Advertisement
Guest User

ax88179_178a MOD for PVE to work with opnsense 19.x as Linux

a guest
Nov 28th, 2019
819
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
C 61.33 KB | None | 0 0
  1. /*
  2.  * ASIX AX88179 based USB 3.0 Ethernet Devices
  3.  * Copyright (C) 2003-2005 David Hollis <[email protected]>
  4.  * Copyright (C) 2005 Phil Chang <[email protected]>
  5.  * Copyright (c) 2002-2003 TiVo Inc.
  6.  *
  7.  * This program is free software; you can redistribute it and/or modify
  8.  * it under the terms of the GNU General Public License as published by
  9.  * the Free Software Foundation; either version 2 of the License, or
  10.  * (at your option) any later version.
  11.  *
  12.  * This program is distributed in the hope that it will be useful,
  13.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15.  * GNU General Public License for more details.
  16.  *
  17.  * You should have received a copy of the GNU General Public License
  18.  * along with this program; if not, write to the Free Software
  19.  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  20.  */
  21.  
  22. /* debug messages, extra info */
  23. /* #define  DEBUG */
  24.  
  25. #include <linux/version.h>
  26. /*#include <linux/config.h>*/
  27. #ifdef  CONFIG_USB_DEBUG
  28. #define DEBUG
  29. #endif
  30. #include <linux/module.h>
  31. #include <linux/kmod.h>
  32. #include <linux/sched.h>
  33. #include <linux/init.h>
  34. #include <linux/netdevice.h>
  35. #include <linux/etherdevice.h>
  36. #include <linux/ethtool.h>
  37. #include <linux/workqueue.h>
  38. #include <linux/mii.h>
  39. #include <linux/usb.h>
  40. #include <linux/crc32.h>
  41. #include <linux/if_vlan.h>
  42.  
  43. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)
  44. #include <linux/usb/usbnet.h>
  45. #else
  46. #include <../drivers/usb/net/usbnet.h>
  47. #endif
  48.  
  49. #include "ax88179_178a.h"
  50.  
  51. #define DRV_VERSION "1.19.0"
  52.  
  53. static char version[] =
  54. KERN_INFO "ASIX USB Ethernet Adapter:v" DRV_VERSION
  55. //  " " __TIME__ " " __DATE__ "\n"
  56. "       http://www.asix.com.tw\n";
  57.  
  58. static int msg_enable;
  59. module_param(msg_enable, int, 0);
  60. MODULE_PARM_DESC(msg_enable, "usbnet msg_enable");
  61.  
  62. static int bsize = -1;
  63. module_param(bsize, int, 0);
  64. MODULE_PARM_DESC(bsize, "RX Bulk IN Queue Size");
  65.  
  66. static int ifg = -1;
  67. module_param(ifg, int, 0);
  68. MODULE_PARM_DESC(ifg, "RX Bulk IN Inter Frame Gap");
  69.  
  70.  
  71. /* EEE advertisement is disabled in default setting */
  72. static int bEEE = 0;
  73. module_param(bEEE, int, 0);
  74. MODULE_PARM_DESC(bEEE, "EEE advertisement configuration");
  75.  
  76. /* Green ethernet advertisement is disabled in default setting */
  77. static int bGETH = 0;
  78. module_param(bGETH, int, 0);
  79. MODULE_PARM_DESC(bGETH, "Green ethernet configuration");
  80. /* ASIX AX88179/178A based USB 3.0/2.0 Gigabit Ethernet Devices */
  81.  
  82. static int __ax88179_read_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index,
  83.                   u16 size, void *data, int in_pm)
  84. {
  85.     int ret;
  86. #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0)
  87.     int (*fn)(struct usbnet *, u8, u8, u16, u16, void *, u16);
  88.  
  89.     BUG_ON(!dev);
  90.  
  91.     if (!in_pm)
  92.         fn = usbnet_read_cmd;
  93.     else
  94.         fn = usbnet_read_cmd_nopm;
  95.  
  96.     ret = fn(dev, cmd, USB_DIR_IN | USB_TYPE_VENDOR |
  97.          USB_RECIP_DEVICE, value, index, data, size);
  98.  
  99.     if (unlikely(ret < 0))
  100.         netdev_warn(dev->net, "Failed to read reg index 0x%04x: %d\n",
  101.                 index, ret);
  102. #else
  103.     ret = usb_control_msg(
  104.         dev->udev,
  105.         usb_rcvctrlpipe(dev->udev, 0),
  106.         cmd,
  107.         USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
  108.         value,
  109.         index,
  110.         data,
  111.         size,
  112.         USB_CTRL_GET_TIMEOUT);
  113. #endif
  114.     return ret;
  115. }
  116.  
  117. static int __ax88179_write_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index,
  118.                    u16 size, void *data, int in_pm)
  119. {
  120.     int ret;
  121. #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0)
  122.     int (*fn)(struct usbnet *, u8, u8, u16, u16, const void *, u16);
  123.  
  124.     BUG_ON(!dev);
  125.  
  126.     if (!in_pm)
  127.         fn = usbnet_write_cmd;
  128.     else
  129.         fn = usbnet_write_cmd_nopm;
  130.  
  131.     ret = fn(dev, cmd, USB_DIR_OUT | USB_TYPE_VENDOR |
  132.          USB_RECIP_DEVICE, value, index, data, size);
  133.  
  134.     if (unlikely(ret < 0))
  135.         netdev_warn(dev->net, "Failed to write reg index 0x%04x: %d\n",
  136.                 index, ret);
  137. #else
  138.     ret = usb_control_msg(
  139.         dev->udev,
  140.         usb_sndctrlpipe(dev->udev, 0),
  141.         cmd,
  142.         USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
  143.         value,
  144.         index,
  145.         data,
  146.         size,
  147.         USB_CTRL_SET_TIMEOUT);
  148.  
  149. #endif
  150.     return ret;
  151. }
  152.  
  153. static int ax88179_read_cmd_nopm(struct usbnet *dev, u8 cmd, u16 value,
  154.                  u16 index, u16 size, void *data, int eflag)
  155. {
  156.     int ret;
  157.  
  158.     if (eflag && (2 == size)) {
  159.         u16 buf = 0;
  160.         ret = __ax88179_read_cmd(dev, cmd, value, index, size, &buf, 1);
  161.         le16_to_cpus(&buf);
  162.         *((u16 *)data) = buf;
  163.     } else if (eflag && (4 == size)) {
  164.         u32 buf = 0;
  165.         ret = __ax88179_read_cmd(dev, cmd, value, index, size, &buf, 1);
  166.         le32_to_cpus(&buf);
  167.         *((u32 *)data) = buf;
  168.     } else {
  169.         ret = __ax88179_read_cmd(dev, cmd, value, index, size, data, 1);
  170.     }
  171.  
  172.     return ret;
  173. }
  174.  
  175. static int ax88179_write_cmd_nopm(struct usbnet *dev, u8 cmd, u16 value,
  176.                   u16 index, u16 size, void *data)
  177. {
  178.     int ret;
  179.  
  180.     if (2 == size) {
  181.         u16 buf = 0;
  182.         buf = *((u16 *)data);
  183.         cpu_to_le16s(&buf);
  184.         ret = __ax88179_write_cmd(dev, cmd, value, index,
  185.                       size, &buf, 1);
  186.     } else {
  187.         ret = __ax88179_write_cmd(dev, cmd, value, index,
  188.                       size, data, 1);
  189.     }
  190.  
  191.     return ret;
  192. }
  193.  
  194. static int ax88179_read_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index,
  195.                 u16 size, void *data, int eflag)
  196. {
  197.  
  198.     int ret;
  199.  
  200.     if (eflag && (2 == size)) {
  201.         u16 buf = 0;
  202.         ret = __ax88179_read_cmd(dev, cmd, value, index, size, &buf, 0);
  203.         le16_to_cpus(&buf);
  204.         *((u16 *)data) = buf;
  205.     } else if (eflag && (4 == size)) {
  206.         u32 buf = 0;
  207.         ret = __ax88179_read_cmd(dev, cmd, value, index, size, &buf, 0);
  208.         le32_to_cpus(&buf);
  209.         *((u32 *)data) = buf;
  210.     } else {
  211.         ret = __ax88179_read_cmd(dev, cmd, value, index, size, data, 0);
  212.     }
  213.  
  214.     return ret;
  215. }
  216.  
  217. static int ax88179_write_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index,
  218.                  u16 size, void *data)
  219. {
  220.     int ret;
  221.  
  222.     if (2 == size) {
  223.         u16 buf = 0;
  224.         buf = *((u16 *)data);
  225.         cpu_to_le16s(&buf);
  226.         ret = __ax88179_write_cmd(dev, cmd, value, index,
  227.                       size, &buf, 0);
  228.     } else {
  229.         ret = __ax88179_write_cmd(dev, cmd, value, index,
  230.                       size, data, 0);
  231.     }
  232.  
  233.     return ret;
  234. }
  235.  
  236. #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
  237. static void ax88179_async_cmd_callback(struct urb *urb, struct pt_regs *regs)
  238. #else
  239. static void ax88179_async_cmd_callback(struct urb *urb)
  240. #endif
  241. {
  242.     struct ax88179_async_handle *asyncdata = (struct ax88179_async_handle *)urb->context;
  243.  
  244.     if (urb->status < 0)
  245.         printk(KERN_ERR "ax88179_async_cmd_callback() failed with %d",
  246.                urb->status);
  247.  
  248.     kfree(asyncdata->req);
  249.     kfree(asyncdata);  
  250.     usb_free_urb(urb);
  251.    
  252. }
  253.  
  254. static void
  255. ax88179_write_cmd_async(struct usbnet *dev, u8 cmd, u16 value, u16 index,
  256.                     u16 size, void *data)
  257. {
  258.     struct usb_ctrlrequest *req = NULL;
  259.     int status = 0;
  260.     struct urb *urb = NULL;
  261.     void *buf = NULL;
  262.     struct ax88179_async_handle *asyncdata = NULL;
  263.  
  264.     urb = usb_alloc_urb(0, GFP_ATOMIC);
  265.     if (urb == NULL) {
  266. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  267.         netdev_err(dev->net, "Error allocating URB in write_cmd_async!");
  268. #else
  269.         deverr(dev, "Error allocating URB in write_cmd_async!");
  270. #endif
  271.         return;
  272.     }
  273.  
  274.     req = kmalloc(sizeof(struct usb_ctrlrequest), GFP_ATOMIC);
  275.     if (req == NULL) {
  276. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  277.         netdev_err(dev->net, "Failed to allocate memory for control request");
  278. #else
  279.         deverr(dev, "Failed to allocate memory for control request");
  280. #endif
  281.         usb_free_urb(urb);
  282.         return;
  283.     }
  284.  
  285.     asyncdata = (struct ax88179_async_handle*)
  286.             kmalloc(sizeof(struct ax88179_async_handle), GFP_ATOMIC);
  287.     if (asyncdata == NULL) {
  288. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  289.         netdev_err(dev->net, "Failed to allocate memory for async data");
  290. #else
  291.         deverr(dev, "Failed to allocate memory for async data");
  292. #endif
  293.         kfree(req);
  294.         usb_free_urb(urb);
  295.         return;
  296.     }
  297.  
  298.     asyncdata->req = req;
  299.    
  300.     if (size == 2) {
  301.         asyncdata->rxctl = *((u16 *)data);
  302.         cpu_to_le16s(&asyncdata->rxctl);
  303.         buf = &asyncdata->rxctl;
  304.     } else {
  305.         memcpy(asyncdata->m_filter, data, size);
  306.         buf = asyncdata->m_filter;
  307.     }
  308.  
  309.     req->bRequestType = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE;
  310.     req->bRequest = cmd;
  311.     req->wValue = cpu_to_le16(value);
  312.     req->wIndex = cpu_to_le16(index);
  313.     req->wLength = cpu_to_le16(size);
  314.  
  315.     usb_fill_control_urb(urb, dev->udev,
  316.                  usb_sndctrlpipe(dev->udev, 0),
  317.                  (void *)req, buf, size,
  318.                  ax88179_async_cmd_callback, asyncdata);
  319.  
  320.     status = usb_submit_urb(urb, GFP_ATOMIC);
  321.     if (status < 0) {
  322. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  323.         netdev_err(dev->net, "Error submitting the control message: status=%d",
  324.                status);
  325. #else
  326.         deverr(dev, "Error submitting the control message: status=%d",
  327.                status);
  328. #endif
  329.         kfree(req);
  330.         kfree(asyncdata);
  331.         usb_free_urb(urb);
  332.     }
  333. }
  334.  
