Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- W0605 21:40:45.003000 20 site-packages/torch/distributed/run.py:793]
- W0605 21:40:45.003000 20 site-packages/torch/distributed/run.py:793] *****************************************
- W0605 21:40:45.003000 20 site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
- W0605 21:40:45.003000 20 site-packages/torch/distributed/run.py:793] *****************************************
- 2025-06-05 21:40:46.306390: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
- 2025-06-05 21:40:46.306390: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
- 2025-06-05 21:40:46.306405: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
- 2025-06-05 21:40:46.306404: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
- 2025-06-05 21:40:46.306390: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
- 2025-06-05 21:40:46.306390: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
- 2025-06-05 21:40:46.306447: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
- 2025-06-05 21:40:46.306899: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
- WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
- WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
- WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
- E0000 00:00:1749159646.327572 93 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
- E0000 00:00:1749159646.327572 92 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
- WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
- E0000 00:00:1749159646.327589 90 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
- E0000 00:00:1749159646.327572 89 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
- WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
- WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
- E0000 00:00:1749159646.327594 91 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
- E0000 00:00:1749159646.327599 87 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
- WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
- E0000 00:00:1749159646.327869 88 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
- WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
- E0000 00:00:1749159646.329187 94 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
- E0000 00:00:1749159646.333895 92 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
- E0000 00:00:1749159646.333897 87 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
- E0000 00:00:1749159646.333903 89 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
- E0000 00:00:1749159646.333903 93 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
- E0000 00:00:1749159646.333901 90 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
- E0000 00:00:1749159646.334055 91 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
- E0000 00:00:1749159646.334316 88 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
- E0000 00:00:1749159646.335834 94 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
- ERROR:root:Unable to import wandb.
- Traceback (most recent call last):
- File "/algorithmic-efficiency/algoperf/logger_utils.py", line 27, in <module>
- import wandb # pylint: disable=g-import-not-at-top
- ^^^^^^^^^^^^
- ModuleNotFoundError: No module named 'wandb'
- ERROR:root:Unable to import wandb.
- Traceback (most recent call last):
- File "/algorithmic-efficiency/algoperf/logger_utils.py", line 27, in <module>
- import wandb # pylint: disable=g-import-not-at-top
- ^^^^^^^^^^^^
- ModuleNotFoundError: No module named 'wandb'
- ERROR:root:Unable to import wandb.
- Traceback (most recent call last):
- File "/algorithmic-efficiency/algoperf/logger_utils.py", line 27, in <module>
- import wandb # pylint: disable=g-import-not-at-top
- ^^^^^^^^^^^^
- ModuleNotFoundError: No module named 'wandb'
- ERROR:root:Unable to import wandb.
- Traceback (most recent call last):
- File "/algorithmic-efficiency/algoperf/logger_utils.py", line 27, in <module>
- import wandb # pylint: disable=g-import-not-at-top
- ^^^^^^^^^^^^
- ModuleNotFoundError: No module named 'wandb'
- ERROR:root:Unable to import wandb.
- Traceback (most recent call last):
- File "/algorithmic-efficiency/algoperf/logger_utils.py", line 27, in <module>
- import wandb # pylint: disable=g-import-not-at-top
- ^^^^^^^^^^^^
- ModuleNotFoundError: No module named 'wandb'
- ERROR:root:Unable to import wandb.
- Traceback (most recent call last):
- File "/algorithmic-efficiency/algoperf/logger_utils.py", line 27, in <module>
- import wandb # pylint: disable=g-import-not-at-top
- ^^^^^^^^^^^^
- ModuleNotFoundError: No module named 'wandb'
- ERROR:root:Unable to import wandb.
- Traceback (most recent call last):
- File "/algorithmic-efficiency/algoperf/logger_utils.py", line 27, in <module>
- import wandb # pylint: disable=g-import-not-at-top
- ^^^^^^^^^^^^
- ModuleNotFoundError: No module named 'wandb'
- I0605 21:40:54.339662 140206541566592 logger_utils.py:59] Removing existing experiment directory /experiment_runs/submissions/rolling_leaderboard/self_tuning/schedule_free_adamw_v2/study_0/ogbg_pytorch because --overwrite was set.
- ERROR:root:Unable to import wandb.
- Traceback (most recent call last):
- File "/algorithmic-efficiency/algoperf/logger_utils.py", line 27, in <module>
- import wandb # pylint: disable=g-import-not-at-top
- ^^^^^^^^^^^^
- ModuleNotFoundError: No module named 'wandb'
- [rank0]:[W605 21:40:55.527456479 ProcessGroupNCCL.cpp:4115] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect.Specify device_ids in barrier() to force use of a particular device,or call init_process_group() with a device_id.
- [rank7]:[W605 21:40:55.735487210 ProcessGroupNCCL.cpp:4115] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect.Specify device_ids in barrier() to force use of a particular device,or call init_process_group() with a device_id.
- [rank5]:[W605 21:40:55.774773963 ProcessGroupNCCL.cpp:4115] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect.Specify device_ids in barrier() to force use of a particular device,or call init_process_group() with a device_id.
- [rank2]:[W605 21:40:55.783153949 ProcessGroupNCCL.cpp:4115] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect.Specify device_ids in barrier() to force use of a particular device,or call init_process_group() with a device_id.
- [rank3]:[W605 21:40:55.799349970 ProcessGroupNCCL.cpp:4115] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect.Specify device_ids in barrier() to force use of a particular device,or call init_process_group() with a device_id.
- [rank6]:[W605 21:40:56.061437091 ProcessGroupNCCL.cpp:4115] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect.Specify device_ids in barrier() to force use of a particular device,or call init_process_group() with a device_id.
- [rank4]:[W605 21:40:56.099107785 ProcessGroupNCCL.cpp:4115] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect.Specify device_ids in barrier() to force use of a particular device,or call init_process_group() with a device_id.
- [rank1]:[W605 21:40:56.168617336 ProcessGroupNCCL.cpp:4115] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect.Specify device_ids in barrier() to force use of a particular device,or call init_process_group() with a device_id.
- I0605 21:40:57.821369 140206541566592 logger_utils.py:81] Creating experiment directory at /experiment_runs/submissions/rolling_leaderboard/self_tuning/schedule_free_adamw_v2/study_0/ogbg_pytorch.
- I0605 21:40:57.821388 140007983239808 logger_utils.py:81] Creating experiment directory at /experiment_runs/submissions/rolling_leaderboard/self_tuning/schedule_free_adamw_v2/study_0/ogbg_pytorch.
- I0605 21:40:57.821390 140579512062592 logger_utils.py:81] Creating experiment directory at /experiment_runs/submissions/rolling_leaderboard/self_tuning/schedule_free_adamw_v2/study_0/ogbg_pytorch.
- I0605 21:40:57.821390 140231711031936 logger_utils.py:81] Creating experiment directory at /experiment_runs/submissions/rolling_leaderboard/self_tuning/schedule_free_adamw_v2/study_0/ogbg_pytorch.
- I0605 21:40:57.821389 140307471893120 logger_utils.py:81] Creating experiment directory at /experiment_runs/submissions/rolling_leaderboard/self_tuning/schedule_free_adamw_v2/study_0/ogbg_pytorch.
- I0605 21:40:57.821394 140052615066240 logger_utils.py:81] Creating experiment directory at /experiment_runs/submissions/rolling_leaderboard/self_tuning/schedule_free_adamw_v2/study_0/ogbg_pytorch.
- I0605 21:40:57.821389 140359587656320 logger_utils.py:81] Creating experiment directory at /experiment_runs/submissions/rolling_leaderboard/self_tuning/schedule_free_adamw_v2/study_0/ogbg_pytorch.
- I0605 21:40:57.821479 140578171036288 logger_utils.py:81] Creating experiment directory at /experiment_runs/submissions/rolling_leaderboard/self_tuning/schedule_free_adamw_v2/study_0/ogbg_pytorch.
- I0605 21:40:58.186334 140206541566592 submission_runner.py:665] Creating directory at /experiment_runs/submissions/rolling_leaderboard/self_tuning/schedule_free_adamw_v2/study_0/ogbg_pytorch/trial_1.
- I0605 21:40:58.494310 140206541566592 submission_runner.py:218] Initializing dataset.
- I0605 21:40:58.494513 140206541566592 submission_runner.py:229] Initializing model.
- W0605 21:41:00.760917 140007983239808 submission_runner.py:254] These workloads cannot be fully compiled under current PyTorch version. Proceeding without `torch.compile`.
- W0605 21:41:00.760918 140359587656320 submission_runner.py:254] These workloads cannot be fully compiled under current PyTorch version. Proceeding without `torch.compile`.
- W0605 21:41:00.760933 140206541566592 submission_runner.py:254] These workloads cannot be fully compiled under current PyTorch version. Proceeding without `torch.compile`.
- W0605 21:41:00.760951 140231711031936 submission_runner.py:254] These workloads cannot be fully compiled under current PyTorch version. Proceeding without `torch.compile`.
- W0605 21:41:00.760964 140579512062592 submission_runner.py:254] These workloads cannot be fully compiled under current PyTorch version. Proceeding without `torch.compile`.
- W0605 21:41:00.760967 140307471893120 submission_runner.py:254] These workloads cannot be fully compiled under current PyTorch version. Proceeding without `torch.compile`.
- W0605 21:41:00.760986 140052615066240 submission_runner.py:254] These workloads cannot be fully compiled under current PyTorch version. Proceeding without `torch.compile`.
- W0605 21:41:00.761012 140578171036288 submission_runner.py:254] These workloads cannot be fully compiled under current PyTorch version. Proceeding without `torch.compile`.
- I0605 21:41:02.145434 140206541566592 submission_runner.py:272] Initializing optimizer.
- I0605 21:41:02.146213 140206541566592 submission_runner.py:279] Initializing metrics bundle.
