mV
  57. double E_L  = -65; // mV
  58.  
  59. double I_app = 1.04;
  60.  
  61. int RandomI(int min, int max)
  62. {
  63.     return ((double)rand() / (RAND_MAX - 1)) * (max - min) + min;
  64. }
  65.  
  66. double RandomD(double min, double max)
  67. {
  68.     return ((double)rand() / RAND_MAX) * (max - min) + min;
  69. }
  70.  
  71. double alpha_n(double f[N])
  72. {
  73.     return 0.02 * (V - 25) / (1 - exp(-(V - 25) / 9));
  74. }
  75.  
  76. double beta_n(double f[N])
  77. {
  78.     return -0.002 * (V - 25) / (1 - exp((V - 25) / 9));
  79. }
  80.  
  81. double alpha_m(double f[N])
  82. {
  83.     return 0.182 * (V + 35) / (1 - exp(-(V + 35) / 9));
  84. }
  85.  
  86. double beta_m(double f[N])
  87. {
  88.     return -0.124 * (V + 35) / (1 - exp((V + 35) / 9));
  89. }
  90.  
  91. double alpha_h(double f[N])
  92. {
  93.     return 0.25 * exp(-(V + 90) / 12);
  94. }
  95.  
  96. double beta_h(double f[N])
  97. {
  98.     return 0.25 * exp((V + 62) / 6) / exp((V + 90) / 12);
  99. }
  100.  
  101. double UllahJung_HodgkinHuxley(int i, double f[N])
  102. {
  103.     switch (i)
  104.     {
  105.     case 0: // Ca
  106.         return ( c_1 * v_1 * pow(IP3, 3) * pow(Ca, 3) * pow(z, 3) * (c_0 / c_1 - (1 + 1 / c_1) * Ca) / pow( ((IP3 + d_1) * (Ca + d_5)), 3) ) - ( v_3 * pow(Ca, 2) / (pow(k_3, 2) + pow(Ca, 2)) ) + ( c_1 * v_2 * ( c_0 / c_1 - (1 + 1 / c_1) * Ca ) ) + ( v_5 + v_6 * pow(IP3, 2) / (pow(k_2, 2) + pow(IP3, 2)) ) - k_1 * Ca;
  107.  
  108.     case 1: // IP3
  109.         return ( IP3_star - IP3 ) / tau_IP3 + v_4 * (Ca + (1 - alpha) * k_4) / (Ca + k_4);
  110.  
  111.     case 2: // z
  112.         return a_2 * ( d_2 * ((IP3 + d_1) / (IP3 + d_3)) * (1 - z) - Ca * z );
  113.    
  114.     case 3: // V
  115.         return 1000 * ((g_Na * pow(m, 3) * h * (E_Na - V) + g_K * n * (E_K - V) + g_L * (E_L - V) + I_app) / C);
  116.  
  117.     case 4: // m
  118.         return 1000 * (alpha_m(f) * (1 - m) - beta_m(f) * m);
  119.  
  120.     case 5: // n
  121.         return 1000 * (alpha_n(f) * (1 - n) - beta_n(f) * n);
  122.  
  123.     case 6: // h
  124.         return 1000 * (alpha_h(f) * (1 - h) - beta_h(f) * h);
  125.     }
  126.  
  127.     return 0;
  128. }
  129.  
  130. void RungeKutta(double dt, double f[N], double f_next[N])
  131. {
  132.     #pragma omp parallel for
  133.     for (int i = 0; i < N; i++)
  134.     {
  135.         k[i][0] = UllahJung_HodgkinHuxley(i, f) * dt;
  136.         phi_k1[i] = f[i] + k[i][0] / 2;
  137.         k[i][1] = UllahJung_HodgkinHuxley(i, phi_k1) * dt;
  138.         phi_k2[i] = f[i] + k[i][1] / 2;
  139.         k[i][2] = UllahJung_HodgkinHuxley(i, phi_k2) * dt;
  140.         phi_k3[i] = f[i] + k[i][2] / 2;
  141.         k[i][3] = UllahJung_HodgkinHuxley(i, phi_k3) * dt;
  142.  