  335. static void ax88179_status(struct usbnet *dev, struct urb *urb)
  336. {
  337.     struct ax88179_int_data *event = NULL;
  338.     int link = 0;
  339.  
  340.     if (urb->actual_length < 8)
  341.         return;
  342.  
  343.     event = urb->transfer_buffer;
  344.     link = event->link & AX_INT_PPLS_LINK;
  345.  
  346.     if (netif_carrier_ok(dev->net) != link) {
  347.         if (link)
  348.             usbnet_defer_kevent(dev, EVENT_LINK_RESET);
  349.         else
  350.             netif_carrier_off(dev->net);
  351. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  352.         netdev_info(dev->net, "ax88179_178a - Link status is: %d\n",
  353.                 link);
  354. #else
  355.         devinfo(dev, "ax88179_178a - Link status is: %d\n", link);
  356. #endif
  357.     }
  358. }
  359.  
  360. static int ax88179_mdio_read(struct net_device *netdev, int phy_id, int loc)
  361. {
  362.     struct usbnet *dev = netdev_priv(netdev);
  363.     u16 res;
  364.     u16 *tmp16;
  365.  
  366.     tmp16 = kmalloc(2, GFP_KERNEL);
  367.     if (!tmp16)
  368.         return -ENOMEM;
  369.  
  370.     ax88179_read_cmd(dev, AX_ACCESS_PHY, phy_id, (__u16)loc, 2, tmp16, 1);
  371.  
  372.     res = *tmp16;
  373.     kfree(tmp16);
  374.  
  375.     return res;
  376. }
  377.  
  378. static void ax88179_mdio_write(struct net_device *netdev, int phy_id, int loc,
  379.                    int val)
  380. {
  381.     struct usbnet *dev = netdev_priv(netdev);
  382.     u16 *res;
  383.     res = kmalloc(2, GFP_KERNEL);
  384.     if (!res)
  385.         return;
  386.     *res = (u16)val;
  387.  
  388.     ax88179_write_cmd(dev, AX_ACCESS_PHY, phy_id, (__u16)loc, 2, res);
  389.  
  390.     kfree(res);
  391. }
  392.  
  393. static int ax88179_suspend(struct usb_interface *intf,
  394. #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 10)
  395.                pm_message_t message)
  396. #else
  397.                u32 message)
  398. #endif
  399. {
  400.     struct usbnet *dev = usb_get_intfdata(intf);
  401.     u16 *tmp16;
  402.     u8 *tmp8;  
  403.     usbnet_suspend(intf, message);
  404.  
  405.     tmp16 = kmalloc(3, GFP_KERNEL);
  406.     if (!tmp16)
  407.         return -ENOMEM;
  408.     tmp8 = (u8*)(&tmp16[2]);
  409.  
  410.     /* Disable RX path */
  411.     ax88179_read_cmd_nopm(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
  412.                   2, 2, tmp16, 1);
  413.     *tmp16 &= ~AX_MEDIUM_RECEIVE_EN;
  414.     ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC,  AX_MEDIUM_STATUS_MODE,
  415.                    2, 2, tmp16);
  416.  
  417.     /* Force bz */
  418.     ax88179_read_cmd_nopm(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL,
  419.                   2, 2, tmp16, 1);
  420.     *tmp16 |= AX_PHYPWR_RSTCTL_BZ | AX_PHYPWR_RSTCTL_IPRL;
  421.     ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL,
  422.                    2, 2, tmp16);
  423.  
  424.     /* change clock */ 
  425.     *tmp8 = 0;
  426.     ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, tmp8);
  427.  
  428.     /* Configure RX control register => stop operation */
  429.     *tmp16 = AX_RX_CTL_STOP;
  430.     ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, tmp16);
  431.  
  432.     kfree(tmp16);
  433.  
  434.     return 0;
  435. }
  436.  
  437.  
  438. static void ax88179_EEE_setting(struct usbnet *dev)
  439. {
  440.     u16 *tmp16;
  441.     tmp16 = kmalloc(2, GFP_KERNEL);
  442.     if (!tmp16)
  443.         return;
  444.    
  445.     if (bEEE) {
  446.         // Enable EEE
  447.         *tmp16 = 0x07;
  448.         ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  449.                   GMII_PHY_MACR, 2, tmp16);
  450.  
  451.         *tmp16 = 0x3c;
  452.         ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  453.                   GMII_PHY_MAADR, 2, tmp16);
  454.  
  455.         *tmp16 = 0x4007;
  456.         ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  457.                   GMII_PHY_MACR, 2, tmp16);
  458.  
  459.         *tmp16 = 0x06;
  460.         ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  461.                   GMII_PHY_MAADR, 2, tmp16);
  462.     } else {
  463.         // Disable EEE
  464.         *tmp16 = 0x07;
  465.         ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  466.                   GMII_PHY_MACR, 2, tmp16);
  467.  
  468.         *tmp16 = 0x3c;
  469.         ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  470.                   GMII_PHY_MAADR, 2, tmp16);
  471.  
  472.         *tmp16 = 0x4007;
  473.         ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  474.                   GMII_PHY_MACR, 2, tmp16);
  475.  
  476.         *tmp16 = 0x00;
  477.         ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  478.                   GMII_PHY_MAADR, 2, tmp16);
  479.     }
  480.  
  481.     kfree(tmp16);
  482. }
  483.  
  484. static void ax88179_Gether_setting(struct usbnet *dev)
  485. {
  486.     u16 *tmp16;
  487.     tmp16 = kmalloc(2, GFP_KERNEL);
  488.     if (!tmp16)
  489.         return;
  490.  
  491.     if (bGETH) {
  492.         // Enable Green Ethernet
  493.         *tmp16 = 0x03;
  494.         ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  495.                   31, 2, tmp16);
  496.  
  497.         *tmp16 = 0x3247;
  498.         ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  499.                   25, 2, tmp16);
  500.  
  501.         *tmp16 = 0x05;
  502.         ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  503.                   31, 2, tmp16);
  504.  
  505.         *tmp16 = 0x0680;
  506.         ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  507.                   1, 2, tmp16);
  508.  
  509.         *tmp16 = 0;
  510.         ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  511.                   31, 2, tmp16);
  512.     } else {
  513.         // Disable Green Ethernet
  514.         *tmp16 = 0x03;
  515.         ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  516.                   31, 2, tmp16);
  517.  
  518.         *tmp16 = 0x3246;
  519.         ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  520.                   25, 2, tmp16);
  521.  
  522.         *tmp16 = 0;
  523.         ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  524.                   31, 2, tmp16);
  525.     }
  526.  
  527.     kfree(tmp16);
  528. }
  529.  
  530. static int ax88179_resume(struct usb_interface *intf)
  531. {
  532.     struct usbnet *dev = usb_get_intfdata(intf);
  533.     u16 *tmp16;
  534.     u8 *tmp8;
  535.  
  536.     netif_carrier_off(dev->net);
  537.  
  538.     tmp16 = kmalloc(3, GFP_KERNEL);
  539.     if (!tmp16)
  540.         return -ENOMEM;
  541.     tmp8 = (u8*)(&tmp16[2]);
  542.  
  543.     /* Power up ethernet PHY */
  544.     *tmp16 = 0;
  545.     ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL,
  546.                    2, 2, tmp16);
  547. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36)
  548.     usleep_range(1000, 2000);
  549. #else
  550.     msleep(1);
  551. #endif
  552.     *tmp16 = AX_PHYPWR_RSTCTL_IPRL;
  553.     ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL,
  554.                    2, 2, tmp16);
  555.     msleep(200);
  556.  
  557.     /* Ethernet PHY Auto Detach*/
  558.     ax88179_AutoDetach(dev, 1);
  559.  
  560.     /* change clock */ 
  561.     ax88179_read_cmd_nopm(dev, AX_ACCESS_MAC,  AX_CLK_SELECT,
  562.                   1, 1, tmp8, 0);
  563.     *tmp8 |= AX_CLK_SELECT_ACS | AX_CLK_SELECT_BCS;
  564.     ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, tmp8);
  565.     msleep(100);
  566.  
  567.     /* Configure RX control register => start operation */
  568.     *tmp16 = AX_RX_CTL_DROPCRCERR | AX_RX_CTL_START | AX_RX_CTL_AP |
  569.          AX_RX_CTL_AMALL | AX_RX_CTL_AB;
  570.     if (NET_IP_ALIGN == 0)
  571.         *tmp16 |= AX_RX_CTL_IPE;
  572.     ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, tmp16);
  573.  
  574.     kfree(tmp16);
  575.  
  576.     return usbnet_resume(intf);
  577. }
  578.  
  579. static void
  580. ax88179_get_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo)
  581. {
  582.  
  583.     struct usbnet *dev = netdev_priv(net);
  584.     u8 *opt = NULL;
  585.  
  586.     opt = kmalloc(1, GFP_KERNEL);
  587.     if (!opt)
  588.         return;
  589.  
  590.     if (ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MONITOR_MODE,
  591.                  1, 1, opt, 0) < 0) {
  592.         wolinfo->supported = 0;
  593.         wolinfo->wolopts = 0;
  594.         kfree(opt);
  595.         return;
  596.     }
  597.  
  598.     wolinfo->supported = WAKE_PHY | WAKE_MAGIC;
  599.  
  600.     if (*opt & AX_MONITOR_MODE_RWLC)
  601.         wolinfo->wolopts |= WAKE_PHY;
  602.     if (*opt & AX_MONITOR_MODE_RWMP)
  603.         wolinfo->wolopts |= WAKE_MAGIC;
  604.  
  605.     kfree(opt);
  606. }
  607.  
  608. static int
  609. ax88179_set_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo)
  610. {
  611.     struct usbnet *dev = netdev_priv(net);
  612.     u8 *opt = NULL;
  613.  
  614.     opt = kmalloc(1, GFP_KERNEL);
  615.     if (!opt)
  616.         return -ENOMEM;
  617.  
  618.     *opt = 0;
  619.  
  620.     if (wolinfo->wolopts & WAKE_PHY)
  621.         *opt |= AX_MONITOR_MODE_RWLC;
  622.     else
  623.         *opt &= ~AX_MONITOR_MODE_RWLC;
  624.  
  625.     if (wolinfo->wolopts & WAKE_MAGIC)
  626.         *opt |= AX_MONITOR_MODE_RWMP;
  627.     else
  628.         *opt &= ~AX_MONITOR_MODE_RWMP;
  629.  
  630.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MONITOR_MODE, 1, 1, opt);
  631.  
  632.     kfree(opt);
  633.  
  634.     return 0;
  635. }
  636.  
  637. static int ax88179_get_eeprom_len(struct net_device *net)
  638. {
  639.     return 0;
  640.     /*return AX_EEPROM_LEN;*/
  641. }
  642.  
  643. static int
  644. ax88179_get_eeprom(struct net_device *net, struct ethtool_eeprom *eeprom,
  645.            u8 *data)
  646. {
  647.     struct usbnet *dev = netdev_priv(net);
  648.     u16 *eeprom_buff = NULL;
  649.     int first_word = 0, last_word = 0;
  650.     int i = 0;
  651.  
  652.     if (eeprom->len == 0)
  653.         return -EINVAL;
  654.  
  655.     eeprom->magic = AX88179_EEPROM_MAGIC;
  656.  
  657.     first_word = eeprom->offset >> 1;
  658.     last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  659.     eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
  660.                   GFP_KERNEL);
  661.     if (!eeprom_buff)
  662.         return -ENOMEM;
  663.  
  664.     /* ax88179/178A returns 2 bytes from eeprom on read */
  665.     for (i = first_word; i <= last_word; i++) {
  666.         if (ax88179_read_cmd(dev, AX_ACCESS_EEPROM, i, 1, 2,
  667.                      &(eeprom_buff[i - first_word]), 0) < 0) {
  668.             kfree(eeprom_buff);
  669.             return -EIO;
  670.         }
  671.     }
  672.  
  673.     memcpy(data, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
  674.     kfree(eeprom_buff);
  675.     return 0;
  676. }
  677.  
  678. static void ax88179_get_drvinfo(struct net_device *net,
  679.                 struct ethtool_drvinfo *info)
  680. {
  681.     /* Inherit standard device info */
  682.     usbnet_get_drvinfo(net, info);
  683.     info->eedump_len = 0x3e;
  684. }
  685.  
  686. static int ax88179_get_link_ksettings(struct net_device *net, struct ethtool_link_ksettings *cmd)
  687. {
  688.     struct usbnet *dev = netdev_priv(net);
  689.     mii_ethtool_get_link_ksettings(&dev->mii, cmd);
  690.     return 0;
  691. }
  692.  