- I0605 21:41:02.146409 140206541566592 submission_runner.py:301] Initializing checkpoint and logger.
- I0605 21:41:02.146344 140578171036288 logger_utils.py:262] Unable to record workload.train_mean information. Continuing without it.
- I0605 21:41:02.146351 140231711031936 logger_utils.py:262] Unable to record workload.train_mean information. Continuing without it.
- I0605 21:41:02.146354 140307471893120 logger_utils.py:262] Unable to record workload.train_mean information. Continuing without it.
- I0605 21:41:02.146367 140579512062592 logger_utils.py:262] Unable to record workload.train_mean information. Continuing without it.
- I0605 21:41:02.146378 140007983239808 logger_utils.py:262] Unable to record workload.train_mean information. Continuing without it.
- I0605 21:41:02.146383 140052615066240 logger_utils.py:262] Unable to record workload.train_mean information. Continuing without it.
- I0605 21:41:02.146521 140231711031936 logger_utils.py:262] Unable to record workload.train_stddev information. Continuing without it.
- I0605 21:41:02.146524 140307471893120 logger_utils.py:262] Unable to record workload.train_stddev information. Continuing without it.
- I0605 21:41:02.146534 140578171036288 logger_utils.py:262] Unable to record workload.train_stddev information. Continuing without it.
- I0605 21:41:02.146541 140579512062592 logger_utils.py:262] Unable to record workload.train_stddev information. Continuing without it.
- I0605 21:41:02.146442 140359587656320 logger_utils.py:262] Unable to record workload.train_mean information. Continuing without it.
- I0605 21:41:02.146560 140052615066240 logger_utils.py:262] Unable to record workload.train_stddev information. Continuing without it.
- I0605 21:41:02.146568 140007983239808 logger_utils.py:262] Unable to record workload.train_stddev information. Continuing without it.
- I0605 21:41:02.146618 140206541566592 submission_runner.py:321] Saving meta data to /experiment_runs/submissions/rolling_leaderboard/self_tuning/schedule_free_adamw_v2/study_0/ogbg_pytorch/trial_1/meta_data_0.json.
- I0605 21:41:02.146622 140359587656320 logger_utils.py:262] Unable to record workload.train_stddev information. Continuing without it.
- I0605 21:41:02.146804 140206541566592 logger_utils.py:262] Unable to record workload.train_mean information. Continuing without it.
- I0605 21:41:02.146863 140206541566592 logger_utils.py:262] Unable to record workload.train_stddev information. Continuing without it.
- fatal: detected dubious ownership in repository at '/algorithmic-efficiency'
- To add an exception for this directory, call:
- git config --global --add safe.directory /algorithmic-efficiency
- I0605 21:41:02.286514 140359587656320 logger_utils.py:225] Unable to record git information. Continuing without it.
- fatal: detected dubious ownership in repository at '/algorithmic-efficiency'
- To add an exception for this directory, call:
- git config --global --add safe.directory /algorithmic-efficiency
- I0605 21:41:02.304860 140579512062592 logger_utils.py:225] Unable to record git information. Continuing without it.
- fatal: detected dubious ownership in repository at '/algorithmic-efficiency'
- To add an exception for this directory, call:
- git config --global --add safe.directory /algorithmic-efficiency
- I0605 21:41:02.312843 140206541566592 logger_utils.py:225] Unable to record git information. Continuing without it.
- fatal: detected dubious ownership in repository at '/algorithmic-efficiency'
- To add an exception for this directory, call:
- git config --global --add safe.directory /algorithmic-efficiency
- I0605 21:41:02.326709 140052615066240 logger_utils.py:225] Unable to record git information. Continuing without it.
- fatal: detected dubious ownership in repository at '/algorithmic-efficiency'
- To add an exception for this directory, call:
- git config --global --add safe.directory /algorithmic-efficiency
- I0605 21:41:02.327448 140007983239808 logger_utils.py:225] Unable to record git information. Continuing without it.
- fatal: detected dubious ownership in repository at '/algorithmic-efficiency'
- To add an exception for this directory, call:
- git config --global --add safe.directory /algorithmic-efficiency
- fatal: detected dubious ownership in repository at '/algorithmic-efficiency'
- To add an exception for this directory, call:
- git config --global --add safe.directory /algorithmic-efficiency
- I0605 21:41:02.337476 140231711031936 logger_utils.py:225] Unable to record git information. Continuing without it.
- I0605 21:41:02.337925 140578171036288 logger_utils.py:225] Unable to record git information. Continuing without it.
- fatal: detected dubious ownership in repository at '/algorithmic-efficiency'
- To add an exception for this directory, call:
- git config --global --add safe.directory /algorithmic-efficiency
- I0605 21:41:02.342284 140307471893120 logger_utils.py:225] Unable to record git information. Continuing without it.
- I0605 21:41:02.443264 140206541566592 submission_runner.py:325] Saving flags to /experiment_runs/submissions/rolling_leaderboard/self_tuning/schedule_free_adamw_v2/study_0/ogbg_pytorch/trial_1/flags_0.json.
- I0605 21:41:02.494452 140206541566592 submission_runner.py:337] Starting training loop.
- I0605 21:41:03.478737 140206541566592 dataset_info.py:690] Load dataset info from /data/ogbg/ogbg_molpcba/0.1.3
- I0605 21:41:03.488819 140206541566592 reader.py:261] Creating a tf.data.Dataset reading 8 files located in folders: /data/ogbg/ogbg_molpcba/0.1.3.
- WARNING:tensorflow:From /usr/local/lib/python3.11/site-packages/tensorflow_datasets/core/reader.py:101: CounterV2 (from tensorflow.python.data.experimental.ops.counter) is deprecated and will be removed in a future version.
- Instructions for updating:
- Use `tf.data.Dataset.counter(...)` instead.
- W0605 21:41:03.587561 140206541566592 deprecation.py:50] From /usr/local/lib/python3.11/site-packages/tensorflow_datasets/core/reader.py:101: CounterV2 (from tensorflow.python.data.experimental.ops.counter) is deprecated and will be removed in a future version.
- Instructions for updating:
- Use `tf.data.Dataset.counter(...)` instead.
- I0605 21:41:03.654927 140206541566592 logging_logger.py:49] Constructing tf.data.Dataset ogbg_molpcba for split train, from /data/ogbg/ogbg_molpcba/0.1.3
- I0605 21:41:14.403036 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 21:41:14.406841 140206541566592 dataset_info.py:690] Load dataset info from /data/ogbg/ogbg_molpcba/0.1.3
- I0605 21:41:14.413961 140206541566592 reader.py:261] Creating a tf.data.Dataset reading 8 files located in folders: /data/ogbg/ogbg_molpcba/0.1.3.
- I0605 21:41:14.481190 140206541566592 logging_logger.py:49] Constructing tf.data.Dataset ogbg_molpcba for split train, from /data/ogbg/ogbg_molpcba/0.1.3
- I0605 21:41:47.592525 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 21:41:47.595510 140206541566592 dataset_info.py:690] Load dataset info from /data/ogbg/ogbg_molpcba/0.1.3
- I0605 21:41:47.600105 140206541566592 reader.py:261] Creating a tf.data.Dataset reading 1 files located in folders: /data/ogbg/ogbg_molpcba/0.1.3.
- I0605 21:41:47.666902 140206541566592 logging_logger.py:49] Constructing tf.data.Dataset ogbg_molpcba for split validation, from /data/ogbg/ogbg_molpcba/0.1.3
- I0605 21:42:07.706037 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 21:42:07.709291 140206541566592 dataset_info.py:690] Load dataset info from /data/ogbg/ogbg_molpcba/0.1.3
- I0605 21:42:07.714253 140206541566592 reader.py:261] Creating a tf.data.Dataset reading 1 files located in folders: /data/ogbg/ogbg_molpcba/0.1.3.
