Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- using System;
- using System.Collections.Generic;
- using libsvm;
- namespace QuantSys.MachineLearning.SupportVectorMachine
- {
- public class Predict
- {
- public static string TRAINING_FILE = "C:/Sangar/quantopian/svm/heart_scale";
- public static string TEST_FILE = "C:/Sangar/quantopian/svm/heart_scale";
- public static double gamma = 1.0;
- public static double C = 1.0;
- public static int nr_fold = 5;
- private static readonly svm_problem prob = ProblemHelper.ReadAndScaleProblem(TRAINING_FILE);
- private static readonly svm_problem test = ProblemHelper.ReadAndScaleProblem(TEST_FILE);
- public static void SVMPredict()
- {
- var svm = new C_SVC(prob, KernelHelper.RadialBasisFunctionKernel(gamma), C);
- double accuracy = svm.GetCrossValidationAccuracy(nr_fold);
- for (int i = 0; i < test.l; i++)
- {
- svm_node[] x = test.x[i];
- double y = test.y[i];
- double predict = svm.Predict(x);
- Dictionary<int, double> probabilities = svm.PredictProbabilities(x);
- Console.WriteLine(predict + " :" + probabilities[1]);
- }
- Console.ReadKey();
- }
- }
Advertisement
Add Comment
Please, Sign In to add comment