  693. static int ax88179_set_link_ksettings(struct net_device *net, const struct ethtool_link_ksettings *cmd)
  694. {
  695.     struct usbnet *dev = netdev_priv(net);
  696.     return mii_ethtool_set_link_ksettings(&dev->mii, cmd);
  697. }
  698.  
  699. static int ax88179_ioctl(struct net_device *net, struct ifreq *rq, int cmd)
  700. {
  701.     struct usbnet *dev = netdev_priv(net);
  702.     return  generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL);
  703. }
  704.  
  705. #if LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 28)
  706. static int ax88179_netdev_stop(struct net_device *net)
  707. {
  708.     struct usbnet *dev = netdev_priv(net);
  709.     u16 *tmp16;
  710.  
  711.     tmp16 = kmalloc(2, GFP_KERNEL);
  712.     if (!tmp16)
  713.         return -ENOMEM;
  714.  
  715.     ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
  716.              2, 2, tmp16, 1);
  717.     *tmp16 &= ~AX_MEDIUM_RECEIVE_EN;
  718.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
  719.               2, 2, tmp16);
  720.  
  721.     kfree(tmp16);  
  722.  
  723.     return 0;
  724. }
  725. #endif
  726.  
  727.  
  728. #if LINUX_VERSION_CODE < KERNEL_VERSION(3, 3, 0)
  729. static int ax88179_set_csums(struct usbnet *dev)
  730. {
  731.     struct ax88179_data *ax179_data = (struct ax88179_data *)dev->data;
  732.     u8* checksum = 0;
  733.  
  734.     checksum = kmalloc(1, GFP_KERNEL);
  735.     if (!checksum)
  736.         return -ENOMEM;
  737.  
  738.     if (ax179_data->checksum & AX_RX_CHECKSUM)
  739.         *checksum = AX_RXCOE_DEF_CSUM;
  740.     else
  741.         *checksum = 0;
  742.  
  743.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RXCOE_CTL, 1, 1, checksum);
  744.  
  745.     if (ax179_data->checksum & AX_TX_CHECKSUM)
  746.         *checksum = AX_TXCOE_DEF_CSUM;
  747.     else
  748.         *checksum = 0;
  749.  
  750.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, checksum);
  751.  
  752.     kfree(checksum);
  753.  
  754.     return 0;
  755. }
  756.  
  757. static u32 ax88179_get_tx_csum(struct net_device *netdev)
  758. {
  759.     struct usbnet *dev = netdev_priv(netdev);
  760.     struct ax88179_data *ax179_data = (struct ax88179_data *)dev->data;
  761.     return ax179_data->checksum & AX_TX_CHECKSUM;
  762. }
  763.  
  764. static u32 ax88179_get_rx_csum(struct net_device *netdev)
  765. {
  766.     struct usbnet *dev = netdev_priv(netdev);
  767.     struct ax88179_data *ax179_data = (struct ax88179_data *)dev->data;
  768.     return ax179_data->checksum & AX_RX_CHECKSUM;
  769. }
  770.  
  771. static int ax88179_set_rx_csum(struct net_device *netdev, u32 val)
  772. {
  773.     struct usbnet *dev = netdev_priv(netdev);
  774.     struct ax88179_data *ax179_data = (struct ax88179_data *)dev->data;
  775.  
  776.     if (val)
  777.         ax179_data->checksum |= AX_RX_CHECKSUM;
  778.     else
  779.         ax179_data->checksum &= ~AX_RX_CHECKSUM;
  780.     return ax88179_set_csums(dev);
  781. }
  782.  
  783. static int ax88179_set_tx_csum(struct net_device *netdev, u32 val)
  784. {
  785.     struct usbnet *dev = netdev_priv(netdev);
  786.     struct ax88179_data *ax179_data = (struct ax88179_data *)dev->data;
  787.  
  788.     if (val)
  789.         ax179_data->checksum |= AX_TX_CHECKSUM;
  790.     else
  791.         ax179_data->checksum &= ~AX_TX_CHECKSUM;
  792.  
  793.     ethtool_op_set_tx_csum(netdev, val);
  794.  
  795.     return ax88179_set_csums(dev);
  796. }
  797.  
  798. static int ax88179_set_tso(struct net_device *netdev, u32 data)
  799. {
  800.     if (data)
  801.         netdev->features |= NETIF_F_TSO;
  802.     else
  803.         netdev->features &= ~NETIF_F_TSO;
  804.  
  805.     return 0;
  806. }
  807. #endif
  808.  
  809. static struct ethtool_ops ax88179_ethtool_ops = {
  810.     .get_drvinfo        = ax88179_get_drvinfo,
  811.     .get_link       = ethtool_op_get_link,
  812.     .get_msglevel       = usbnet_get_msglevel,
  813.     .set_msglevel       = usbnet_set_msglevel,
  814.     .get_wol        = ax88179_get_wol,
  815.     .set_wol        = ax88179_set_wol,
  816.     .get_eeprom_len     = ax88179_get_eeprom_len,
  817.     .get_eeprom     = ax88179_get_eeprom,
  818.     .get_link_ksettings = ax88179_get_link_ksettings,
  819.     .set_link_ksettings = ax88179_set_link_ksettings,
  820.     .nway_reset         = usbnet_nway_reset
  821. /*#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 3, 0)
  822.     .set_tx_csum        = ax88179_set_tx_csum,
  823.     .get_tx_csum        = ax88179_get_tx_csum,
  824.     .get_rx_csum        = ax88179_get_rx_csum,
  825.     .set_rx_csum        = ax88179_set_rx_csum,
  826.     .get_tso        = ethtool_op_get_tso,
  827.     .set_tso        = ax88179_set_tso,
  828.     .get_sg         = ethtool_op_get_sg,
  829.     .set_sg         = ethtool_op_set_sg
  830. #endif*/
  831. };
  832.  
  833. static void ax88179_set_multicast(struct net_device *net)
  834. {
  835.     struct usbnet *dev = netdev_priv(net);
  836.     struct ax88179_data *data = (struct ax88179_data *)&dev->data;
  837.     u8 *m_filter = ((u8 *)dev->data) + 12;
  838.     int mc_count = 0;
  839.  
  840. #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 35)
  841.     mc_count = net->mc_count;
  842. #else
  843.     mc_count = netdev_mc_count(net);
  844. #endif
  845.  
  846.     data->rxctl = (AX_RX_CTL_START | AX_RX_CTL_AB);
  847.     if (NET_IP_ALIGN == 0)
  848.         data->rxctl |= AX_RX_CTL_IPE;
  849.  
  850.     if (net->flags & IFF_PROMISC) {
  851.         data->rxctl |= AX_RX_CTL_PRO;
  852.     } else if (net->flags & IFF_ALLMULTI
  853.            || mc_count > AX_MAX_MCAST) {
  854.         data->rxctl |= AX_RX_CTL_AMALL;
  855.     } else if (mc_count == 0) {
  856.         /* just broadcast and directed */
  857.     } else {
  858.         /* We use the 20 byte dev->data
  859.          * for our 8 byte filter buffer
  860.          * to avoid allocating memory that
  861.          * is tricky to free later */
  862.         u32 crc_bits = 0;
  863.  
  864. #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 35)
  865.         struct dev_mc_list *mc_list = net->mc_list;
  866.         int i = 0;
  867.  
  868.         memset(m_filter, 0, AX_MCAST_FILTER_SIZE);
  869.  
  870.         /* Build the multicast hash filter. */
  871.         for (i = 0; i < net->mc_count; i++) {
  872.             crc_bits =
  873.                 ether_crc(ETH_ALEN,
  874.                       mc_list->dmi_addr) >> 26;
  875.             *(m_filter + (crc_bits >> 3)) |=
  876.                 1 << (crc_bits & 7);
  877.             mc_list = mc_list->next;
  878.         }
  879. #else
  880.         struct netdev_hw_addr *ha = NULL;
  881.         memset(m_filter, 0, AX_MCAST_FILTER_SIZE);
  882.         netdev_for_each_mc_addr(ha, net) {
  883.             crc_bits = ether_crc(ETH_ALEN, ha->addr) >> 26;
  884.             *(m_filter + (crc_bits >> 3)) |=
  885.                 1 << (crc_bits & 7);
  886.         }
  887. #endif
  888.         ax88179_write_cmd_async(dev, AX_ACCESS_MAC,
  889.                     AX_MULTI_FILTER_ARRY,
  890.                     AX_MCAST_FILTER_SIZE,
  891.                     AX_MCAST_FILTER_SIZE, m_filter);
  892.  
  893.         data->rxctl |= AX_RX_CTL_AM;
  894.     }
  895.  
  896.     ax88179_write_cmd_async(dev, AX_ACCESS_MAC, AX_RX_CTL,
  897.                 2, 2, &data->rxctl);
  898. }
  899.  
  900. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 39)
  901. static int
  902. #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 3, 0)
  903. ax88179_set_features(struct net_device *net, netdev_features_t features)
  904. #else
  905. ax88179_set_features(struct net_device *net, u32 features)
  906. #endif
  907.  
  908. {
  909.     u8 *tmp8;
  910.     struct usbnet *dev = netdev_priv(net); 
  911.  
  912. #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 3, 0)
  913.     netdev_features_t changed = net->features ^ features;
  914. #else
  915.     u32 changed = net->features ^ features;
  916. #endif
  917.  
  918.     tmp8 = kmalloc(1, GFP_KERNEL);
  919.     if (!tmp8)
  920.         return -ENOMEM;
  921.  
  922.     if (changed & NETIF_F_IP_CSUM) {
  923.         ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL,
  924.                  1, 1, tmp8, 0);
  925.         *tmp8 ^= AX_TXCOE_TCP | AX_TXCOE_UDP;
  926.         ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, tmp8);
  927.     }
  928.  
  929.     if (changed & NETIF_F_IPV6_CSUM) {
  930.         ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL,
  931.                  1, 1, tmp8, 0);
  932.         *tmp8 ^= AX_TXCOE_TCPV6 | AX_TXCOE_UDPV6;
  933.         ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, tmp8);
  934.     }
  935.  
  936.     if (changed & NETIF_F_RXCSUM) {
  937.         ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_RXCOE_CTL,
  938.                  1, 1, tmp8, 0);
  939.         *tmp8 ^= AX_RXCOE_IP | AX_RXCOE_TCP | AX_RXCOE_UDP |
  940.                AX_RXCOE_TCPV6 | AX_RXCOE_UDPV6;
  941.         ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RXCOE_CTL, 1, 1, tmp8);
  942.     }
  943.  
  944.     kfree(tmp8);
  945.  
  946.     return 0;
  947. }
  948. #endif
  949.  
  950. static int ax88179_change_mtu(struct net_device *net, int new_mtu)
  951. {
  952.     struct usbnet *dev = netdev_priv(net);
  953.     u16 *tmp16;
  954.  
  955.     if (new_mtu <= 0 || new_mtu > 4088)
  956.         return -EINVAL;
  957.  
  958.     net->mtu = new_mtu;
  959.     dev->hard_mtu = net->mtu + net->hard_header_len;
  960.  
  961.     tmp16 = kmalloc(2, GFP_KERNEL);
  962.     if (!tmp16)
  963.         return -ENOMEM;
  964.  
  965.     if (net->mtu > 1500) {
  966.         ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
  967.                  2, 2, tmp16, 1);
  968.         *tmp16 |= AX_MEDIUM_JUMBO_EN;
  969.         ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
  970.                   2, 2, tmp16);
  971.     } else {
  972.         ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
  973.                  2, 2, tmp16, 1);
  974.         *tmp16 &= ~AX_MEDIUM_JUMBO_EN;
  975.         ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
  976.                   2, 2, tmp16);
  977.     }
  978.  
  979.     kfree(tmp16);
  980.  
  981.     return 0;
  982. }
  983.  
  984. static int ax88179_set_mac_addr(struct net_device *net, void *p)
  985. {
  986.     struct usbnet *dev = netdev_priv(net);
  987.     struct sockaddr *addr = p;
  988.  
  989.     if (netif_running(net))
  990.         return -EBUSY;
  991.     if (!is_valid_ether_addr(addr->sa_data))
  992.         return -EADDRNOTAVAIL;
  993.  
  994.     memcpy(net->dev_addr, addr->sa_data, ETH_ALEN);
  995.  
  996.     /* Set the MAC address */
  997.     return ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_NODE_ID, ETH_ALEN,
  998.                  ETH_ALEN, net->dev_addr);
  999.  
  1000. }
  1001.  
