Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import os
- from pathlib import Path
- import torch
- import argparse
- parser = argparse.ArgumentParser()
- parser.add_argument('--input', '-I', type=str, help='Input file to prune', required = True)
- args = parser.parse_args()
- file = args.input
- def prune_it(p, keep_only_ema=True):
- print(f"prunin' in path: {p}")
- size_initial = os.path.getsize(p)
- nsd = dict()
- sd = torch.load(p, map_location="cpu")
- print(sd.keys())
- for k in sd.keys():
- if k != "optimizer_states":
- nsd[k] = sd[k]
- else:
- print(f"removing optimizer states for path {p}")
- if "global_step" in sd:
- print(f"This is global step {sd['global_step']}.")
- if keep_only_ema:
- sd = nsd["state_dict"].copy()
- # infer ema keys
- ema_keys = {k: "model_ema." + k[6:].replace(".", "") for k in sd.keys() if k.startswith('model.')}
- new_sd = dict()
- for k in sd:
- if k in ema_keys:
- print(k, ema_keys[k])
- new_sd[k] = sd[ema_keys[k]]
- elif not k.startswith("model_ema.") or k in ["model_ema.num_updates", "model_ema.decay"]:
- new_sd[k] = sd[k]
- assert len(new_sd) == len(sd) - len(ema_keys)
- nsd["state_dict"] = new_sd
- else:
- sd = nsd['state_dict'].copy()
- new_sd = dict()
- for k in sd:
- new_sd[k] = sd[k]
- nsd['state_dict'] = new_sd
- fn = f"{os.path.splitext(p)[0]}-pruned.ckpt" if not keep_only_ema else f"{os.path.splitext(p)[0]}-ema-pruned.ckpt"
- print(f"saving pruned checkpoint at: {fn}")
- torch.save(nsd, fn)
- newsize = os.path.getsize(fn)
- MSG = f"New ckpt size: {newsize*1e-9:.2f} GB. " + \
- f"Saved {(size_initial - newsize)*1e-9:.2f} GB by removing optimizer states"
- if keep_only_ema:
- MSG += " and non-EMA weights"
- print(MSG)
- if __name__ == "__main__":
- prune_it(file)
Advertisement
Add Comment
Please, Sign In to add comment