- I0605 21:42:07.783147 140206541566592 logging_logger.py:49] Constructing tf.data.Dataset ogbg_molpcba for split test, from /data/ogbg/ogbg_molpcba/0.1.3
- I0605 21:42:28.449530 140206541566592 submission_runner.py:469] Time since start: 85.96s, Step: 1, {'train/accuracy': 0.5487086218758792, 'train/loss': 0.7567902562659737, 'train/mean_average_precision': 0.02280857642214985, 'validation/accuracy': 0.5499382158256794, 'validation/loss': 0.7547643230086376, 'validation/mean_average_precision': 0.026879201520133036, 'validation/num_examples': 43793, 'test/accuracy': 0.5476192181026106, 'test/loss': 0.7545978664804425, 'test/mean_average_precision': 0.028469111390666893, 'test/num_examples': 43793, 'score': 11.45370602607727, 'total_duration': 85.95512986183167, 'accumulated_submission_time': 11.45370602607727, 'accumulated_eval_time': 74.04636144638062, 'accumulated_logging_time': 0}
- I0605 21:42:28.460644 140155108943616 logging_writer.py:48] [1] accumulated_eval_time=74.0464, accumulated_logging_time=0, accumulated_submission_time=11.4537, global_step=1, preemption_count=0, score=11.4537, test/accuracy=0.547619, test/loss=0.754598, test/mean_average_precision=0.0284691, test/num_examples=43793, total_duration=85.9551, train/accuracy=0.548709, train/loss=0.75679, train/mean_average_precision=0.0228086, validation/accuracy=0.549938, validation/loss=0.754764, validation/mean_average_precision=0.0268792, validation/num_examples=43793
- I0605 21:46:29.063182 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 21:46:59.233423 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 21:47:02.089110 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 21:47:05.551532 140206541566592 submission_runner.py:469] Time since start: 363.06s, Step: 902, {'train/accuracy': 0.9868300669046549, 'train/loss': 0.049930963325571134, 'train/mean_average_precision': 0.07168529164764209, 'validation/accuracy': 0.984265332583155, 'validation/loss': 0.05948749504752348, 'validation/mean_average_precision': 0.0724888437460493, 'validation/num_examples': 43793, 'test/accuracy': 0.9832882584821239, 'test/loss': 0.0628461693817578, 'test/mean_average_precision': 0.07090503722563152, 'test/num_examples': 43793, 'score': 250.78779077529907, 'total_duration': 363.05691480636597, 'accumulated_submission_time': 250.78779077529907, 'accumulated_eval_time': 110.53444004058838, 'accumulated_logging_time': 0.055237770080566406}
- I0605 21:47:05.572340 140170150016768 logging_writer.py:48] [902] accumulated_eval_time=110.534, accumulated_logging_time=0.0552378, accumulated_submission_time=250.788, global_step=902, preemption_count=0, score=250.788, test/accuracy=0.983288, test/loss=0.0628462, test/mean_average_precision=0.070905, test/num_examples=43793, total_duration=363.057, train/accuracy=0.98683, train/loss=0.049931, train/mean_average_precision=0.0716853, validation/accuracy=0.984265, validation/loss=0.0594875, validation/mean_average_precision=0.0724888, validation/num_examples=43793
- I0605 21:51:06.097799 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 21:51:36.808097 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 21:51:39.168776 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 21:51:41.675676 140206541566592 submission_runner.py:469] Time since start: 639.18s, Step: 1815, {'train/accuracy': 0.987346426500519, 'train/loss': 0.04600702756738082, 'train/mean_average_precision': 0.11299452885755588, 'validation/accuracy': 0.9846688376375226, 'validation/loss': 0.055522824472459764, 'validation/mean_average_precision': 0.10790966652584111, 'validation/num_examples': 43793, 'test/accuracy': 0.9836365864866424, 'test/loss': 0.0586434098405399, 'test/mean_average_precision': 0.1092228993405109, 'test/num_examples': 43793, 'score': 490.03312635421753, 'total_duration': 639.1812260150909, 'accumulated_submission_time': 490.03312635421753, 'accumulated_eval_time': 146.11223602294922, 'accumulated_logging_time': 0.08680415153503418}
- I0605 21:51:41.687723 140170141624064 logging_writer.py:48] [1815] accumulated_eval_time=146.112, accumulated_logging_time=0.0868042, accumulated_submission_time=490.033, global_step=1815, preemption_count=0, score=490.033, test/accuracy=0.983637, test/loss=0.0586434, test/mean_average_precision=0.109223, test/num_examples=43793, total_duration=639.181, train/accuracy=0.987346, train/loss=0.046007, train/mean_average_precision=0.112995, validation/accuracy=0.984669, validation/loss=0.0555228, validation/mean_average_precision=0.10791, validation/num_examples=43793
- I0605 21:55:42.383457 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 21:56:12.411188 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 21:56:14.871812 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 21:56:17.354077 140206541566592 submission_runner.py:469] Time since start: 914.86s, Step: 2727, {'train/accuracy': 0.9877121796238771, 'train/loss': 0.043707295058043834, 'train/mean_average_precision': 0.1407305479948437, 'validation/accuracy': 0.9849598971183894, 'validation/loss': 0.05305284023513709, 'validation/mean_average_precision': 0.13507853115581597, 'validation/num_examples': 43793, 'test/accuracy': 0.9840038682519873, 'test/loss': 0.056025349233573093, 'test/mean_average_precision': 0.13564985068359142, 'test/num_examples': 43793, 'score': 729.4767143726349, 'total_duration': 914.8596456050873, 'accumulated_submission_time': 729.4767143726349, 'accumulated_eval_time': 181.0827398300171, 'accumulated_logging_time': 0.11113643646240234}
- I0605 21:56:17.365787 140170150016768 logging_writer.py:48] [2727] accumulated_eval_time=181.083, accumulated_logging_time=0.111136, accumulated_submission_time=729.477, global_step=2727, preemption_count=0, score=729.477, test/accuracy=0.984004, test/loss=0.0560253, test/mean_average_precision=0.13565, test/num_examples=43793, total_duration=914.86, train/accuracy=0.987712, train/loss=0.0437073, train/mean_average_precision=0.140731, validation/accuracy=0.98496, validation/loss=0.0530528, validation/mean_average_precision=0.135079, validation/num_examples=43793
- I0605 22:00:18.055022 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 22:00:48.126878 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 22:00:50.644643 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 22:00:53.112410 140206541566592 submission_runner.py:469] Time since start: 1190.62s, Step: 3641, {'train/accuracy': 0.9879753647382119, 'train/loss': 0.04198438626669612, 'train/mean_average_precision': 0.17400632474454017, 'validation/accuracy': 0.985191283316568, 'validation/loss': 0.0513741232188337, 'validation/mean_average_precision': 0.1572776220993675, 'validation/num_examples': 43793, 'test/accuracy': 0.9842704844876103, 'test/loss': 0.05418292522025323, 'test/mean_average_precision': 0.15736197600286395, 'test/num_examples': 43793, 'score': 968.9358668327332, 'total_duration': 1190.6180188655853, 'accumulated_submission_time': 968.9358668327332, 'accumulated_eval_time': 216.1401264667511, 'accumulated_logging_time': 0.1335761547088623}
- I0605 22:00:53.123961 140159630677760 logging_writer.py:48] [3641] accumulated_eval_time=216.14, accumulated_logging_time=0.133576, accumulated_submission_time=968.936, global_step=3641, preemption_count=0, score=968.936, test/accuracy=0.98427, test/loss=0.0541829, test/mean_average_precision=0.157362, test/num_examples=43793, total_duration=1190.62, train/accuracy=0.987975, train/loss=0.0419844, train/mean_average_precision=0.174006, validation/accuracy=0.985191, validation/loss=0.0513741, validation/mean_average_precision=0.157278, validation/num_examples=43793
- I0605 22:04:53.624129 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 22:05:23.270371 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 22:05:25.595113 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 22:05:28.032475 140206541566592 submission_runner.py:469] Time since start: 1465.54s, Step: 4544, {'train/accuracy': 0.988115111160736, 'train/loss': 0.04073314290036186, 'train/mean_average_precision': 0.20560963202541432, 'validation/accuracy': 0.9854182041670625, 'validation/loss': 0.050101660870848344, 'validation/mean_average_precision': 0.17307191954549914, 'validation/num_examples': 43793, 'test/accuracy': 0.9845282556348478, 'test/loss': 0.05279329207450597, 'test/mean_average_precision': 0.17287243665771912, 'test/num_examples': 43793, 'score': 1208.2064571380615, 'total_duration': 1465.5380177497864, 'accumulated_submission_time': 1208.2064571380615, 'accumulated_eval_time': 250.54839181900024, 'accumulated_logging_time': 0.1561717987060547}
- I0605 22:05:28.045099 140159513261824 logging_writer.py:48] [4544] accumulated_eval_time=250.548, accumulated_logging_time=0.156172, accumulated_submission_time=1208.21, global_step=4544, preemption_count=0, score=1208.21, test/accuracy=0.984528, test/loss=0.0527933, test/mean_average_precision=0.172872, test/num_examples=43793, total_duration=1465.54, train/accuracy=0.988115, train/loss=0.0407331, train/mean_average_precision=0.20561, validation/accuracy=0.985418, validation/loss=0.0501017, validation/mean_average_precision=0.173072, validation/num_examples=43793
- I0605 22:09:28.665737 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 22:09:58.459216 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 22:10:00.908166 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 22:10:03.408453 140206541566592 submission_runner.py:469] Time since start: 1740.91s, Step: 5458, {'train/accuracy': 0.9884641716336489, 'train/loss': 0.0394263024640572, 'train/mean_average_precision': 0.2214475080514221, 'validation/accuracy': 0.9856439071954612, 'validation/loss': 0.04900826911351482, 'validation/mean_average_precision': 0.18697227619744636, 'validation/num_examples': 43793, 'test/accuracy': 0.9847771816936997, 'test/loss': 0.05161484199513183, 'test/mean_average_precision': 0.1874613019717409, 'test/num_examples': 43793, 'score': 1447.595309972763, 'total_duration': 1740.9140267372131, 'accumulated_submission_time': 1447.595309972763, 'accumulated_eval_time': 285.2910010814667, 'accumulated_logging_time': 0.17986011505126953}