  1002. #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 29)
  1003. static const struct net_device_ops ax88179_netdev_ops = {
  1004.     .ndo_open       = usbnet_open,
  1005.     .ndo_stop       = usbnet_stop,
  1006.     .ndo_start_xmit     = usbnet_start_xmit,
  1007.     .ndo_tx_timeout     = usbnet_tx_timeout,
  1008.     .ndo_change_mtu     = ax88179_change_mtu,
  1009.     .ndo_do_ioctl       = ax88179_ioctl,
  1010.     .ndo_set_mac_address    = ax88179_set_mac_addr,
  1011.     .ndo_validate_addr  = eth_validate_addr,
  1012. #if LINUX_VERSION_CODE <= KERNEL_VERSION(3, 2, 0)
  1013.     .ndo_set_multicast_list = ax88179_set_multicast,
  1014. #else
  1015.     .ndo_set_rx_mode    = ax88179_set_multicast,
  1016. #endif
  1017. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 39)
  1018.     .ndo_set_features   = ax88179_set_features,
  1019. #endif
  1020. };
  1021. #endif
  1022.  
  1023. static int ax88179_check_eeprom(struct usbnet *dev)
  1024. {
  1025.     u8 i = 0;
  1026.     u8 *buf;
  1027.     u8 *eeprom;
  1028.     u16 csum = 0, delay = HZ / 10;
  1029.     unsigned long jtimeout = 0;
  1030.  
  1031.     eeprom = kmalloc(22, GFP_KERNEL);
  1032.     if (!eeprom)
  1033.         return -ENOMEM;
  1034.     buf = &eeprom[20];
  1035.  
  1036.     /* Read EEPROM content */
  1037.     for (i = 0 ; i < 6; i++) {
  1038.         buf[0] = i;
  1039.         if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_SROM_ADDR,
  1040.                       1, 1, buf) < 0) {
  1041.             kfree(eeprom);
  1042.             return -EINVAL;
  1043.         }
  1044.  
  1045.         buf[0] = EEP_RD;
  1046.         if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_SROM_CMD,
  1047.                       1, 1, buf) < 0) {
  1048.             kfree(eeprom);
  1049.             return -EINVAL;
  1050.         }
  1051.  
  1052.         jtimeout = jiffies + delay;
  1053.         do {
  1054.             ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_CMD,
  1055.                      1, 1, buf, 0);
  1056.  
  1057.             if (time_after(jiffies, jtimeout)) {
  1058.                 kfree(eeprom);
  1059.                 return -EINVAL;
  1060.             }
  1061.         } while (buf[0] & EEP_BUSY);
  1062.  
  1063.         ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_DATA_LOW,
  1064.                  2, 2, &eeprom[i * 2], 0);
  1065.  
  1066.         if ((i == 0) && (eeprom[0] == 0xFF)) {
  1067.             kfree(eeprom);
  1068.             return -EINVAL;
  1069.         }
  1070.     }
  1071.  
  1072.     csum = eeprom[6] + eeprom[7] + eeprom[8] + eeprom[9];
  1073.     csum = (csum >> 8) + (csum & 0xff);
  1074.  
  1075.     if ((csum + eeprom[10]) == 0xff) {
  1076.         kfree(eeprom);
  1077.         return AX_EEP_EFUSE_CORRECT;
  1078.     } else {
  1079.         kfree(eeprom);
  1080.         return -EINVAL;
  1081.     }
  1082. }
  1083.  
  1084. static int ax88179_check_efuse(struct usbnet *dev, void *ledmode)
  1085. {
  1086.     u8  i = 0; 
  1087.     u16 csum = 0;
  1088.     u8  *efuse;
  1089.  
  1090.     efuse = kmalloc(64, GFP_KERNEL);
  1091.     if (!efuse)
  1092.         return -ENOMEM;
  1093.  
  1094.     if (ax88179_read_cmd(dev, AX_ACCESS_EFUSE, 0, 64, 64, efuse, 0) < 0) {
  1095.         kfree(efuse);
  1096.         return -EINVAL;
  1097.     }
  1098.  
  1099.     if (efuse[0] == 0xFF) {
  1100.         kfree(efuse);
  1101.         return -EINVAL;
  1102.     }
  1103.  
  1104.     for (i = 0; i < 64; i++)
  1105.         csum = csum + efuse[i];
  1106.  
  1107.     while (csum > 255)
  1108.         csum = (csum & 0x00FF) + ((csum >> 8) & 0x00FF);
  1109.  
  1110.     if (csum == 0xFF) {
  1111.         memcpy((u8 *)ledmode, &efuse[51], 2);
  1112.         kfree(efuse);
  1113.         return AX_EEP_EFUSE_CORRECT;
  1114.     } else {
  1115.         kfree(efuse);
  1116.         return -EINVAL;
  1117.     }
  1118. }
  1119.  
  1120. static int ax88179_convert_old_led(struct usbnet *dev, u8 efuse, void *ledvalue)
  1121. {
  1122.     u8 ledmode = 0;
  1123.     u16 *tmp16;
  1124.     u16 led = 0;
  1125.  
  1126.     tmp16 = kmalloc(2, GFP_KERNEL);
  1127.     if (!tmp16)
  1128.         return -ENOMEM;
  1129.  
  1130.     /* loaded the old eFuse LED Mode */
  1131.     if (efuse) {
  1132.         if (ax88179_read_cmd(dev, AX_ACCESS_EFUSE, 0x18,
  1133.                      1, 2, tmp16, 1) < 0) {
  1134.             kfree(tmp16);
  1135.             return -EINVAL;
  1136.     }
  1137.         ledmode = (u8)(*tmp16 & 0xFF);
  1138.     } else { /* loaded the old EEprom LED Mode */
  1139.         if (ax88179_read_cmd(dev, AX_ACCESS_EEPROM, 0x3C,
  1140.                      1, 2, tmp16, 1) < 0) {
  1141.             kfree(tmp16);
  1142.             return -EINVAL;
  1143.         }
  1144.         ledmode = (u8) (*tmp16 >> 8);
  1145.     }
  1146. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  1147.     netdev_dbg(dev->net, "Old LED Mode = %02X\n", ledmode);
  1148. #else
  1149.     devdbg(dev, "Old LED Mode = %02X\n", ledmode);
  1150. #endif
  1151.     switch (ledmode) {
  1152.     case 0xFF:
  1153.         led = LED0_ACTIVE | LED1_LINK_10 | LED1_LINK_100 |
  1154.               LED1_LINK_1000 | LED2_ACTIVE | LED2_LINK_10 |
  1155.               LED2_LINK_100 | LED2_LINK_1000 | LED_VALID;
  1156.         break;
  1157.     case 0xFE:
  1158.         led = LED0_ACTIVE | LED1_LINK_1000 | LED2_LINK_100 | LED_VALID;
  1159.         break;
  1160.     case 0xFD:
  1161.         led = LED0_ACTIVE | LED1_LINK_1000 | LED2_LINK_100 |
  1162.               LED2_LINK_10 | LED_VALID;
  1163.         break;
  1164.     case 0xFC:
  1165.         led = LED0_ACTIVE | LED1_ACTIVE | LED1_LINK_1000 | LED2_ACTIVE |
  1166.               LED2_LINK_100 | LED2_LINK_10 | LED_VALID;
  1167.         break;
  1168.     default:
  1169.         led = LED0_ACTIVE | LED1_LINK_10 | LED1_LINK_100 |
  1170.               LED1_LINK_1000 | LED2_ACTIVE | LED2_LINK_10 |
  1171.               LED2_LINK_100 | LED2_LINK_1000 | LED_VALID;
  1172.         break;
  1173.     }
  1174.  
  1175.     memcpy((u8 *)ledvalue, &led, 2);
  1176.     kfree(tmp16);
  1177.  
  1178.     return 0;
  1179. }
  1180.  
  1181. static int ax88179_led_setting(struct usbnet *dev)
  1182. {
  1183.    
  1184.     u16 ledvalue = 0, delay = HZ / 10;
  1185.     u16 *ledact, *ledlink;
  1186.     u16 *tmp16;
  1187.     u8 *value;
  1188.     u8 *tmp;
  1189.     unsigned long jtimeout = 0;
  1190.  
  1191.     tmp = kmalloc(6, GFP_KERNEL);
  1192.     if (!tmp)
  1193.         return -ENOMEM;
  1194.  
  1195.     value = (u8*)tmp;
  1196.     tmp16 = (u16*)tmp;
  1197.     ledact = (u16*)(&tmp[2]);
  1198.     ledlink = (u16*)(&tmp[4]);
  1199.  
  1200.     /* Check AX88179 version. UA1 or UA2 */
  1201.     ax88179_read_cmd(dev, AX_ACCESS_MAC, GENERAL_STATUS, 1, 1, value, 0);
  1202.  
  1203.     /* UA1 */
  1204.     if (!(*value & AX_SECLD)) {
  1205.         *value = AX_GPIO_CTRL_GPIO3EN | AX_GPIO_CTRL_GPIO2EN |
  1206.             AX_GPIO_CTRL_GPIO1EN;
  1207.         if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_GPIO_CTRL,
  1208.                       1, 1, value) < 0) {
  1209.             kfree(tmp);
  1210.             return -EINVAL;
  1211.         }
  1212.     }
  1213.  
  1214.     /* check EEprom */
  1215.     if (ax88179_check_eeprom(dev) == AX_EEP_EFUSE_CORRECT) {
  1216.         *value = 0x42;
  1217.         if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_SROM_ADDR,
  1218.                       1, 1, value) < 0) {
  1219.             kfree(tmp);
  1220.             return -EINVAL;
  1221.         }
  1222.  
  1223.         *value = EEP_RD;
  1224.         if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_SROM_CMD,
  1225.                       1, 1, value) < 0) {
  1226.             kfree(tmp);
  1227.             return -EINVAL;
  1228.         }
  1229.  
  1230.         jtimeout = jiffies + delay;
  1231.         do {
  1232.             ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_CMD,
  1233.                      1, 1, value, 0);
  1234.  
  1235.             ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_CMD,
  1236.                      1, 1, value, 0);
  1237.  
  1238.             if (time_after(jiffies, jtimeout))
  1239.                 return -EINVAL;
  1240.         } while (*value & EEP_BUSY);
  1241.  
  1242.         ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_DATA_HIGH,
  1243.                  1, 1, value, 0);
  1244.         ledvalue = (*value << 8);
  1245.         ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_DATA_LOW,
  1246.                  1, 1, value, 0);
  1247.         ledvalue |= *value;
  1248.  
  1249.         /* load internal ROM for defaule setting */
  1250.         if ((ledvalue == 0xFFFF) || ((ledvalue & LED_VALID) == 0))
  1251.             ax88179_convert_old_led(dev, 0, &ledvalue);
  1252.  
  1253.     } else if (ax88179_check_efuse(dev, &ledvalue) ==
  1254.                        AX_EEP_EFUSE_CORRECT) { /* check efuse */
  1255.         if ((ledvalue == 0xFFFF) || ((ledvalue & LED_VALID) == 0))
  1256.             ax88179_convert_old_led(dev, 0, &ledvalue);
  1257.     } else {
  1258.         ax88179_convert_old_led(dev, 0, &ledvalue);
  1259.     }
  1260.  
  1261.     *tmp16 = GMII_PHY_PAGE_SELECT_EXT;
  1262.     ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  1263.               GMII_PHY_PAGE_SELECT, 2, tmp16);
  1264.  
  1265.     *tmp16 = 0x2c;
  1266.     ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  1267.               GMII_PHYPAGE, 2, tmp16);
  1268.  
  1269.     ax88179_read_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  1270.              GMII_LED_ACTIVE, 2, ledact, 1);
  1271.  
  1272.     ax88179_read_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  1273.              GMII_LED_LINK, 2, ledlink, 1);
  1274.  
  1275.     *ledact &= GMII_LED_ACTIVE_MASK;
  1276.     *ledlink &= GMII_LED_LINK_MASK;
  1277.  
  1278.     if (ledvalue & LED0_ACTIVE)
  1279.         *ledact |= GMII_LED0_ACTIVE;
  1280.     if (ledvalue & LED1_ACTIVE)
  1281.         *ledact |= GMII_LED1_ACTIVE;
  1282.     if (ledvalue & LED2_ACTIVE)
  1283.         *ledact |= GMII_LED2_ACTIVE;
  1284.  
  1285.     if (ledvalue & LED0_LINK_10)
  1286.         *ledlink |= GMII_LED0_LINK_10;
  1287.     if (ledvalue & LED1_LINK_10)
  1288.         *ledlink |= GMII_LED1_LINK_10;
  1289.     if (ledvalue & LED2_LINK_10)
  1290.         *ledlink |= GMII_LED2_LINK_10;
  1291.  
  1292.     if (ledvalue & LED0_LINK_100)
  1293.         *ledlink |= GMII_LED0_LINK_100;
  1294.     if (ledvalue & LED1_LINK_100)
  1295.         *ledlink |= GMII_LED1_LINK_100;
  1296.     if (ledvalue & LED2_LINK_100)
  1297.         *ledlink |= GMII_LED2_LINK_100;
  1298.  