  143.         f_next[i] = f[i] + (k[i][0] + 2 * k[i][1] + 2 * k[i][2] + k[i][3]) / 6;
  144.     }
  145. }
  146.  
  147. void CopyArray(double source[N], double target[N])
  148. {
  149.     for (int i = 0; i < N; i++)
  150.         target[i] = source[i];
  151. }
  152.  
  153. bool Approximately(double a, double b)
  154. {
  155.     if (a < 0)
  156.         a = -a;
  157.  
  158.     if (b < 0)
  159.         b = -b;
  160.  
  161.     return a - b <= 0.000001;
  162. }
  163.  
  164. int main()
  165. //main(int argc, char *argv[])
  166. {
  167.     //sscanf(argv[1], "%lf", &v_4);
  168.  
  169.     FILE *fp0;
  170.     srand(time(NULL));
  171.  
  172.     double Ca_0  = 0.07;
  173.     double IP3_0 = 0.16;
  174.     double z_0   = 0.67;
  175.    
  176.     double V_0 = -58.7085;
  177.     double m_0 = 0.0953;
  178.     double n_0 = 0.000913;
  179.     double h_0 = 0.3662;
  180.    
  181.     //Initial values at t = 0
  182.     f[0] = Ca_0;
  183.     f[1] = IP3_0;
  184.     f[2] = z_0;
  185.    
  186.     f[3] = V_0;
  187.     f[4] = m_0;
  188.     f[5] = n_0;
  189.     f[6] = h_0;
  190.        
  191.     /*fp0 = fopen("last_values.txt", "r");
  192.     for (int i = 0; i < N; i++)
  193.     {
  194.         fscanf(fp0, "%lf", &f[i]);
  195.     }
  196.     fclose(fp0);*/
  197.  
  198.     const double t_start = 0;
  199.     const double t_max   = 30; // sec
  200.     const double dt      = 0.00001;
  201.  
  202.     double t = t_start;
  203.  
  204.     //fp0 = fopen("v_4.txt", "w+");
  205.     //fprintf(fp0, "%f\n", v_4);
  206.     //fclose(fp0);
  207.  
  208.     fp0 = fopen("results.txt", "w+");
  209.     //setlocale(LC_NUMERIC, "French_Canada.1252");
  210.  
  211.     clock_t start_rk4, end_rk4;
  212.     start_rk4 = clock();
  213.     int lastPercent = -1;
  214.  
  215.     while (t < t_max || Approximately(t, t_max))
  216.     {
  217.         fprintf(fp0, "%f\t", t);
  218.         for (int i = 0; i < N; i++)
  219.         {
  220.             fprintf(fp0, i == N - 1 ? "%f" : "%f\t", f[i]);
  221.         }
  222.         fprintf(fp0, "\n");
  223.  
  224.         double f_next[N];
  225.  
  226.         RungeKutta(dt, f, f_next);
  227.         CopyArray(f_next, f);
  228.  
  229.         t += dt;
  230.  
  231.         int percent = (int)(100 * (t - t_start) / (t_max - t_start));
  232.         if (percent != lastPercent)
  233.         {
  234.             printf("Progress: %d%%\n", percent);
  235.             lastPercent = percent;
  236.         }
  237.     }
  238.  
  239.     end_rk4 = clock();
  240.     double extime_rk4 = (double)(end_rk4 - start_rk4) / CLOCKS_PER_SEC;
  241.     int minutes = (int)extime_rk4 / 60;
  242.     int seconds = (int)extime_rk4 % 60;
  243.     printf("\nExecution time is: %d minutes %d seconds\n ", minutes, seconds);
  244.  
  245.     fclose(fp0);
  246.  
  247.     fp0 = fopen("time_exec.txt", "w+");
  248.     fprintf(fp0, "%f\n", extime_rk4);
  249.     fclose(fp0);
  250.  
  251.     /*fp0 = fopen("last_values.txt", "w+");
  252.     for (int i = 0; i < N; i++)
  253.     {
  254.         fprintf(fp0, i == N - 1 ? "%f" : "%f\t", f[i]);
  255.     }
  256.     fclose(fp0);*/
  257. }
  258.  
Advertisement
Add Comment
Please, Sign In to add comment