- I0605 22:10:03.420285 140159630677760 logging_writer.py:48] [5458] accumulated_eval_time=285.291, accumulated_logging_time=0.17986, accumulated_submission_time=1447.6, global_step=5458, preemption_count=0, score=1447.6, test/accuracy=0.984777, test/loss=0.0516148, test/mean_average_precision=0.187461, test/num_examples=43793, total_duration=1740.91, train/accuracy=0.988464, train/loss=0.0394263, train/mean_average_precision=0.221448, validation/accuracy=0.985644, validation/loss=0.0490083, validation/mean_average_precision=0.186972, validation/num_examples=43793
- I0605 22:14:04.008106 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 22:14:34.221749 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 22:14:36.495209 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 22:14:38.882772 140206541566592 submission_runner.py:469] Time since start: 2016.39s, Step: 6368, {'train/accuracy': 0.9888835496826034, 'train/loss': 0.03811229359292624, 'train/mean_average_precision': 0.2431977395941909, 'validation/accuracy': 0.9858525607145205, 'validation/loss': 0.04810503203075082, 'validation/mean_average_precision': 0.20216918724889832, 'validation/num_examples': 43793, 'test/accuracy': 0.9849907273990091, 'test/loss': 0.05067532118200707, 'test/mean_average_precision': 0.2010166675714519, 'test/num_examples': 43793, 'score': 1686.9271593093872, 'total_duration': 2016.3883547782898, 'accumulated_submission_time': 1686.9271593093872, 'accumulated_eval_time': 320.1658613681793, 'accumulated_logging_time': 0.2037489414215088}
- I0605 22:14:38.894670 140159513261824 logging_writer.py:48] [6368] accumulated_eval_time=320.166, accumulated_logging_time=0.203749, accumulated_submission_time=1686.93, global_step=6368, preemption_count=0, score=1686.93, test/accuracy=0.984991, test/loss=0.0506753, test/mean_average_precision=0.201017, test/num_examples=43793, total_duration=2016.39, train/accuracy=0.988884, train/loss=0.0381123, train/mean_average_precision=0.243198, validation/accuracy=0.985853, validation/loss=0.048105, validation/mean_average_precision=0.202169, validation/num_examples=43793
- I0605 22:18:39.505685 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 22:19:09.481040 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 22:19:11.835303 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 22:19:14.370511 140206541566592 submission_runner.py:469] Time since start: 2291.88s, Step: 7287, {'train/accuracy': 0.9891792048766057, 'train/loss': 0.03690697681165463, 'train/mean_average_precision': 0.2827011422888971, 'validation/accuracy': 0.9860733924545366, 'validation/loss': 0.04729029002027268, 'validation/mean_average_precision': 0.21619626092819227, 'validation/num_examples': 43793, 'test/accuracy': 0.9851566781049104, 'test/loss': 0.049899816211699186, 'test/mean_average_precision': 0.21196895358981632, 'test/num_examples': 43793, 'score': 1926.3120086193085, 'total_duration': 2291.87606215477, 'accumulated_submission_time': 1926.3120086193085, 'accumulated_eval_time': 355.0306644439697, 'accumulated_logging_time': 0.22652864456176758}
- I0605 22:19:14.382106 140159630677760 logging_writer.py:48] [7287] accumulated_eval_time=355.031, accumulated_logging_time=0.226529, accumulated_submission_time=1926.31, global_step=7287, preemption_count=0, score=1926.31, test/accuracy=0.985157, test/loss=0.0498998, test/mean_average_precision=0.211969, test/num_examples=43793, total_duration=2291.88, train/accuracy=0.989179, train/loss=0.036907, train/mean_average_precision=0.282701, validation/accuracy=0.986073, validation/loss=0.0472903, validation/mean_average_precision=0.216196, validation/num_examples=43793
- I0605 22:23:14.939334 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 22:23:45.097196 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 22:23:47.481503 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 22:23:50.038079 140206541566592 submission_runner.py:469] Time since start: 2567.54s, Step: 8209, {'train/accuracy': 0.9895124087729301, 'train/loss': 0.035788877355866056, 'train/mean_average_precision': 0.28230390216710727, 'validation/accuracy': 0.9862296796234818, 'validation/loss': 0.0466140784445895, 'validation/mean_average_precision': 0.22780603918726502, 'validation/num_examples': 43793, 'test/accuracy': 0.9853276831470319, 'test/loss': 0.04924081763997037, 'test/mean_average_precision': 0.22294419473239152, 'test/num_examples': 43793, 'score': 2165.6236696243286, 'total_duration': 2567.543551683426, 'accumulated_submission_time': 2165.6236696243286, 'accumulated_eval_time': 390.12936544418335, 'accumulated_logging_time': 0.24913430213928223}
- I0605 22:23:50.049961 140159513261824 logging_writer.py:48] [8209] accumulated_eval_time=390.129, accumulated_logging_time=0.249134, accumulated_submission_time=2165.62, global_step=8209, preemption_count=0, score=2165.62, test/accuracy=0.985328, test/loss=0.0492408, test/mean_average_precision=0.222944, test/num_examples=43793, total_duration=2567.54, train/accuracy=0.989512, train/loss=0.0357889, train/mean_average_precision=0.282304, validation/accuracy=0.98623, validation/loss=0.0466141, validation/mean_average_precision=0.227806, validation/num_examples=43793
- I0605 22:27:50.619583 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 22:28:20.911055 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 22:28:23.371788 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 22:28:25.904047 140206541566592 submission_runner.py:469] Time since start: 2843.41s, Step: 9125, {'train/accuracy': 0.9896322264420424, 'train/loss': 0.035185323509710015, 'train/mean_average_precision': 0.314140397545438, 'validation/accuracy': 0.9863563331214323, 'validation/loss': 0.04610260902146371, 'validation/mean_average_precision': 0.23634763131809192, 'validation/num_examples': 43793, 'test/accuracy': 0.9854822615964374, 'test/loss': 0.048707729954397254, 'test/mean_average_precision': 0.23116805238734756, 'test/num_examples': 43793, 'score': 2404.9517436027527, 'total_duration': 2843.409616470337, 'accumulated_submission_time': 2404.9517436027527, 'accumulated_eval_time': 425.41396856307983, 'accumulated_logging_time': 0.27196192741394043}
- I0605 22:28:25.916159 140159630677760 logging_writer.py:48] [9125] accumulated_eval_time=425.414, accumulated_logging_time=0.271962, accumulated_submission_time=2404.95, global_step=9125, preemption_count=0, score=2404.95, test/accuracy=0.985482, test/loss=0.0487077, test/mean_average_precision=0.231168, test/num_examples=43793, total_duration=2843.41, train/accuracy=0.989632, train/loss=0.0351853, train/mean_average_precision=0.31414, validation/accuracy=0.986356, validation/loss=0.0461026, validation/mean_average_precision=0.236348, validation/num_examples=43793
- I0605 22:32:26.490807 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 22:32:56.897090 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 22:32:59.392972 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 22:33:01.932400 140206541566592 submission_runner.py:469] Time since start: 3119.44s, Step: 10037, {'train/accuracy': 0.989865099883788, 'train/loss': 0.03417648492505538, 'train/mean_average_precision': 0.34122646946519486, 'validation/accuracy': 0.9864614717623591, 'validation/loss': 0.04571230655403436, 'validation/mean_average_precision': 0.2409976172140284, 'validation/num_examples': 43793, 'test/accuracy': 0.9856208346478117, 'test/loss': 0.048302830238745785, 'test/mean_average_precision': 0.23866705916049347, 'test/num_examples': 43793, 'score': 2644.287879705429, 'total_duration': 3119.437887430191, 'accumulated_submission_time': 2644.287879705429, 'accumulated_eval_time': 460.8554883003235, 'accumulated_logging_time': 0.2950148582458496}
- I0605 22:33:01.946323 140159513261824 logging_writer.py:48] [10037] accumulated_eval_time=460.855, accumulated_logging_time=0.295015, accumulated_submission_time=2644.29, global_step=10037, preemption_count=0, score=2644.29, test/accuracy=0.985621, test/loss=0.0483028, test/mean_average_precision=0.238667, test/num_examples=43793, total_duration=3119.44, train/accuracy=0.989865, train/loss=0.0341765, train/mean_average_precision=0.341226, validation/accuracy=0.986461, validation/loss=0.0457123, validation/mean_average_precision=0.240998, validation/num_examples=43793
- I0605 22:37:02.694463 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 22:37:33.553227 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 22:37:35.943207 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 22:37:38.364780 140206541566592 submission_runner.py:469] Time since start: 3395.87s, Step: 10937, {'train/accuracy': 0.9900276390405431, 'train/loss': 0.03363330110483381, 'train/mean_average_precision': 0.35886476044755355, 'validation/accuracy': 0.9865731054544628, 'validation/loss': 0.045422645665730566, 'validation/mean_average_precision': 0.24390431210719507, 'validation/num_examples': 43793, 'test/accuracy': 0.9857202365934785, 'test/loss': 0.04802692797655125, 'test/mean_average_precision': 0.24356935670676236, 'test/num_examples': 43793, 'score': 2883.7634630203247, 'total_duration': 3395.8703184127808, 'accumulated_submission_time': 2883.7634630203247, 'accumulated_eval_time': 496.5256667137146, 'accumulated_logging_time': 0.31999945640563965}
- I0605 22:37:38.376707 140159630677760 logging_writer.py:48] [10937] accumulated_eval_time=496.526, accumulated_logging_time=0.319999, accumulated_submission_time=2883.76, global_step=10937, preemption_count=0, score=2883.76, test/accuracy=0.98572, test/loss=0.0480269, test/mean_average_precision=0.243569, test/num_examples=43793, total_duration=3395.87, train/accuracy=0.990028, train/loss=0.0336333, train/mean_average_precision=0.358865, validation/accuracy=0.986573, validation/loss=0.0454226, validation/mean_average_precision=0.243904, validation/num_examples=43793