  1299.     if (ledvalue & LED0_LINK_1000)
  1300.         *ledlink |= GMII_LED0_LINK_1000;
  1301.     if (ledvalue & LED1_LINK_1000)
  1302.         *ledlink |= GMII_LED1_LINK_1000;
  1303.     if (ledvalue & LED2_LINK_1000)
  1304.         *ledlink |= GMII_LED2_LINK_1000;
  1305.    
  1306.     ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  1307.               GMII_LED_ACTIVE, 2, ledact);
  1308.  
  1309.     ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  1310.               GMII_LED_LINK, 2, ledlink);
  1311.  
  1312.     *tmp16 = GMII_PHY_PAGE_SELECT_PAGE0;
  1313.     ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
  1314.               GMII_PHY_PAGE_SELECT, 2, tmp16);
  1315.  
  1316.     /* LED full duplex setting */
  1317.     *tmp16 = 0;
  1318.     if (ledvalue & LED0_FD)
  1319.         *tmp16 |= 0x01;
  1320.     else if ((ledvalue & LED0_USB3_MASK) == 0)
  1321.         *tmp16 |= 0x02;
  1322.  
  1323.  
  1324.     if (ledvalue & LED1_FD)
  1325.         *tmp16 |= 0x04;
  1326.     else if ((ledvalue & LED1_USB3_MASK) == 0)
  1327.         *tmp16 |= 0x08;
  1328.  
  1329.     if (ledvalue & LED2_FD) /* LED2_FD */
  1330.         *tmp16 |= 0x10;
  1331.     else if ((ledvalue & LED2_USB3_MASK) == 0) /* LED2_USB3 */
  1332.         *tmp16 |= 0x20;
  1333.  
  1334.     ax88179_write_cmd(dev, AX_ACCESS_MAC, 0x73, 1, 1, tmp16);
  1335.  
  1336.     kfree(tmp);
  1337.  
  1338.     return 0;
  1339. }
  1340.  
  1341. static int ax88179_AutoDetach(struct usbnet *dev, int in_pm)
  1342. {
  1343.     u16 *tmp16;
  1344.     u8 *tmp8;
  1345.     int (*fnr)(struct usbnet *, u8, u16, u16, u16, void *, int);
  1346.     int (*fnw)(struct usbnet *, u8, u16, u16, u16, void *);
  1347.  
  1348.     if (!in_pm) {
  1349.         fnr = ax88179_read_cmd;
  1350.         fnw = ax88179_write_cmd;
  1351.     } else {
  1352.         fnr = ax88179_read_cmd_nopm;
  1353.         fnw = ax88179_write_cmd_nopm;
  1354.     }
  1355.  
  1356.     tmp16 = kmalloc(3, GFP_KERNEL);
  1357.     if (!tmp16)
  1358.         return -ENOMEM;
  1359.  
  1360.     tmp8 = (u8*)(&tmp16[2]);
  1361.  
  1362.     if (fnr(dev, AX_ACCESS_EEPROM, 0x43, 1, 2, tmp16, 1) < 0) {
  1363.         kfree(tmp16);
  1364.         return 0;
  1365.     }
  1366.  
  1367.     if ((*tmp16 == 0xFFFF) || (!(*tmp16 & 0x0100))) {
  1368.         kfree(tmp16);
  1369.         return 0;
  1370.     }
  1371.  
  1372.     /* Enable Auto Detach bit */   
  1373.     *tmp8 = 0;
  1374.     fnr(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, tmp8, 0);
  1375.     *tmp8 |= AX_CLK_SELECT_ULR;
  1376.     fnw(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, tmp8);
  1377.  
  1378.     fnr(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, tmp16, 1);
  1379.     *tmp16 |= AX_PHYPWR_RSTCTL_AUTODETACH;
  1380.     fnw(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, tmp16);
  1381.  
  1382.     kfree(tmp16);
  1383.  
  1384.     return 0;
  1385. }
  1386.  
  1387. static int access_eeprom_mac(struct usbnet *dev, u8 *buf, u8 offset, int wflag)
  1388. {
  1389.     int ret = 0, i;
  1390.     u16* tmp = (u16*)buf;
  1391.     u16* tmp16;
  1392.     tmp16 = kmalloc(2, GFP_KERNEL);
  1393.     if (!tmp16)
  1394.         return -ENOMEM;
  1395.  
  1396.     for (i = 0; i < (ETH_ALEN >> 1); i++) {
  1397.         if (wflag) {           
  1398.             *tmp16 = cpu_to_le16(*(tmp + i));
  1399.             ret = ax88179_write_cmd(dev, AX_ACCESS_EEPROM,
  1400.                         offset + i, 1, 2, tmp16);
  1401.             if (ret < 0)
  1402.                 break;
  1403.  
  1404.             mdelay(15);
  1405.         }
  1406.         else {
  1407.             ret = ax88179_read_cmd(dev, AX_ACCESS_EEPROM,
  1408.                         offset + i, 1, 2, tmp + i, 0);
  1409.             if (ret < 0)
  1410.                 break;
  1411.         }
  1412.     }
  1413.  
  1414.     if (!wflag) {
  1415.         if (ret < 0) {
  1416.             #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  1417.                 netdev_dbg(dev->net, "Failed to read MAC address from EEPROM: %d\n", ret);
  1418.             #else
  1419.                 devdbg(dev, "Failed to read MAC address from EEPROM: %d\n", ret);
  1420.             #endif
  1421.             kfree(tmp16);
  1422.             return ret;
  1423.         }
  1424.         memcpy(dev->net->dev_addr, buf, ETH_ALEN);
  1425.     }
  1426.     else {
  1427.         /* reload eeprom data */
  1428.         ret = ax88179_write_cmd(dev, AX_RELOAD_EEPROM_EFUSE, 0, 0, 0, 0);
  1429.         if (ret < 0) {
  1430.             kfree(tmp16);
  1431.             return ret;
  1432.         }
  1433.     }
  1434.  
  1435.     kfree(tmp16);
  1436.     return 0;
  1437. }
  1438.  
  1439. static int ax88179_check_ether_addr(struct usbnet *dev)
  1440. {
  1441.     unsigned char *tmp = (unsigned char*)dev->net->dev_addr;
  1442.     u8 default_mac[6] = {0, 0x0e, 0xc6, 0x81, 0x79, 0x01};
  1443.     u8 default_mac_178a[6] = {0, 0x0e, 0xc6, 0x81, 0x78, 0x01};
  1444.  
  1445.     if (((*((u8*)tmp) == 0) && (*((u8*)tmp + 1) == 0) && (*((u8*)tmp + 2) == 0)) ||
  1446.         !is_valid_ether_addr((u8*)tmp) ||
  1447.         !memcmp(dev->net->dev_addr, default_mac, ETH_ALEN) ||
  1448.         !memcmp(dev->net->dev_addr, default_mac_178a, ETH_ALEN)) {
  1449.         int i;
  1450.  
  1451.         printk("Found invalid EEPROM MAC address value ");
  1452.  
  1453.         for (i = 0; i < ETH_ALEN; i++) {
  1454.             printk("%02X", *((u8*)tmp + i));
  1455.             if (i != 5)
  1456.                 printk("-");
  1457.         }
  1458.         printk("\n");
  1459. #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 4, 0)
  1460.         eth_hw_addr_random(dev->net);
  1461. #else
  1462. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36)
  1463.         dev->net->addr_assign_type |= NET_ADDR_RANDOM;
  1464. #endif
  1465.         random_ether_addr(dev->net->dev_addr);
  1466. #endif
  1467.         *tmp = 0;
  1468.         *(tmp + 1) = 0x0E;
  1469.         *(tmp + 2) = 0xC6;
  1470.         *(tmp + 3) = 0x8E;
  1471.  
  1472.         return -EADDRNOTAVAIL; 
  1473.     }
  1474.     return 0;
  1475. }
  1476.  
  1477. static int ax88179_get_mac(struct usbnet *dev, u8* buf)
  1478. {
  1479.     int ret, i;
  1480.  
  1481.     ret = access_eeprom_mac(dev, buf, 0x0, 0);
  1482.     if (ret < 0)
  1483.         goto out;
  1484.  
  1485.     if (ax88179_check_ether_addr(dev)) {
  1486.         ret = access_eeprom_mac(dev, dev->net->dev_addr, 0x0, 1);
  1487.         if (ret < 0) {
  1488. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  1489.         netdev_err(dev->net, "Failed to write MAC to EEPROM: %d", ret);
  1490. #else
  1491.         deverr(dev, "Failed to write MAC to EEPROM: %d", ret);
  1492. #endif
  1493.             goto out;
  1494.         }
  1495.  
  1496.         msleep(5);
  1497.  
  1498.         ret = ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_NODE_ID,
  1499.                        ETH_ALEN, ETH_ALEN, buf, 0);
  1500.         if (ret < 0) {
  1501. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  1502.         netdev_err(dev->net, "Failed to read MAC address: %d", ret);
  1503. #else
  1504.         deverr(dev, "Failed to read MAC address: %d", ret);
  1505. #endif
  1506.             goto out;
  1507.         }
  1508.  
  1509.         for (i = 0; i < ETH_ALEN; i++)
  1510.             if (*(dev->net->dev_addr + i) != *((u8*)buf + i)) {
  1511. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  1512.         netdev_warn(dev->net, "Found invalid EEPROM part or non-EEPROM");
  1513. #else
  1514.         devwarn(dev, "Found invalid EEPROM part or non-EEPROM");
  1515. #endif
  1516.                 break;
  1517.             }
  1518.     }
  1519.  
  1520.     memcpy(dev->net->perm_addr, dev->net->dev_addr, ETH_ALEN);
  1521.  
  1522.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_NODE_ID, ETH_ALEN,
  1523.               ETH_ALEN, dev->net->dev_addr);
  1524.    
  1525.     if (ret < 0) {
  1526. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  1527.         netdev_err(dev->net, "Failed to write MAC address: %d", ret);
  1528. #else
  1529.         deverr(dev, "Failed to write MAC address: %d", ret);
  1530. #endif
  1531.         goto out;
  1532.     }
  1533.  
  1534.     return 0;
  1535. out:
  1536.     return ret;
  1537. }
  1538.  
  1539. static int ax88179_bind(struct usbnet *dev, struct usb_interface *intf)
  1540. {
  1541.     void *buf = NULL;
  1542.     u16 *tmp16 = NULL;
  1543.     u8 *tmp = NULL;
  1544.     int ret;
  1545.  
  1546.     struct ax88179_data *ax179_data = (struct ax88179_data *)dev->data;
  1547.  
  1548.     usbnet_get_endpoints(dev, intf);
  1549.  
  1550.     if (msg_enable != 0)
  1551.         dev->msg_enable = msg_enable;
  1552.  
  1553.     buf = kmalloc(6, GFP_KERNEL);
  1554.     if (!buf) {
  1555. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  1556.         netdev_err(dev->net, "Cannot allocate memory for buffer");
  1557. #else
  1558.         deverr(dev, "Cannot allocate memory for buffer");
  1559. #endif
  1560.         return -ENOMEM;
  1561.     }
  1562.     tmp16 = (u16 *)buf;
  1563.     tmp = (u8 *)buf;
  1564.  
  1565.     memset(ax179_data, 0, sizeof(*ax179_data));
  1566.  
  1567.     /* Power up ethernet PHY */
  1568.     *tmp16 = 0;
  1569.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, tmp16);
  1570.     *tmp16 = AX_PHYPWR_RSTCTL_IPRL;
  1571.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, tmp16);
  1572.     msleep(200);
  1573.  
  1574.     *tmp = AX_CLK_SELECT_ACS | AX_CLK_SELECT_BCS;
  1575.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, tmp);
  1576.     msleep(100);
  1577.  
  1578.     /* Get the MAC address */
  1579.     memset(buf, 0, ETH_ALEN);
  1580.     ret = ax88179_get_mac(dev, buf);
  1581.     if (ret)
  1582.         goto out;
  1583.  
  1584. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  1585.         netdev_dbg(dev->net, "MAC [%02x-%02x-%02x-%02x-%02x-%02x]\n",
  1586.                dev->net->dev_addr[0], dev->net->dev_addr[1],
  1587.                dev->net->dev_addr[2], dev->net->dev_addr[3],
  1588.                dev->net->dev_addr[4], dev->net->dev_addr[5]);
  1589. #else
  1590.         devdbg(dev, "MAC [%02x-%02x-%02x-%02x-%02x-%02x]\n",
  1591.                dev->net->dev_addr[0], dev->net->dev_addr[1],
  1592.                dev->net->dev_addr[2], dev->net->dev_addr[3],
  1593.                dev->net->dev_addr[4], dev->net->dev_addr[5]);
  1594. #endif
  1595.  