- I0605 22:41:39.093713 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 22:42:09.275288 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 22:42:11.721524 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 22:42:14.175299 140206541566592 submission_runner.py:469] Time since start: 3671.68s, Step: 11850, {'train/accuracy': 0.9904030800929371, 'train/loss': 0.032375967380599016, 'train/mean_average_precision': 0.3713264503189626, 'validation/accuracy': 0.9867078777663844, 'validation/loss': 0.04513779898039875, 'validation/mean_average_precision': 0.24741498888661106, 'validation/num_examples': 43793, 'test/accuracy': 0.9857989999995788, 'test/loss': 0.047761831990494476, 'test/mean_average_precision': 0.24795659329216024, 'test/num_examples': 43793, 'score': 3123.2585492134094, 'total_duration': 3671.6808309555054, 'accumulated_submission_time': 3123.2585492134094, 'accumulated_eval_time': 531.6070852279663, 'accumulated_logging_time': 0.34432554244995117}
- I0605 22:42:14.187629 140159513261824 logging_writer.py:48] [11850] accumulated_eval_time=531.607, accumulated_logging_time=0.344326, accumulated_submission_time=3123.26, global_step=11850, preemption_count=0, score=3123.26, test/accuracy=0.985799, test/loss=0.0477618, test/mean_average_precision=0.247957, test/num_examples=43793, total_duration=3671.68, train/accuracy=0.990403, train/loss=0.032376, train/mean_average_precision=0.371326, validation/accuracy=0.986708, validation/loss=0.0451378, validation/mean_average_precision=0.247415, validation/num_examples=43793
- I0605 22:46:14.740194 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 22:46:45.261592 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 22:46:47.647310 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 22:46:50.059598 140206541566592 submission_runner.py:469] Time since start: 3947.57s, Step: 12757, {'train/accuracy': 0.9906971846717189, 'train/loss': 0.03143831733234139, 'train/mean_average_precision': 0.3880912178424202, 'validation/accuracy': 0.9867643035234841, 'validation/loss': 0.044921508701947784, 'validation/mean_average_precision': 0.25112313571109884, 'validation/num_examples': 43793, 'test/accuracy': 0.9858912416356, 'test/loss': 0.04756825354572216, 'test/mean_average_precision': 0.2518388757864706, 'test/num_examples': 43793, 'score': 3362.600525856018, 'total_duration': 3947.565145254135, 'accumulated_submission_time': 3362.600525856018, 'accumulated_eval_time': 566.9263648986816, 'accumulated_logging_time': 0.36762285232543945}
- I0605 22:46:50.071693 140159630677760 logging_writer.py:48] [12757] accumulated_eval_time=566.926, accumulated_logging_time=0.367623, accumulated_submission_time=3362.6, global_step=12757, preemption_count=0, score=3362.6, test/accuracy=0.985891, test/loss=0.0475683, test/mean_average_precision=0.251839, test/num_examples=43793, total_duration=3947.57, train/accuracy=0.990697, train/loss=0.0314383, train/mean_average_precision=0.388091, validation/accuracy=0.986764, validation/loss=0.0449215, validation/mean_average_precision=0.251123, validation/num_examples=43793
- I0605 22:50:50.602522 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 22:51:20.736195 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 22:51:23.172898 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 22:51:25.623900 140206541566592 submission_runner.py:469] Time since start: 4223.13s, Step: 13667, {'train/accuracy': 0.9908064178581146, 'train/loss': 0.031106822679832308, 'train/mean_average_precision': 0.40308190199129657, 'validation/accuracy': 0.9868341253236362, 'validation/loss': 0.044751124607962774, 'validation/mean_average_precision': 0.2543841996417803, 'validation/num_examples': 43793, 'test/accuracy': 0.9859780077407159, 'test/loss': 0.04739616261105324, 'test/mean_average_precision': 0.2582237351994987, 'test/num_examples': 43793, 'score': 3601.9156806468964, 'total_duration': 4223.129507780075, 'accumulated_submission_time': 3601.9156806468964, 'accumulated_eval_time': 601.9476544857025, 'accumulated_logging_time': 0.39289426803588867}
- I0605 22:51:25.636026 140159513261824 logging_writer.py:48] [13667] accumulated_eval_time=601.948, accumulated_logging_time=0.392894, accumulated_submission_time=3601.92, global_step=13667, preemption_count=0, score=3601.92, test/accuracy=0.985978, test/loss=0.0473962, test/mean_average_precision=0.258224, test/num_examples=43793, total_duration=4223.13, train/accuracy=0.990806, train/loss=0.0311068, train/mean_average_precision=0.403082, validation/accuracy=0.986834, validation/loss=0.0447511, validation/mean_average_precision=0.254384, validation/num_examples=43793
- I0605 22:55:26.197944 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 22:55:56.524410 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 22:55:58.973257 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 22:56:01.423302 140206541566592 submission_runner.py:469] Time since start: 4498.93s, Step: 14582, {'train/accuracy': 0.9910017785967316, 'train/loss': 0.030296972690410852, 'train/mean_average_precision': 0.4192689310267741, 'validation/accuracy': 0.9868828382074633, 'validation/loss': 0.044635510794166146, 'validation/mean_average_precision': 0.25617875895009296, 'validation/num_examples': 43793, 'test/accuracy': 0.9860399233594151, 'test/loss': 0.04728132782888039, 'test/mean_average_precision': 0.2619333258901303, 'test/num_examples': 43793, 'score': 3841.241468667984, 'total_duration': 4498.92883515358, 'accumulated_submission_time': 3841.241468667984, 'accumulated_eval_time': 637.1728610992432, 'accumulated_logging_time': 0.41543030738830566}
- I0605 22:56:01.435550 140159630677760 logging_writer.py:48] [14582] accumulated_eval_time=637.173, accumulated_logging_time=0.41543, accumulated_submission_time=3841.24, global_step=14582, preemption_count=0, score=3841.24, test/accuracy=0.98604, test/loss=0.0472813, test/mean_average_precision=0.261933, test/num_examples=43793, total_duration=4498.93, train/accuracy=0.991002, train/loss=0.030297, train/mean_average_precision=0.419269, validation/accuracy=0.986883, validation/loss=0.0446355, validation/mean_average_precision=0.256179, validation/num_examples=43793
- I0605 23:00:02.011968 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 23:00:32.410017 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 23:00:34.874189 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 23:00:37.329072 140206541566592 submission_runner.py:469] Time since start: 4774.83s, Step: 15486, {'train/accuracy': 0.9910635079196393, 'train/loss': 0.0300505129987845, 'train/mean_average_precision': 0.41855093291242995, 'validation/accuracy': 0.9868690362237122, 'validation/loss': 0.04465052742860112, 'validation/mean_average_precision': 0.2567822049015745, 'validation/num_examples': 43793, 'test/accuracy': 0.9860651950405168, 'test/loss': 0.04731451994441072, 'test/mean_average_precision': 0.2591340860132876, 'test/num_examples': 43793, 'score': 4080.605883359909, 'total_duration': 4774.834667921066, 'accumulated_submission_time': 4080.605883359909, 'accumulated_eval_time': 672.4898743629456, 'accumulated_logging_time': 0.43826937675476074}
- I0605 23:00:37.341002 140159513261824 logging_writer.py:48] [15486] accumulated_eval_time=672.49, accumulated_logging_time=0.438269, accumulated_submission_time=4080.61, global_step=15486, preemption_count=0, score=4080.61, test/accuracy=0.986065, test/loss=0.0473145, test/mean_average_precision=0.259134, test/num_examples=43793, total_duration=4774.83, train/accuracy=0.991064, train/loss=0.0300505, train/mean_average_precision=0.418551, validation/accuracy=0.986869, validation/loss=0.0446505, validation/mean_average_precision=0.256782, validation/num_examples=43793
- I0605 23:04:37.992451 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 23:05:07.960309 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 23:05:10.357159 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 23:05:12.786864 140206541566592 submission_runner.py:469] Time since start: 5050.29s, Step: 16404, {'train/accuracy': 0.9911666266276546, 'train/loss': 0.029667278515892535, 'train/mean_average_precision': 0.44568383980824444, 'validation/accuracy': 0.9868410263155117, 'validation/loss': 0.044823600879714084, 'validation/mean_average_precision': 0.2601742198547765, 'validation/num_examples': 43793, 'test/accuracy': 0.9860550863680762, 'test/loss': 0.04748075034990749, 'test/mean_average_precision': 0.25852091458358784, 'test/num_examples': 43793, 'score': 4320.050471305847, 'total_duration': 5050.292399644852, 'accumulated_submission_time': 4320.050471305847, 'accumulated_eval_time': 707.2841956615448, 'accumulated_logging_time': 0.46062302589416504}
- I0605 23:05:12.799417 140159630677760 logging_writer.py:48] [16404] accumulated_eval_time=707.284, accumulated_logging_time=0.460623, accumulated_submission_time=4320.05, global_step=16404, preemption_count=0, score=4320.05, test/accuracy=0.986055, test/loss=0.0474808, test/mean_average_precision=0.258521, test/num_examples=43793, total_duration=5050.29, train/accuracy=0.991167, train/loss=0.0296673, train/mean_average_precision=0.445684, validation/accuracy=0.986841, validation/loss=0.0448236, validation/mean_average_precision=0.260174, validation/num_examples=43793
- I0605 23:09:13.352592 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 23:09:43.109705 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 23:09:45.523474 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 23:09:47.975932 140206541566592 submission_runner.py:469] Time since start: 5325.48s, Step: 17319, {'train/accuracy': 0.9914202092458955, 'train/loss': 0.028898587186446285, 'train/mean_average_precision': 0.4497590228960248, 'validation/accuracy': 0.9868698481051094, 'validation/loss': 0.04488496452484235, 'validation/mean_average_precision': 0.2607189226653791, 'validation/num_examples': 43793, 'test/accuracy': 0.986081621633233, 'test/loss': 0.04753425194665654, 'test/mean_average_precision': 0.2587980441248242, 'test/num_examples': 43793, 'score': 4559.381223917007, 'total_duration': 5325.481420755386, 'accumulated_submission_time': 4559.381223917007, 'accumulated_eval_time': 741.9073550701141, 'accumulated_logging_time': 0.4832913875579834}
- I0605 23:09:47.988408 140159513261824 logging_writer.py:48] [17319] accumulated_eval_time=741.907, accumulated_logging_time=0.483291, accumulated_submission_time=4559.38, global_step=17319, preemption_count=0, score=4559.38, test/accuracy=0.986082, test/loss=0.0475343, test/mean_average_precision=0.258798, test/num_examples=43793, total_duration=5325.48, train/accuracy=0.99142, train/loss=0.0288986, train/mean_average_precision=0.449759, validation/accuracy=0.98687, validation/loss=0.044885, validation/mean_average_precision=0.260719, validation/num_examples=43793
- I0605 23:13:48.533288 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 23:14:18.556011 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 23:14:20.944454 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 23:14:23.345668 140206541566592 submission_runner.py:469] Time since start: 5600.85s, Step: 18233, {'train/accuracy': 0.9913886505299813, 'train/loss': 0.028763286341455467, 'train/mean_average_precision': 0.4576594157542204, 'validation/accuracy': 0.9868657886981238, 'validation/loss': 0.045060521191322284, 'validation/mean_average_precision': 0.2605578340179095, 'validation/num_examples': 43793, 'test/accuracy': 0.986082885217288, 'test/loss': 0.047721321617311775, 'test/mean_average_precision': 0.25731959779494995, 'test/num_examples': 43793, 'score': 4798.7270612716675, 'total_duration': 5600.85126543045, 'accumulated_submission_time': 4798.7270612716675, 'accumulated_eval_time': 776.7196938991547, 'accumulated_logging_time': 0.507072925567627}
- I0605 23:14:23.358316 140159630677760 logging_writer.py:48] [18233] accumulated_eval_time=776.72, accumulated_logging_time=0.507073, accumulated_submission_time=4798.73, global_step=18233, preemption_count=0, score=4798.73, test/accuracy=0.986083, test/loss=0.0477213, test/mean_average_precision=0.25732, test/num_examples=43793, total_duration=5600.85, train/accuracy=0.991389, train/loss=0.0287633, train/mean_average_precision=0.457659, validation/accuracy=0.986866, validation/loss=0.0450605, validation/mean_average_precision=0.260558, validation/num_examples=43793
- I0605 23:18:23.981101 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 23:18:53.648892 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 23:18:56.055882 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 23:18:58.516973 140206541566592 submission_runner.py:469] Time since start: 5876.02s, Step: 19153, {'train/accuracy': 0.991357835827663, 'train/loss': 0.028554834337491907, 'train/mean_average_precision': 0.4698251917578294, 'validation/accuracy': 0.986884056029559, 'validation/loss': 0.04519286737328764, 'validation/mean_average_precision': 0.2620335385719013, 'validation/num_examples': 43793, 'test/accuracy': 0.9860719341554772, 'test/loss': 0.04785858172587892, 'test/mean_average_precision': 0.25568615931881655, 'test/num_examples': 43793, 'score': 5038.144383907318, 'total_duration': 5876.022454500198, 'accumulated_submission_time': 5038.144383907318, 'accumulated_eval_time': 811.255402803421, 'accumulated_logging_time': 0.5297536849975586}
- I0605 23:18:58.529653 140159513261824 logging_writer.py:48] [19153] accumulated_eval_time=811.255, accumulated_logging_time=0.529754, accumulated_submission_time=5038.14, global_step=19153, preemption_count=0, score=5038.14, test/accuracy=0.986072, test/loss=0.0478586, test/mean_average_precision=0.255686, test/num_examples=43793, total_duration=5876.02, train/accuracy=0.991358, train/loss=0.0285548, train/mean_average_precision=0.469825, validation/accuracy=0.986884, validation/loss=0.0451929, validation/mean_average_precision=0.262034, validation/num_examples=43793
- I0605 23:22:58.997235 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 23:23:28.857002 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 23:23:31.290413 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 23:23:33.751463 140206541566592 submission_runner.py:469] Time since start: 6151.26s, Step: 20074, {'train/accuracy': 0.9912297227201009, 'train/loss': 0.028678008335818624, 'train/mean_average_precision': 0.46541085594082504, 'validation/accuracy': 0.9868195114584881, 'validation/loss': 0.04558290027072185, 'validation/mean_average_precision': 0.2638449131435517, 'validation/num_examples': 43793, 'test/accuracy': 0.986039080970045, 'test/loss': 0.04831349831037752, 'test/mean_average_precision': 0.2569341219466754, 'test/num_examples': 43793, 'score': 5277.396889209747, 'total_duration': 6151.257014513016, 'accumulated_submission_time': 5277.396889209747, 'accumulated_eval_time': 846.0095317363739, 'accumulated_logging_time': 0.5527918338775635}
- I0605 23:23:33.764058 140159630677760 logging_writer.py:48] [20074] accumulated_eval_time=846.01, accumulated_logging_time=0.552792, accumulated_submission_time=5277.4, global_step=20074, preemption_count=0, score=5277.4, test/accuracy=0.986039, test/loss=0.0483135, test/mean_average_precision=0.256934, test/num_examples=43793, total_duration=6151.26, train/accuracy=0.99123, train/loss=0.028678, train/mean_average_precision=0.465411, validation/accuracy=0.98682, validation/loss=0.0455829, validation/mean_average_precision=0.263845, validation/num_examples=43793
- I0605 23:27:34.275405 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 23:28:04.222022 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 23:28:06.638330 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 23:28:09.096451 140206541566592 submission_runner.py:469] Time since start: 6426.60s, Step: 20983, {'train/accuracy': 0.9912423538656753, 'train/loss': 0.02858970553844494, 'train/mean_average_precision': 0.47229784768795147, 'validation/accuracy': 0.9868211352212823, 'validation/loss': 0.045647711240376164, 'validation/mean_average_precision': 0.26544775091409106, 'validation/num_examples': 43793, 'test/accuracy': 0.9860028582271326, 'test/loss': 0.04839539435194775, 'test/mean_average_precision': 0.25604010037332015, 'test/num_examples': 43793, 'score': 5516.7090446949005, 'total_duration': 6426.60202050209, 'accumulated_submission_time': 5516.7090446949005, 'accumulated_eval_time': 880.8305199146271, 'accumulated_logging_time': 0.5754847526550293}
- I0605 23:28:09.109385 140159513261824 logging_writer.py:48] [20983] accumulated_eval_time=880.831, accumulated_logging_time=0.575485, accumulated_submission_time=5516.71, global_step=20983, preemption_count=0, score=5516.71, test/accuracy=0.986003, test/loss=0.0483954, test/mean_average_precision=0.25604, test/num_examples=43793, total_duration=6426.6, train/accuracy=0.991242, train/loss=0.0285897, train/mean_average_precision=0.472298, validation/accuracy=0.986821, validation/loss=0.0456477, validation/mean_average_precision=0.265448, validation/num_examples=43793
- I0605 23:32:09.779481 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 23:32:38.786880 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 23:32:41.265414 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 23:32:43.746407 140206541566592 submission_runner.py:469] Time since start: 6701.25s, Step: 21925, {'train/accuracy': 0.9912574718746641, 'train/loss': 0.028489678525902465, 'train/mean_average_precision': 0.4687760065129034, 'validation/accuracy': 0.9867781055072351, 'validation/loss': 0.04560685711476025, 'validation/mean_average_precision': 0.26618073087099775, 'validation/num_examples': 43793, 'test/accuracy': 0.9859687414576453, 'test/loss': 0.04833030990136042, 'test/mean_average_precision': 0.2570975514932258, 'test/num_examples': 43793, 'score': 5756.187577486038, 'total_duration': 6701.251999616623, 'accumulated_submission_time': 5756.187577486038, 'accumulated_eval_time': 914.7973120212555, 'accumulated_logging_time': 0.5986073017120361}
- I0605 23:32:43.758740 140159630677760 logging_writer.py:48] [21925] accumulated_eval_time=914.797, accumulated_logging_time=0.598607, accumulated_submission_time=5756.19, global_step=21925, preemption_count=0, score=5756.19, test/accuracy=0.985969, test/loss=0.0483303, test/mean_average_precision=0.257098, test/num_examples=43793, total_duration=6701.25, train/accuracy=0.991257, train/loss=0.0284897, train/mean_average_precision=0.468776, validation/accuracy=0.986778, validation/loss=0.0456069, validation/mean_average_precision=0.266181, validation/num_examples=43793
- I0605 23:36:44.245711 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 23:37:13.051341 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 23:37:15.539235 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 23:37:18.014754 140206541566592 submission_runner.py:469] Time since start: 6975.52s, Step: 22873, {'train/accuracy': 0.9913276366054111, 'train/loss': 0.0283741058291139, 'train/mean_average_precision': 0.4724600856241391, 'validation/accuracy': 0.9867720163967567, 'validation/loss': 0.045515257230412755, 'validation/mean_average_precision': 0.2672145604043564, 'validation/num_examples': 43793, 'test/accuracy': 0.9859767441566608, 'test/loss': 0.04822133564835972, 'test/mean_average_precision': 0.2583805656681818, 'test/num_examples': 43793, 'score': 5995.44772028923, 'total_duration': 6975.5203449726105, 'accumulated_submission_time': 5995.44772028923, 'accumulated_eval_time': 948.5662040710449, 'accumulated_logging_time': 0.620842456817627}
- I0605 23:37:18.027403 140159513261824 logging_writer.py:48] [22873] accumulated_eval_time=948.566, accumulated_logging_time=0.620842, accumulated_submission_time=5995.45, global_step=22873, preemption_count=0, score=5995.45, test/accuracy=0.985977, test/loss=0.0482213, test/mean_average_precision=0.258381, test/num_examples=43793, total_duration=6975.52, train/accuracy=0.991328, train/loss=0.0283741, train/mean_average_precision=0.47246, validation/accuracy=0.986772, validation/loss=0.0455153, validation/mean_average_precision=0.267215, validation/num_examples=43793