  1596.     /* RX bulk configuration, default for USB3.0 to Giga*/
  1597.     memcpy(tmp, &AX88179_BULKIN_SIZE[0], 5);
  1598.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_BULKIN_QCTRL, 5, 5, tmp);
  1599.  
  1600.     dev->rx_urb_size = 1024 * 20;
  1601.  
  1602.     tmp[0] = 0x34;
  1603.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PAUSE_WATERLVL_LOW, 1, 1, tmp);
  1604.  
  1605.     tmp[0] = 0x52;
  1606.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PAUSE_WATERLVL_HIGH,
  1607.               1, 1, tmp);
  1608.  
  1609.     /* Disable auto-power-OFF GigaPHY after ethx down*/
  1610.     ax88179_write_cmd(dev, 0x91, 0, 0, 0, NULL);
  1611.  
  1612. #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 30)
  1613.     dev->net->do_ioctl = ax88179_ioctl;
  1614.     dev->net->set_multicast_list = ax88179_set_multicast;
  1615.     dev->net->set_mac_address = ax88179_set_mac_addr;
  1616.     dev->net->change_mtu = ax88179_change_mtu;
  1617. #if LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 28)
  1618.     dev->net->stop = ax88179_netdev_stop;
  1619. #endif
  1620. #else
  1621.     dev->net->netdev_ops = &ax88179_netdev_ops;
  1622. #endif
  1623.  
  1624.     dev->net->ethtool_ops = &ax88179_ethtool_ops;
  1625. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 30)
  1626.     dev->net->needed_headroom = 8;
  1627. #endif
  1628.  
  1629.     /* Initialize MII structure */
  1630.     dev->mii.dev = dev->net;
  1631.     dev->mii.mdio_read = ax88179_mdio_read;
  1632.     dev->mii.mdio_write = ax88179_mdio_write;
  1633.     dev->mii.phy_id_mask = 0xff;
  1634.     dev->mii.reg_num_mask = 0xff;
  1635.     dev->mii.phy_id = 0x03;
  1636.     dev->mii.supports_gmii = 1;
  1637.  
  1638.     dev->net->features |= NETIF_F_IP_CSUM;
  1639. #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 22)
  1640.     dev->net->features |= NETIF_F_IPV6_CSUM;
  1641. #endif
  1642. #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 12, 0)
  1643.     if (usb_device_no_sg_constraint(dev->udev))
  1644.         dev->can_dma_sg = 1;
  1645.     dev->net->features |= NETIF_F_SG | NETIF_F_TSO;
  1646. #endif
  1647.  
  1648. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 39)
  1649.     dev->net->hw_features |= NETIF_F_IP_CSUM;
  1650.     dev->net->hw_features |= NETIF_F_IPV6_CSUM;
  1651.     dev->net->hw_features |= NETIF_F_SG | NETIF_F_TSO;
  1652. #endif
  1653.  
  1654.     /* Enable checksum offload */
  1655.     *tmp = AX_RXCOE_IP | AX_RXCOE_TCP | AX_RXCOE_UDP |
  1656.            AX_RXCOE_TCPV6 | AX_RXCOE_UDPV6;
  1657.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RXCOE_CTL, 1, 1, tmp);
  1658.  
  1659.     *tmp = AX_TXCOE_IP | AX_TXCOE_TCP | AX_TXCOE_UDP |
  1660.            AX_TXCOE_TCPV6 | AX_TXCOE_UDPV6;
  1661.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, tmp);
  1662.  
  1663.     ax179_data->checksum |= AX_RX_CHECKSUM | AX_TX_CHECKSUM;
  1664.  
  1665.     /* Configure RX control register => start operation */
  1666.     *tmp16 = AX_RX_CTL_DROPCRCERR | AX_RX_CTL_START | AX_RX_CTL_AP |
  1667.          AX_RX_CTL_AMALL | AX_RX_CTL_AB;
  1668.     if (NET_IP_ALIGN == 0)
  1669.         *tmp16 |= AX_RX_CTL_IPE;
  1670.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, tmp16);
  1671.  
  1672.     *tmp = AX_MONITOR_MODE_PMETYPE | AX_MONITOR_MODE_PMEPOL |
  1673.                         AX_MONITOR_MODE_RWMP;
  1674.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MONITOR_MODE, 1, 1, tmp);
  1675.  
  1676.     ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MONITOR_MODE, 1, 1, tmp, 0);
  1677. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  1678.         netdev_dbg(dev->net, "Monitor mode = 0x%02x\n", *tmp);
  1679. #else
  1680.         devdbg(dev, "Monitor mode = 0x%02x\n", *tmp);
  1681. #endif
  1682.     /* Configure default medium type => giga */
  1683.     *tmp16 = AX_MEDIUM_RECEIVE_EN    | AX_MEDIUM_TXFLOW_CTRLEN |
  1684.          AX_MEDIUM_RXFLOW_CTRLEN | AX_MEDIUM_FULL_DUPLEX   |
  1685.          AX_MEDIUM_GIGAMODE;
  1686.  
  1687.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
  1688.               2, 2, tmp16);
  1689.  
  1690.     ax88179_led_setting(dev);
  1691.  
  1692.     ax88179_EEE_setting(dev);
  1693.  
  1694.     ax88179_Gether_setting(dev);
  1695.  
  1696.     /* Restart autoneg */
  1697.     mii_nway_restart(&dev->mii);
  1698.  
  1699.     netif_carrier_off(dev->net);
  1700.  
  1701.     kfree(buf);
  1702.     printk(version);
  1703. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  1704.         netdev_info(dev->net, "mtu %d\n", dev->net->mtu);
  1705. #else
  1706.         devinfo(dev, "mtu %d\n", dev->net->mtu);
  1707. #endif
  1708.     return 0;
  1709.  
  1710. out:
  1711.     kfree(buf);
  1712.     return ret;
  1713.  
  1714. }
  1715.  
  1716. static void ax88179_unbind(struct usbnet *dev, struct usb_interface *intf)
  1717. {
  1718.     u16 *tmp16;
  1719.     u8 *tmp8;
  1720.     struct ax88179_data *ax179_data = (struct ax88179_data *) dev->data;
  1721.  
  1722.     tmp16 = kmalloc(3, GFP_KERNEL);
  1723.     if (!tmp16)
  1724.         return;
  1725.     tmp8 = (u8*)(&tmp16[2]);
  1726.  
  1727.     if (ax179_data) {
  1728.         /* Configure RX control register => stop operation */
  1729.         *tmp16 = AX_RX_CTL_STOP;
  1730.         ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, tmp16);
  1731.  
  1732.         *tmp8 = 0x0;
  1733.         ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_CLK_SELECT,
  1734.                   1, 1, tmp8);
  1735.  
  1736.         /* Power down ethernet PHY */
  1737.         *tmp16 = AX_PHYPWR_RSTCTL_BZ | AX_PHYPWR_RSTCTL_IPRL;
  1738.         ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL,
  1739.                   2, 2, tmp16);
  1740.         msleep(200);
  1741.     }
  1742.  
  1743.     kfree(tmp16);
  1744. }
  1745.  
  1746. static void
  1747. ax88179_rx_checksum(struct sk_buff *skb, u32 *pkt_hdr)
  1748. {
  1749.     skb->ip_summed = CHECKSUM_NONE;
  1750.  
  1751.     /* checksum error bit is set */
  1752.     if ((*pkt_hdr & AX_RXHDR_L3CSUM_ERR) ||
  1753.         (*pkt_hdr & AX_RXHDR_L4CSUM_ERR))
  1754.         return;
  1755.  
  1756.     /* It must be a TCP or UDP packet with a valid checksum */
  1757.     if (((*pkt_hdr & AX_RXHDR_L4_TYPE_MASK) == AX_RXHDR_L4_TYPE_TCP) ||
  1758.         ((*pkt_hdr & AX_RXHDR_L4_TYPE_MASK) == AX_RXHDR_L4_TYPE_UDP))
  1759.         skb->ip_summed = CHECKSUM_UNNECESSARY;
  1760. }
  1761.  
  1762. static int ax88179_rx_fixup(struct usbnet *dev, struct sk_buff *skb)
  1763. {
  1764.     struct sk_buff *ax_skb = NULL;
  1765.     int pkt_cnt = 0;
  1766.     u32 rx_hdr = 0;
  1767.     u16 hdr_off = 0;
  1768.     u32 *pkt_hdr = NULL;
  1769.  
  1770.     skb_trim(skb, skb->len - 4);
  1771. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22)
  1772.     memcpy(&rx_hdr, skb_tail_pointer(skb), sizeof(rx_hdr));
  1773. #else
  1774.     memcpy(&rx_hdr, skb->tail, sizeof(rx_hdr));
  1775. #endif
  1776.     le32_to_cpus(&rx_hdr);
  1777.  
  1778.     pkt_cnt = (u16)rx_hdr;
  1779.     hdr_off = (u16)(rx_hdr >> 16);
  1780.     pkt_hdr = (u32 *)(skb->data + hdr_off);
  1781.  
  1782.  
  1783.     while (pkt_cnt--) {
  1784.         u16 pkt_len;
  1785.  
  1786.         le32_to_cpus(pkt_hdr);
  1787.         pkt_len = (*pkt_hdr >> 16) & 0x1fff;
  1788.  
  1789.         /* Check CRC or runt packet */
  1790.         if ((*pkt_hdr & AX_RXHDR_CRC_ERR) ||
  1791.             (*pkt_hdr & AX_RXHDR_DROP_ERR)) {
  1792.             skb_pull(skb, (pkt_len + 7) & 0xFFF8);
  1793.             pkt_hdr++;
  1794.             continue;
  1795.         }
  1796.  
  1797.         if (pkt_cnt == 0) {        
  1798.             skb->len = pkt_len;
  1799.  
  1800.             /* Skip IP alignment psudo header */
  1801.             if (NET_IP_ALIGN == 0)
  1802.                 skb_pull(skb, 2);
  1803.  
  1804. #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 22)
  1805.             skb->tail = skb->data + skb->len;
  1806. #else
  1807.             skb_set_tail_pointer(skb, skb->len);
  1808. #endif
  1809.             skb->truesize = skb->len + sizeof(struct sk_buff);
  1810.             ax88179_rx_checksum(skb, pkt_hdr);
  1811.  
  1812.             return 1;
  1813.         }
  1814.  
  1815. #ifndef RX_SKB_COPY
  1816.         ax_skb = skb_clone(skb, GFP_ATOMIC);
  1817. #else
  1818.         ax_skb = alloc_skb(pkt_len + NET_IP_ALIGN, GFP_ATOMIC);
  1819.         skb_reserve(ax_skb, NET_IP_ALIGN);
  1820. #endif
  1821.  
  1822.         if (ax_skb) {
  1823. #ifndef RX_SKB_COPY
  1824.             ax_skb->len = pkt_len;
  1825.    
  1826.             /* Skip IP alignment psudo header */
  1827.             if (NET_IP_ALIGN == 0)
  1828.                 skb_pull(ax_skb, 2);
  1829.  
  1830. #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 22)
  1831.             ax_skb->tail = ax_skb->data + ax_skb->len;
  1832. #else
  1833.             skb_set_tail_pointer(ax_skb, ax_skb->len);
  1834. #endif
  1835.  
  1836. #else
  1837.             skb_put(ax_skb, pkt_len);
  1838.             memcpy(ax_skb->data, skb->data, pkt_len);
  1839.  
  1840.             if (NET_IP_ALIGN == 0)
  1841.                 skb_pull(ax_skb, 2);
  1842. #endif
  1843.             ax_skb->truesize = ax_skb->len + sizeof(struct sk_buff);
  1844.             ax88179_rx_checksum(ax_skb, pkt_hdr);
  1845.             usbnet_skb_return(dev, ax_skb);
  1846.         } else {
  1847.             return 0;
  1848.         }
  1849.  
  1850.         skb_pull(skb, (pkt_len + 7) & 0xFFF8);
  1851.         pkt_hdr++;
  1852.     }
  1853.     return 1;
  1854. }
  1855.  
  1856. static struct sk_buff *
  1857. ax88179_tx_fixup(struct usbnet *dev, struct sk_buff *skb, gfp_t flags)
  1858. {
  1859.     u32 tx_hdr1 = 0, tx_hdr2 = 0;
  1860.     int frame_size = dev->maxpacket;
  1861. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24)
  1862.     int mss = skb_shinfo(skb)->gso_size;
  1863. #else
  1864.     int mss = 0;
  1865. #endif
  1866.     int headroom = 0;
  1867.     int tailroom = 0;
  1868.  