- I0605 23:41:18.545394 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 23:41:47.361901 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 23:41:49.801356 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 23:41:52.282247 140206541566592 submission_runner.py:469] Time since start: 7249.79s, Step: 23818, {'train/accuracy': 0.9912558578620843, 'train/loss': 0.028476817710266417, 'train/mean_average_precision': 0.4740971192589781, 'validation/accuracy': 0.9867850064991106, 'validation/loss': 0.04538062128919459, 'validation/mean_average_precision': 0.2708101972295732, 'validation/num_examples': 43793, 'test/accuracy': 0.9860032794218176, 'test/loss': 0.04813336518969134, 'test/mean_average_precision': 0.26183146575940547, 'test/num_examples': 43793, 'score': 6234.726370334625, 'total_duration': 7249.787814855576, 'accumulated_submission_time': 6234.726370334625, 'accumulated_eval_time': 982.3029341697693, 'accumulated_logging_time': 0.6434557437896729}
- I0605 23:41:52.294861 140159630677760 logging_writer.py:48] [23818] accumulated_eval_time=982.303, accumulated_logging_time=0.643456, accumulated_submission_time=6234.73, global_step=23818, preemption_count=0, score=6234.73, test/accuracy=0.986003, test/loss=0.0481334, test/mean_average_precision=0.261831, test/num_examples=43793, total_duration=7249.79, train/accuracy=0.991256, train/loss=0.0284768, train/mean_average_precision=0.474097, validation/accuracy=0.986785, validation/loss=0.0453806, validation/mean_average_precision=0.27081, validation/num_examples=43793
- I0605 23:45:52.953383 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 23:46:21.720630 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 23:46:24.095839 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 23:46:26.534574 140206541566592 submission_runner.py:469] Time since start: 7524.04s, Step: 24766, {'train/accuracy': 0.9914003628966092, 'train/loss': 0.028109017267630043, 'train/mean_average_precision': 0.4738670667125567, 'validation/accuracy': 0.9868609174097411, 'validation/loss': 0.04486556182801592, 'validation/mean_average_precision': 0.2733954576253504, 'validation/num_examples': 43793, 'test/accuracy': 0.986067722208627, 'test/loss': 0.0475587503406412, 'test/mean_average_precision': 0.2659545676077682, 'test/num_examples': 43793, 'score': 6474.157246589661, 'total_duration': 7524.040155887604, 'accumulated_submission_time': 6474.157246589661, 'accumulated_eval_time': 1015.8840274810791, 'accumulated_logging_time': 0.6663665771484375}
- I0605 23:46:26.547271 140159513261824 logging_writer.py:48] [24766] accumulated_eval_time=1015.88, accumulated_logging_time=0.666367, accumulated_submission_time=6474.16, global_step=24766, preemption_count=0, score=6474.16, test/accuracy=0.986068, test/loss=0.0475588, test/mean_average_precision=0.265955, test/num_examples=43793, total_duration=7524.04, train/accuracy=0.9914, train/loss=0.028109, train/mean_average_precision=0.473867, validation/accuracy=0.986861, validation/loss=0.0448656, validation/mean_average_precision=0.273395, validation/num_examples=43793
- I0605 23:50:27.025815 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 23:50:55.586430 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 23:50:57.999827 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 23:51:00.437485 140206541566592 submission_runner.py:469] Time since start: 7797.94s, Step: 25715, {'train/accuracy': 0.9916488108508787, 'train/loss': 0.027627826667960143, 'train/mean_average_precision': 0.4829614983456372, 'validation/accuracy': 0.9869449471343428, 'validation/loss': 0.044460467896382826, 'validation/mean_average_precision': 0.2752513642193128, 'validation/num_examples': 43793, 'test/accuracy': 0.9861334285794915, 'test/loss': 0.04710141517728716, 'test/mean_average_precision': 0.2699399575535513, 'test/num_examples': 43793, 'score': 6713.432000637054, 'total_duration': 7797.943026542664, 'accumulated_submission_time': 6713.432000637054, 'accumulated_eval_time': 1049.295531988144, 'accumulated_logging_time': 0.6888301372528076}
- I0605 23:51:00.450123 140159630677760 logging_writer.py:48] [25715] accumulated_eval_time=1049.3, accumulated_logging_time=0.68883, accumulated_submission_time=6713.43, global_step=25715, preemption_count=0, score=6713.43, test/accuracy=0.986133, test/loss=0.0471014, test/mean_average_precision=0.26994, test/num_examples=43793, total_duration=7797.94, train/accuracy=0.991649, train/loss=0.0276278, train/mean_average_precision=0.482961, validation/accuracy=0.986945, validation/loss=0.0444605, validation/mean_average_precision=0.275251, validation/num_examples=43793
- I0605 23:55:01.043147 140206541566592 spec.py:321] Evaluating on the training split.
- I0605 23:55:29.876720 140206541566592 spec.py:333] Evaluating on the validation split.
- I0605 23:55:32.334053 140206541566592 spec.py:349] Evaluating on the test split.
- I0605 23:55:34.798547 140206541566592 submission_runner.py:469] Time since start: 8072.30s, Step: 26666, {'train/accuracy': 0.9917092048495199, 'train/loss': 0.027351078620699954, 'train/mean_average_precision': 0.49304085791378227, 'validation/accuracy': 0.9869904124925815, 'validation/loss': 0.04425504921726515, 'validation/mean_average_precision': 0.2765396781358895, 'validation/num_examples': 43793, 'test/accuracy': 0.9861725996851991, 'test/loss': 0.04690270013170758, 'test/mean_average_precision': 0.2742112554969621, 'test/num_examples': 43793, 'score': 6952.805119037628, 'total_duration': 8072.304066419601, 'accumulated_submission_time': 6952.805119037628, 'accumulated_eval_time': 1083.050758600235, 'accumulated_logging_time': 0.7113139629364014}
- I0605 23:55:34.811772 140159513261824 logging_writer.py:48] [26666] accumulated_eval_time=1083.05, accumulated_logging_time=0.711314, accumulated_submission_time=6952.81, global_step=26666, preemption_count=0, score=6952.81, test/accuracy=0.986173, test/loss=0.0469027, test/mean_average_precision=0.274211, test/num_examples=43793, total_duration=8072.3, train/accuracy=0.991709, train/loss=0.0273511, train/mean_average_precision=0.493041, validation/accuracy=0.98699, validation/loss=0.044255, validation/mean_average_precision=0.27654, validation/num_examples=43793
- I0605 23:59:35.379555 140206541566592 spec.py:321] Evaluating on the training split.
- I0606 00:00:04.488383 140206541566592 spec.py:333] Evaluating on the validation split.
- I0606 00:00:06.914477 140206541566592 spec.py:349] Evaluating on the test split.
- I0606 00:00:09.369379 140206541566592 submission_runner.py:469] Time since start: 8346.87s, Step: 27615, {'train/accuracy': 0.9919012873972195, 'train/loss': 0.026918822384694268, 'train/mean_average_precision': 0.4989590719944065, 'validation/accuracy': 0.987066323403212, 'validation/loss': 0.04398719495586207, 'validation/mean_average_precision': 0.2776168834168461, 'validation/num_examples': 43793, 'test/accuracy': 0.9862420968082288, 'test/loss': 0.04661332622075909, 'test/mean_average_precision': 0.27561151094208486, 'test/num_examples': 43793, 'score': 7192.131433010101, 'total_duration': 8346.874897241592, 'accumulated_submission_time': 7192.131433010101, 'accumulated_eval_time': 1117.040397644043, 'accumulated_logging_time': 0.7343757152557373}
- I0606 00:00:09.382542 140159630677760 logging_writer.py:48] [27615] accumulated_eval_time=1117.04, accumulated_logging_time=0.734376, accumulated_submission_time=7192.13, global_step=27615, preemption_count=0, score=7192.13, test/accuracy=0.986242, test/loss=0.0466133, test/mean_average_precision=0.275612, test/num_examples=43793, total_duration=8346.87, train/accuracy=0.991901, train/loss=0.0269188, train/mean_average_precision=0.498959, validation/accuracy=0.987066, validation/loss=0.0439872, validation/mean_average_precision=0.277617, validation/num_examples=43793
- I0606 00:04:10.056925 140206541566592 spec.py:321] Evaluating on the training split.
- I0606 00:04:39.060932 140206541566592 spec.py:333] Evaluating on the validation split.
- I0606 00:04:41.546401 140206541566592 spec.py:349] Evaluating on the test split.
- I0606 00:04:44.026495 140206541566592 submission_runner.py:469] Time since start: 8621.53s, Step: 28566, {'train/accuracy': 0.9919062207620605, 'train/loss': 0.02682081464579075, 'train/mean_average_precision': 0.5092326884244134, 'validation/accuracy': 0.9870025907135382, 'validation/loss': 0.04437587048908547, 'validation/mean_average_precision': 0.27600955737157384, 'validation/num_examples': 43793, 'test/accuracy': 0.986216403932442, 'test/loss': 0.04709180996411842, 'test/mean_average_precision': 0.27152752866874186, 'test/num_examples': 43793, 'score': 7431.579320430756, 'total_duration': 8621.53208398819, 'accumulated_submission_time': 7431.579320430756, 'accumulated_eval_time': 1151.0098872184753, 'accumulated_logging_time': 0.7585985660552979}
- I0606 00:04:44.039678 140159513261824 logging_writer.py:48] [28566] accumulated_eval_time=1151.01, accumulated_logging_time=0.758599, accumulated_submission_time=7431.58, global_step=28566, preemption_count=0, score=7431.58, test/accuracy=0.986216, test/loss=0.0470918, test/mean_average_precision=0.271528, test/num_examples=43793, total_duration=8621.53, train/accuracy=0.991906, train/loss=0.0268208, train/mean_average_precision=0.509233, validation/accuracy=0.987003, validation/loss=0.0443759, validation/mean_average_precision=0.27601, validation/num_examples=43793
- I0606 00:08:44.604856 140206541566592 spec.py:321] Evaluating on the training split.
- I0606 00:09:13.434299 140206541566592 spec.py:333] Evaluating on the validation split.
- I0606 00:09:15.818977 140206541566592 spec.py:349] Evaluating on the test split.
- I0606 00:09:18.295045 140206541566592 submission_runner.py:469] Time since start: 8895.80s, Step: 29516, {'train/accuracy': 0.9919414151798582, 'train/loss': 0.026532870695000238, 'train/mean_average_precision': 0.5193584712177852, 'validation/accuracy': 0.9870553630043509, 'validation/loss': 0.04413085990621146, 'validation/mean_average_precision': 0.27661220148412946, 'validation/num_examples': 43793, 'test/accuracy': 0.9862572598168898, 'test/loss': 0.046783432933591496, 'test/mean_average_precision': 0.2762866142336493, 'test/num_examples': 43793, 'score': 7670.951828718185, 'total_duration': 8895.800637483597, 'accumulated_submission_time': 7670.951828718185, 'accumulated_eval_time': 1184.7000379562378, 'accumulated_logging_time': 0.7817206382751465}
- I0606 00:09:18.308383 140159630677760 logging_writer.py:48] [29516] accumulated_eval_time=1184.7, accumulated_logging_time=0.781721, accumulated_submission_time=7670.95, global_step=29516, preemption_count=0, score=7670.95, test/accuracy=0.986257, test/loss=0.0467834, test/mean_average_precision=0.276287, test/num_examples=43793, total_duration=8895.8, train/accuracy=0.991941, train/loss=0.0265329, train/mean_average_precision=0.519358, validation/accuracy=0.987055, validation/loss=0.0441309, validation/mean_average_precision=0.276612, validation/num_examples=43793
- I0606 00:13:18.997440 140206541566592 spec.py:321] Evaluating on the training split.
- I0606 00:13:47.834757 140206541566592 spec.py:333] Evaluating on the validation split.
- I0606 00:13:50.251464 140206541566592 spec.py:349] Evaluating on the test split.
- I0606 00:13:52.702784 140206541566592 submission_runner.py:469] Time since start: 9170.21s, Step: 30468, {'train/accuracy': 0.9920943194673836, 'train/loss': 0.026274859228352602, 'train/mean_average_precision': 0.5109795240621366, 'validation/accuracy': 0.9871207194568189, 'validation/loss': 0.0439818733270169, 'validation/mean_average_precision': 0.278379634925744, 'validation/num_examples': 43793, 'test/accuracy': 0.9863061184003531, 'test/loss': 0.0465948397227865, 'test/mean_average_precision': 0.2780755648101628, 'test/num_examples': 43793, 'score': 7910.452227830887, 'total_duration': 9170.208403348923, 'accumulated_submission_time': 7910.452227830887, 'accumulated_eval_time': 1218.4053659439087, 'accumulated_logging_time': 0.8051965236663818}
- I0606 00:13:52.715734 140159513261824 logging_writer.py:48] [30468] accumulated_eval_time=1218.41, accumulated_logging_time=0.805197, accumulated_submission_time=7910.45, global_step=30468, preemption_count=0, score=7910.45, test/accuracy=0.986306, test/loss=0.0465948, test/mean_average_precision=0.278076, test/num_examples=43793, total_duration=9170.21, train/accuracy=0.992094, train/loss=0.0262749, train/mean_average_precision=0.51098, validation/accuracy=0.987121, validation/loss=0.0439819, validation/mean_average_precision=0.27838, validation/num_examples=43793
- I0606 00:17:53.309845 140206541566592 spec.py:321] Evaluating on the training split.
- I0606 00:18:21.881352 140206541566592 spec.py:333] Evaluating on the validation split.
- I0606 00:18:24.613676 140206541566592 spec.py:349] Evaluating on the test split.
- I0606 00:18:27.066525 140206541566592 submission_runner.py:469] Time since start: 9444.57s, Step: 31417, {'train/accuracy': 0.9923217284414019, 'train/loss': 0.025744564290858925, 'train/mean_average_precision': 0.5161818174180625, 'validation/accuracy': 0.9871393927289526, 'validation/loss': 0.04391963754366907, 'validation/mean_average_precision': 0.2803604170745514, 'validation/num_examples': 43793, 'test/accuracy': 0.9863318112761399, 'test/loss': 0.0465312821029324, 'test/mean_average_precision': 0.279317550777637, 'test/num_examples': 43793, 'score': 8149.863886833191, 'total_duration': 9444.572100400925, 'accumulated_submission_time': 8149.863886833191, 'accumulated_eval_time': 1252.1619246006012, 'accumulated_logging_time': 0.8281047344207764}
- I0606 00:18:27.080496 140159630677760 logging_writer.py:48] [31417] accumulated_eval_time=1252.16, accumulated_logging_time=0.828105, accumulated_submission_time=8149.86, global_step=31417, preemption_count=0, score=8149.86, test/accuracy=0.986332, test/loss=0.0465313, test/mean_average_precision=0.279318, test/num_examples=43793, total_duration=9444.57, train/accuracy=0.992322, train/loss=0.0257446, train/mean_average_precision=0.516182, validation/accuracy=0.987139, validation/loss=0.0439196, validation/mean_average_precision=0.28036, validation/num_examples=43793
- I0606 00:22:27.713407 140206541566592 spec.py:321] Evaluating on the training split.
- I0606 00:22:56.284168 140206541566592 spec.py:333] Evaluating on the validation split.
- I0606 00:22:58.680942 140206541566592 spec.py:349] Evaluating on the test split.
- I0606 00:23:01.125143 140206541566592 submission_runner.py:469] Time since start: 9718.63s, Step: 32369, {'train/accuracy': 0.9925041523335721, 'train/loss': 0.02526251579264309, 'train/mean_average_precision': 0.5290929132372566, 'validation/accuracy': 0.9871617194673733, 'validation/loss': 0.043908049205289894, 'validation/mean_average_precision': 0.27999327508594885, 'validation/num_examples': 43793, 'test/accuracy': 0.9863124363206286, 'test/loss': 0.04650394064482379, 'test/mean_average_precision': 0.2789805393009878, 'test/num_examples': 43793, 'score': 8389.307892799377, 'total_duration': 9718.630764961243, 'accumulated_submission_time': 8389.307892799377, 'accumulated_eval_time': 1285.5735428333282, 'accumulated_logging_time': 0.8523833751678467}
- I0606 00:23:01.138399 140159513261824 logging_writer.py:48] [32369] accumulated_eval_time=1285.57, accumulated_logging_time=0.852383, accumulated_submission_time=8389.31, global_step=32369, preemption_count=0, score=8389.31, test/accuracy=0.986312, test/loss=0.0465039, test/mean_average_precision=0.278981, test/num_examples=43793, total_duration=9718.63, train/accuracy=0.992504, train/loss=0.0252625, train/mean_average_precision=0.529093, validation/accuracy=0.987162, validation/loss=0.043908, validation/mean_average_precision=0.279993, validation/num_examples=43793
- I0606 00:27:01.693059 140206541566592 spec.py:321] Evaluating on the training split.
- I0606 00:27:30.473422 140206541566592 spec.py:333] Evaluating on the validation split.
- I0606 00:27:32.900552 140206541566592 spec.py:349] Evaluating on the test split.
- I0606 00:27:35.346549 140206541566592 submission_runner.py:469] Time since start: 9992.85s, Step: 33323, {'train/accuracy': 0.992682824267133, 'train/loss': 0.02471512092360922, 'train/mean_average_precision': 0.5532402035936022, 'validation/accuracy': 0.9871523828313065, 'validation/loss': 0.04392542854144695, 'validation/mean_average_precision': 0.28022212757069037, 'validation/num_examples': 43793, 'test/accuracy': 0.9863065395950381, 'test/loss': 0.04651004796775671, 'test/mean_average_precision': 0.278549655915466, 'test/num_examples': 43793, 'score': 8628.653096437454, 'total_duration': 9992.852115869522, 'accumulated_submission_time': 8628.653096437454, 'accumulated_eval_time': 1319.2269492149353, 'accumulated_logging_time': 0.8755114078521729}
- I0606 00:27:35.359569 140159630677760 logging_writer.py:48] [33323] accumulated_eval_time=1319.23, accumulated_logging_time=0.875511, accumulated_submission_time=8628.65, global_step=33323, preemption_count=0, score=8628.65, test/accuracy=0.986307, test/loss=0.04651, test/mean_average_precision=0.27855, test/num_examples=43793, total_duration=9992.85, train/accuracy=0.992683, train/loss=0.0247151, train/mean_average_precision=0.55324, validation/accuracy=0.987152, validation/loss=0.0439254, validation/mean_average_precision=0.280222, validation/num_examples=43793
- I0606 00:31:35.901987 140206541566592 spec.py:321] Evaluating on the training split.
- I0606 00:32:04.821742 140206541566592 spec.py:333] Evaluating on the validation split.
- I0606 00:32:07.219993 140206541566592 spec.py:349] Evaluating on the test split.
- I0606 00:32:09.740759 140206541566592 submission_runner.py:469] Time since start: 10267.25s, Step: 34281, {'train/accuracy': 0.9927955406077692, 'train/loss': 0.02447629044787512, 'train/mean_average_precision': 0.5529152665906756, 'validation/accuracy': 0.9871710561034401, 'validation/loss': 0.04394914118678387, 'validation/mean_average_precision': 0.2813206899829609, 'validation/num_examples': 43793, 'test/accuracy': 0.9863280205239746, 'test/loss': 0.04652034420345556, 'test/mean_average_precision': 0.27793161007741, 'test/num_examples': 43793, 'score': 8867.994435071945, 'total_duration': 10267.246317863464, 'accumulated_submission_time': 8867.994435071945, 'accumulated_eval_time': 1353.0657291412354, 'accumulated_logging_time': 0.9003341197967529}
- I0606 00:32:09.754453 140159513261824 logging_writer.py:48] [34281] accumulated_eval_time=1353.07, accumulated_logging_time=0.900334, accumulated_submission_time=8867.99, global_step=34281, preemption_count=0, score=8867.99, test/accuracy=0.986328, test/loss=0.0465203, test/mean_average_precision=0.277932, test/num_examples=43793, total_duration=10267.2, train/accuracy=0.992796, train/loss=0.0244763, train/mean_average_precision=0.552915, validation/accuracy=0.987171, validation/loss=0.0439491, validation/mean_average_precision=0.281321, validation/num_examples=43793
- I0606 00:32:10.252077 140159630677760 logging_writer.py:48] [34281] global_step=34281, preemption_count=0, score=8867.99
- I0606 00:32:10.418975 140206541566592 submission_runner.py:750] Final ogbg score: 8867.994435071945
Advertisement
Add Comment
Please, Sign In to add comment