  1869.     tx_hdr1 = skb->len;
  1870.     tx_hdr2 = mss;
  1871.     if (((skb->len + 8) % frame_size) == 0)
  1872.         tx_hdr2 |= 0x80008000;  /* Enable padding */
  1873.  
  1874. #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 12, 0)
  1875.     if (!dev->can_dma_sg && (dev->net->features & NETIF_F_SG) &&
  1876.         skb_linearize(skb))
  1877.         return NULL;
  1878. #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24)
  1879.     if ((dev->net->features & NETIF_F_SG) && skb_linearize(skb))
  1880.         return NULL;
  1881. #endif
  1882.  
  1883.     headroom = skb_headroom(skb);
  1884.     tailroom = skb_tailroom(skb);
  1885.  
  1886.     if ((headroom + tailroom) >= 8) {
  1887.         if (headroom < 8) {
  1888.             skb->data = memmove(skb->head + 8, skb->data, skb->len);
  1889. #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 22)
  1890.             skb->tail = skb->data + skb->len;
  1891. #else
  1892.             skb_set_tail_pointer(skb, skb->len);
  1893. #endif
  1894.         }
  1895.     } else {
  1896.         struct sk_buff *skb2 = NULL;
  1897.         skb2 = skb_copy_expand(skb, 8, 0, flags);
  1898.         dev_kfree_skb_any(skb);
  1899.         skb = skb2;
  1900.         if (!skb)
  1901.             return NULL;
  1902.     }
  1903.  
  1904.     skb_push(skb, 4);
  1905.     cpu_to_le32s(&tx_hdr2);
  1906. #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 22)
  1907.     memcpy(skb->data, &tx_hdr2, 4);
  1908. #else
  1909.     skb_copy_to_linear_data(skb, &tx_hdr2, 4);
  1910. #endif
  1911.  
  1912.     skb_push(skb, 4);
  1913.     cpu_to_le32s(&tx_hdr1);
  1914. #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 22)
  1915.     memcpy(skb->data, &tx_hdr1, 4);
  1916. #else
  1917.     skb_copy_to_linear_data(skb, &tx_hdr1, 4);
  1918. #endif
  1919.  
  1920.     return skb;
  1921. }
  1922.  
  1923. static int ax88179_link_reset(struct usbnet *dev)
  1924. {
  1925.     struct ax88179_data *data = (struct ax88179_data *)&dev->data;
  1926.     u8 *tmp, *link_sts, *tmp_16;
  1927.     u16 *mode, *tmp16, delay = 10 * HZ;
  1928.     u32 *tmp32;
  1929.     unsigned long jtimeout = 0;
  1930.  
  1931.     tmp_16 = kmalloc(16, GFP_KERNEL);
  1932.     if (!tmp_16)
  1933.         return -ENOMEM;
  1934.     tmp = (u8*)tmp_16;
  1935.     link_sts = (u8*)(&tmp_16[5]);
  1936.     mode = (u16*)(&tmp_16[6]);
  1937.     tmp16 = (u16*)(&tmp_16[8]);
  1938.     tmp32 = (u32*)(&tmp_16[10]);
  1939.  
  1940.     *mode = AX_MEDIUM_TXFLOW_CTRLEN | AX_MEDIUM_RXFLOW_CTRLEN;
  1941.  
  1942.     ax88179_read_cmd(dev, AX_ACCESS_MAC, PHYSICAL_LINK_STATUS,
  1943.              1, 1, link_sts, 0);
  1944.  
  1945.     jtimeout = jiffies + delay;
  1946.     while(time_before(jiffies, jtimeout)) {
  1947.  
  1948.         ax88179_read_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, GMII_PHY_PHYSR, 2, tmp16, 1);
  1949.  
  1950.         if (*tmp16 & GMII_PHY_PHYSR_LINK) {
  1951.             break;
  1952.         }
  1953.     }
  1954.  
  1955.     if (!(*tmp16 & GMII_PHY_PHYSR_LINK))
  1956.         return 0;
  1957.     else if (GMII_PHY_PHYSR_GIGA == (*tmp16 & GMII_PHY_PHYSR_SMASK)) {
  1958.         *mode |= AX_MEDIUM_GIGAMODE;
  1959.         if (dev->net->mtu > 1500)
  1960.             *mode |= AX_MEDIUM_JUMBO_EN;
  1961.  
  1962.         if (*link_sts & AX_USB_SS)
  1963.             memcpy(tmp, &AX88179_BULKIN_SIZE[0], 5);
  1964.         else if (*link_sts & AX_USB_HS)
  1965.             memcpy(tmp, &AX88179_BULKIN_SIZE[1], 5);
  1966.         else
  1967.             memcpy(tmp, &AX88179_BULKIN_SIZE[3], 5);
  1968.     } else if (GMII_PHY_PHYSR_100 == (*tmp16 & GMII_PHY_PHYSR_SMASK)) {
  1969.         *mode |= AX_MEDIUM_PS;  /* Bit 9 : PS */
  1970.         if (*link_sts & (AX_USB_SS | AX_USB_HS))
  1971.             memcpy(tmp, &AX88179_BULKIN_SIZE[2], 5);
  1972.         else
  1973.             memcpy(tmp, &AX88179_BULKIN_SIZE[3], 5);
  1974.     } else
  1975.         memcpy(tmp, &AX88179_BULKIN_SIZE[3], 5);
  1976.  
  1977.     if (bsize != -1) {
  1978.         if (bsize > 24)
  1979.             bsize = 24;
  1980.  
  1981.         else if (bsize == 0) {
  1982.             tmp[1] = 0;
  1983.             tmp[2] = 0;
  1984.         }
  1985.  
  1986.         tmp[3] = (u8)bsize;
  1987.     }
  1988.  
  1989.     if (ifg != -1) {
  1990.         if (ifg > 255)
  1991.             ifg = 255;
  1992.         tmp[4] = (u8)ifg;
  1993.     }
  1994.  
  1995.     /* RX bulk configuration */
  1996.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_BULKIN_QCTRL, 5, 5, tmp);
  1997.  
  1998.     if (*tmp16 & GMII_PHY_PHYSR_FULL)
  1999.         *mode |= AX_MEDIUM_FULL_DUPLEX; /* Bit 1 : FD */
  2000.  
  2001.     dev->rx_urb_size = (1024 * (tmp[3] + 2));
  2002.  
  2003. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  2004.         netdev_info(dev->net, "Write medium type: 0x%04x\n", *mode);
  2005. #else
  2006.         devinfo(dev, "Write medium type: 0x%04x\n", *mode);
  2007. #endif
  2008.    
  2009.     ax88179_read_cmd(dev, 0x81, 0x8c, 0, 4, tmp32, 1);
  2010.     delay = HZ / 2;
  2011.     if (*tmp32 & 0x40000000) {
  2012.  
  2013.         u16 *tmp1 = (u16*)(&tmp_16[14]);
  2014.         ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, tmp1);
  2015.  
  2016.         /* Configure default medium type => giga */
  2017.         ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
  2018.                   2, 2, mode);
  2019.  
  2020.         jtimeout = jiffies + delay;
  2021.  
  2022.         while (time_before(jiffies, jtimeout)) {
  2023.            
  2024.             ax88179_read_cmd(dev, 0x81, 0x8c, 0, 4, tmp32, 1);
  2025.        
  2026.             if (!(*tmp32 & 0x40000000))
  2027.                 break;
  2028.  
  2029.             *tmp32 = 0x80000000;
  2030.             ax88179_write_cmd(dev, 0x81, 0x8c, 0, 4, tmp32);
  2031.         }
  2032.  
  2033.         ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL,
  2034.                   2, 2, &data->rxctl);
  2035.     }
  2036.  
  2037.     *mode |= AX_MEDIUM_RECEIVE_EN;
  2038.  
  2039.     /* Configure default medium type => giga */
  2040.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
  2041.               2, 2, mode);
  2042.     mii_check_media(&dev->mii, 1, 1);
  2043. #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 0, 0)   
  2044.     if (dev->mii.force_media)
  2045.         netif_carrier_on(dev->net);
  2046. #endif
  2047.     kfree(tmp_16);
  2048.  
  2049.     return 0;
  2050. }
  2051.  
  2052. static int ax88179_reset(struct usbnet *dev)
  2053. {
  2054.     void *buf = NULL;
  2055.     u16 *tmp16 = NULL;
  2056.     u8 *tmp = NULL;
  2057.     struct ax88179_data *ax179_data = (struct ax88179_data *) dev->data;
  2058.     buf = kmalloc(6, GFP_KERNEL);
  2059.  
  2060.     if (!buf) {
  2061. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  2062.         netdev_err(dev->net, "Cannot allocate memory for buffer");
  2063. #else
  2064.         deverr(dev, "Cannot allocate memory for buffer");
  2065. #endif
  2066.         return -ENOMEM;
  2067.     }
  2068.  
  2069.     tmp16 = (u16 *)buf;
  2070.     tmp = (u8 *)buf;
  2071.  
  2072.     /* Power up ethernet PHY */
  2073.     *tmp16 = 0;
  2074.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, tmp16);
  2075.     *tmp16 = AX_PHYPWR_RSTCTL_IPRL;
  2076.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, tmp16);
  2077.     msleep(200);
  2078.  
  2079.     *tmp = AX_CLK_SELECT_ACS | AX_CLK_SELECT_BCS;
  2080.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, tmp);
  2081.     msleep(100);
  2082.  
  2083.     /* Ethernet PHY Auto Detach*/
  2084.     ax88179_AutoDetach(dev, 0);
  2085.  
  2086.     /* Set the MAC address */
  2087.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_NODE_ID, ETH_ALEN,
  2088.               ETH_ALEN, dev->net->dev_addr);
  2089.  
  2090. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  2091.     netdev_dbg(dev->net, "MAC [%02x-%02x-%02x-%02x-%02x-%02x]\n",
  2092.     dev->net->dev_addr[0], dev->net->dev_addr[1],
  2093.     dev->net->dev_addr[2], dev->net->dev_addr[3],
  2094.     dev->net->dev_addr[4], dev->net->dev_addr[5]);
  2095. #else
  2096.     devdbg(dev, "MAC [%02x-%02x-%02x-%02x-%02x-%02x]\n",
  2097.     dev->net->dev_addr[0], dev->net->dev_addr[1],
  2098.     dev->net->dev_addr[2], dev->net->dev_addr[3],
  2099.     dev->net->dev_addr[4], dev->net->dev_addr[5]);
  2100. #endif
  2101.  
  2102.     /* RX bulk configuration */
  2103.     memcpy(tmp, &AX88179_BULKIN_SIZE[0], 5);
  2104.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_BULKIN_QCTRL, 5, 5, tmp);
  2105.  
  2106.     dev->rx_urb_size = 1024 * 20;
  2107.  
  2108.     tmp[0] = 0x34;
  2109.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PAUSE_WATERLVL_LOW, 1, 1, tmp);
  2110.  
  2111.     tmp[0] = 0x52;
  2112.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PAUSE_WATERLVL_HIGH,
  2113.               1, 1, tmp);
  2114.  
  2115.     dev->net->features |= NETIF_F_IP_CSUM;
  2116. #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 22)
  2117.     dev->net->features |= NETIF_F_IPV6_CSUM;
  2118. #endif
  2119. #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 12, 0)
  2120.     if (usb_device_no_sg_constraint(dev->udev))
  2121.         dev->can_dma_sg = 1;
  2122.     dev->net->features |= NETIF_F_SG | NETIF_F_TSO;
  2123. #endif
  2124.  
  2125. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 39)
  2126.     dev->net->hw_features |= NETIF_F_IP_CSUM;
  2127.     dev->net->hw_features |= NETIF_F_IPV6_CSUM;
  2128.     dev->net->hw_features |= NETIF_F_SG | NETIF_F_TSO;
  2129. #endif
  2130.  
  2131.     /* Enable checksum offload */
  2132.     *tmp = AX_RXCOE_IP | AX_RXCOE_TCP | AX_RXCOE_UDP |
  2133.            AX_RXCOE_TCPV6 | AX_RXCOE_UDPV6;
  2134.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RXCOE_CTL, 1, 1, tmp);
  2135.  
  2136.     *tmp = AX_TXCOE_IP | AX_TXCOE_TCP | AX_TXCOE_UDP |
  2137.            AX_TXCOE_TCPV6 | AX_TXCOE_UDPV6;
  2138.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, tmp);
  2139.  
  2140.     ax179_data->checksum |= AX_RX_CHECKSUM | AX_TX_CHECKSUM;
  2141.  
  2142.     /* Configure RX control register => start operation */
  2143.     *tmp16 = AX_RX_CTL_DROPCRCERR | AX_RX_CTL_START | AX_RX_CTL_AP |
  2144.          AX_RX_CTL_AMALL | AX_RX_CTL_AB;
  2145.     if (NET_IP_ALIGN == 0)
  2146.         *tmp16 |= AX_RX_CTL_IPE;
  2147.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, tmp16);
  2148.  
  2149.     *tmp = AX_MONITOR_MODE_PMETYPE | AX_MONITOR_MODE_PMEPOL |
  2150.                         AX_MONITOR_MODE_RWMP;
  2151.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MONITOR_MODE, 1, 1, tmp);
  2152.  
  2153.     ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MONITOR_MODE, 1, 1, tmp, 0);
  2154. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  2155.     netdev_dbg(dev->net, "Monitor mode = 0x%02x\n", *tmp);
  2156. #else
  2157.     devdbg(dev, "Monitor mode = 0x%02x\n", *tmp);
  2158. #endif
  2159.  
  2160.     /* Configure default medium type => giga */
  2161.     *tmp16 = AX_MEDIUM_TXFLOW_CTRLEN | AX_MEDIUM_RXFLOW_CTRLEN |
  2162.          AX_MEDIUM_FULL_DUPLEX | AX_MEDIUM_GIGAMODE;
  2163.  
  2164.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
  2165.               2, 2, tmp16);
  2166.  
  2167.     ax88179_led_setting(dev);
  2168.  
  2169.     ax88179_EEE_setting(dev);
  2170.  
  2171.     ax88179_Gether_setting(dev);
  2172.  
  2173.     /* Restart autoneg */
  2174.     mii_nway_restart(&dev->mii);
  2175.  
  2176.     netif_carrier_off(dev->net);
  2177.  
  2178.     kfree(buf);
  2179. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)
  2180.     netdev_dbg(dev->net, "mtu %d\n", dev->net->mtu);
  2181. #else
  2182.     devdbg(dev, "mtu %d\n", dev->net->mtu);
  2183. #endif
  2184.  
  2185.     return 0;
  2186.  
  2187. }
  2188.  
  2189. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 32)
  2190. static int ax88179_stop(struct usbnet *dev)
  2191. {
  2192.     u16 *tmp16;
  2193.     tmp16 = kmalloc(2, GFP_KERNEL);
  2194.     if (!tmp16)
  2195.         return -ENOMEM;
  2196.  
  2197.     ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
  2198.              2, 2, tmp16, 1);
  2199.     *tmp16 &= ~AX_MEDIUM_RECEIVE_EN;
  2200.     ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
  2201.               2, 2, tmp16);
  2202.  
  2203.     kfree(tmp16);
  2204.     return 0;
  2205. }
  2206. #endif
  2207.  
  2208. static const struct driver_info ax88179_info = {
  2209.     .description = "ASIX AX88179 USB 3.0 Gigabit Ethernet",
  2210.     .bind   = ax88179_bind,
  2211.     .unbind = ax88179_unbind,
  2212.     .status = ax88179_status,
  2213.     .link_reset = ax88179_link_reset,
  2214.     .reset  = ax88179_reset,
  2215. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 32)
  2216.     .stop   = ax88179_stop,
  2217.     .flags  = FLAG_ETHER | FLAG_FRAMING_AX | FLAG_AVOID_UNLINK_URBS,
  2218. #else
  2219.     .flags  = FLAG_ETHER | FLAG_FRAMING_AX,
  2220. #endif
  2221.     .rx_fixup = ax88179_rx_fixup,
  2222.     .tx_fixup = ax88179_tx_fixup,
  2223. };
  2224.  
  2225.  
  2226. static const struct driver_info ax88178a_info = {
  2227.     .description = "ASIX AX88178A USB 2.0 Gigabit Ethernet",
  2228.     .bind   = ax88179_bind,
  2229.     .unbind = ax88179_unbind,
  2230.     .status = ax88179_status,
  2231.     .link_reset = ax88179_link_reset,
  2232.     .reset  = ax88179_reset,
  2233. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 32)
  2234.     .stop   = ax88179_stop,
  2235.     .flags  = FLAG_ETHER | FLAG_FRAMING_AX | FLAG_AVOID_UNLINK_URBS,
  2236. #else
  2237.     .flags  = FLAG_ETHER | FLAG_FRAMING_AX,
  2238. #endif
  2239.     .rx_fixup = ax88179_rx_fixup,
  2240.     .tx_fixup = ax88179_tx_fixup,
  2241. };
  2242.  
  2243. static const struct driver_info sitecom_info = {
  2244.     .description = "Sitecom USB 3.0 to Gigabit Adapter",
  2245.     .bind   = ax88179_bind,
  2246.     .unbind = ax88179_unbind,
  2247.     .status = ax88179_status,
  2248.     .link_reset = ax88179_link_reset,
  2249.     .reset  = ax88179_reset,
  2250. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 32)
  2251.     .stop   = ax88179_stop,
  2252.     .flags  = FLAG_ETHER | FLAG_FRAMING_AX | FLAG_AVOID_UNLINK_URBS,
  2253. #else
  2254.     .flags  = FLAG_ETHER | FLAG_FRAMING_AX,
  2255. #endif
  2256.     .rx_fixup = ax88179_rx_fixup,
  2257.     .tx_fixup = ax88179_tx_fixup,
  2258. };
  2259.  
  2260. static const struct driver_info lenovo_info = {
  2261.     .description = "ThinkPad OneLinkDock USB GigaLAN",
  2262.     .bind   = ax88179_bind,
  2263.     .unbind = ax88179_unbind,
  2264.     .status = ax88179_status,
  2265.     .link_reset = ax88179_link_reset,
  2266.     .reset  = ax88179_reset,
  2267. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 32)
  2268.     .stop   = ax88179_stop,
  2269.     .flags  = FLAG_ETHER | FLAG_FRAMING_AX | FLAG_AVOID_UNLINK_URBS,
  2270. #else
  2271.     .flags  = FLAG_ETHER | FLAG_FRAMING_AX,
  2272. #endif
  2273.     .rx_fixup = ax88179_rx_fixup,
  2274.     .tx_fixup = ax88179_tx_fixup,
  2275. };
  2276.  
  2277. static const struct driver_info toshiba_info = {
  2278.     .description = "Toshiba USB 3.0 to Gigabit LAN Adapter",
  2279.     .bind   = ax88179_bind,
  2280.     .unbind = ax88179_unbind,
  2281.     .status = ax88179_status,
  2282.     .link_reset = ax88179_link_reset,
  2283.     .reset  = ax88179_reset,
  2284. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 32)
  2285.     .stop   = ax88179_stop,
  2286.     .flags  = FLAG_ETHER | FLAG_FRAMING_AX | FLAG_AVOID_UNLINK_URBS,
  2287. #else
  2288.     .flags  = FLAG_ETHER | FLAG_FRAMING_AX,
  2289. #endif
  2290.     .rx_fixup = ax88179_rx_fixup,
  2291.     .tx_fixup = ax88179_tx_fixup,
  2292. };
  2293.  
  2294. static const struct driver_info samsung_info = {
  2295.     .description = "Samsung USB Ethernet Adapter",
  2296.     .bind   = ax88179_bind,
  2297.     .unbind = ax88179_unbind,
  2298.     .status = ax88179_status,
  2299.     .link_reset = ax88179_link_reset,
  2300.     .reset  = ax88179_reset,
  2301. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 32)
  2302.     .stop   = ax88179_stop,
  2303.     .flags  = FLAG_ETHER | FLAG_FRAMING_AX | FLAG_AVOID_UNLINK_URBS,
  2304. #else
  2305.     .flags  = FLAG_ETHER | FLAG_FRAMING_AX,
  2306. #endif
  2307.     .rx_fixup = ax88179_rx_fixup,
  2308.     .tx_fixup = ax88179_tx_fixup,
  2309. };
  2310.  
  2311. static const struct driver_info dlink_info = {
  2312.     .description = "DUB-1312/1332 USB3.0 to Gigabit Ethernet Adapter",
  2313.     .bind   = ax88179_bind,
  2314.     .unbind = ax88179_unbind,
  2315.     .status = ax88179_status,
  2316.     .link_reset = ax88179_link_reset,
  2317.     .reset  = ax88179_reset,
  2318. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 32)
  2319.     .stop   = ax88179_stop,
  2320.     .flags  = FLAG_ETHER | FLAG_FRAMING_AX | FLAG_AVOID_UNLINK_URBS,
  2321. #else
  2322.     .flags  = FLAG_ETHER | FLAG_FRAMING_AX,
  2323. #endif
  2324.     .rx_fixup = ax88179_rx_fixup,
  2325.     .tx_fixup = ax88179_tx_fixup,
  2326. };
  2327.  
  2328. static const struct driver_info mct_info = {
  2329.         .description = "USB 3.0 to Gigabit Ethernet Adapter",
  2330.         .bind   = ax88179_bind,
  2331.         .unbind = ax88179_unbind,
  2332.         .status = ax88179_status,
  2333.         .link_reset = ax88179_link_reset,
  2334.         .reset  = ax88179_reset,
  2335. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 32)
  2336.         .stop   = ax88179_stop,
  2337.         .flags  = FLAG_ETHER | FLAG_FRAMING_AX | FLAG_AVOID_UNLINK_URBS,
  2338. #else
  2339.         .flags  = FLAG_ETHER | FLAG_FRAMING_AX,
  2340. #endif
  2341.         .rx_fixup = ax88179_rx_fixup,
  2342.         .tx_fixup = ax88179_tx_fixup,
  2343. };
  2344.  
  2345. static const struct usb_device_id   products[] = {
  2346. {
  2347.     /* ASIX AX88179 10/100/1000 */
  2348.     USB_DEVICE(0x0b95, 0x1790),
  2349.     .driver_info = (unsigned long) &ax88179_info,
  2350. }, {
  2351.     /* ASIX AX88178A 10/100/1000 */
  2352.     USB_DEVICE(0x0b95, 0x178a),
  2353.     .driver_info = (unsigned long) &ax88178a_info,
  2354. }, {
  2355.     /* Sitecom USB 3.0 to Gigabit Adapter */
  2356.     USB_DEVICE(0x0df6, 0x0072),
  2357.     .driver_info = (unsigned long) &sitecom_info,
  2358. }, {
  2359.     /* ThinkPad OneLinkDock USB GigaLAN */
  2360.     USB_DEVICE(0x17ef, 0x304b),
  2361.     .driver_info = (unsigned long) &lenovo_info,
  2362. }, {
  2363.     /* Toshiba USB3.0 to Gigabit LAN Adapter */
  2364.     USB_DEVICE(0x0930, 0x0a13),
  2365.     .driver_info = (unsigned long) &toshiba_info,
  2366. }, {
  2367.     /* Samsung USB Ethernet Adapter */
  2368.     USB_DEVICE(0x04e8, 0xa100),
  2369.     .driver_info = (unsigned long) &samsung_info,
  2370. }, {
  2371.     /* D-Link DUB-13x2 Ethernet Adapter */
  2372.     USB_DEVICE(0x2001, 0x4a00),
  2373.     .driver_info = (unsigned long) &dlink_info,
  2374. }, {
  2375.     /* MCT USB 3.0 to Gigabit Ethernet Adapter */
  2376.     USB_DEVICE(0x0711, 0x0179),
  2377.     .driver_info = (unsigned long) &mct_info,
  2378. },
  2379.     { },        /* END */
  2380. };
  2381. MODULE_DEVICE_TABLE(usb, products);
  2382.  
  2383. static struct usb_driver asix_driver = {
  2384.     .name =     "ax88179_178a",
  2385.     .id_table = products,
  2386.     .probe =    usbnet_probe,
  2387.     .suspend =  ax88179_suspend,
  2388.     .resume =   ax88179_resume,
  2389.     .disconnect =   usbnet_disconnect,
  2390. };
  2391.  
  2392.  
  2393. static int __init asix_init(void)
  2394. {
  2395.     return usb_register(&asix_driver);
  2396. }
  2397. module_init(asix_init);
  2398.  
  2399. static void __exit asix_exit(void)
  2400. {
  2401.     usb_deregister(&asix_driver);
  2402. }
  2403. module_exit(asix_exit);
  2404.  
  2405. MODULE_AUTHOR("David Hollis - PVE Mod by Pascal Steinberg");
  2406. MODULE_DESCRIPTION("ASIX AX88179_178A based USB 2.0/3.0 Gigabit Ethernet Devices");
  2407. MODULE_LICENSE("GPL");
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement