Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- =======
- RSA100:
- 2d:x = 74.65595038420704335515876245183644
- x:n = 72.65595038420704335515876245183644
- 2n+x:n-1 = 74.65595038420704335515876245183644
- There are 5424 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 5424 is 73 remainder 95
- 1 minus mantissa = 0.34404961579295664484123754816356
- =======
- d/e = 0.6373989480536014408413135111373245
- 1- = 0.3626010519463985591586864888626755
- d/f = 2.319519025010811280893057203486599
- 1- = 0.680480974989188719106942796513401
- e/d = 1.568876138019459013133798828702072
- 1- = 0.431123861980540986866201171297928
- e/2d = 0.7844380690097295065668994143510358
- 1- = 0.2155619309902704934331005856489642
- e/f = 3.639038050021622561786114406973198
- 1- = 0.360961949978377438213885593026802
- f/d = 0.4311238619805409868662011712979283
- 1- = 0.5688761380194590131337988287020717
- f/2d = 0.2155619309902704934331005856489642
- 1- = 0.7844380690097295065668994143510358
- f/e = 0.2747978961072028816826270222746490
- 1- = 0.7252021038927971183173729777253510
- 2d/f = 4.639038050021622561786114406973198
- 1- = 0.360961949978377438213885593026802
- 2(2d/f) = 9.278076100043245123572228813946396
- 1- = 0.721923899956754876427771186053604
- 2d/e = 1.274797896107202881682627022274649
- 1- = 0.725202103892797118317372977725351
- 2(2d/e) = 2.549595792214405763365254044549298
- 1- = 0.450404207785594236634745955450702
- =======
- RSA110:
- 2d:x = 87.71828422997211118486842582700584
- x:n = 85.71828422997211118486842582700584
- 2n+x:n-1 = 87.71828422997211118486842582700584
- There are 7519 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 7519 is 86 remainder 123
- 1 minus mantissa = 0.28171577002788881513157417299416
- =======
- d/e = 0.8250585506406653401213425904031948
- 1- = 0.1749414493593346598786574095968052
- d/f = 1.269092212794492794929837354068418
- 1- = 0.730907787205507205070162645931582
- e/d = 1.212035193409596277228087329994672
- 1- = 0.787964806590403722771912670005328
- e/2d = 0.6060175967047981386140436649973359
- 1- = 0.3939824032952018613859563350026641
- e/f = 1.538184425588985589859674708136836
- 1- = 0.461815574411014410140325291863164
- f/d = 0.7879648065904037227719126700053281
- 1- = 0.2120351934095962772280873299946719
- f/2d = 0.3939824032952018613859563350026641
- 1- = 0.6060175967047981386140436649973359
- f/e = 0.6501171012813306802426851808063897
- 1- = 0.3498828987186693197573148191936103
- 2d/f = 2.538184425588985589859674708136836
- 1- = 0.461815574411014410140325291863164
- 2(2d/f) = 5.076368851177971179719349416273672
- 1- = 0.923631148822028820280650583726328
- 2d/e = 1.650117101281330680242685180806390
- 1- = 0.349882898718669319757314819193610
- 2(2d/e) = 3.300234202562661360485370361612780
- 1- = 0.699765797437338639514629638387220
- =======
- RSA120:
- 2d:x = 6.393599179428234482464031290033635
- x:n = 4.393599179428234482464031290033635
- 2n+x:n-1 = 6.393599179428234482464031290033635
- There are 28 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 28 is 5 remainder 3
- 1 minus mantissa = 0.606400820571765517535968709966365
- =======
- d/e = 1.721309623347003886408763737159343
- 1- = 0.278690376652996113591236262840657
- d/f = 0.7046982969927593008102067233832824
- 1- = 0.2953017030072406991897932766167176
- e/d = 0.5809530060347585990838818387209206
- 1- = 0.4190469939652414009161181612790794
- e/2d = 0.2904765030173792995419409193604603
- 1- = 0.7095234969826207004580590806395397
- e/f = 0.4093965939855186016204134467665648
- 1- = 0.5906034060144813983795865532334352
- f/d = 1.419046993965241400916118161279079
- 1- = 0.580953006034758599083881838720921
- f/2d = 0.7095234969826207004580590806395397
- 1- = 0.2904765030173792995419409193604603
- f/e = 2.442619246694007772817527474318686
- 1- = 0.557380753305992227182472525681314
- 2d/f = 1.409396593985518601620413446766565
- 1- = 0.590603406014481398379586553233435
- 2(2d/f) = 2.818793187971037203240826893533130
- 1- = 0.181206812028962796759173106466870
- 2d/e = 3.442619246694007772817527474318686
- 1- = 0.557380753305992227182472525681314
- 2(2d/e) = 6.885238493388015545635054948637372
- 1- = 0.114761506611984454364945051362628
- =======
- RSA129:
- 2d:x = 2.968998682157233147947741325309702
- x:n = 0.9689986821572331479477413253097020
- 2n+x:n-1 = 2.968998682157233147947741325309702
- There are 2 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 2 is 1 remainder 1
- 1 minus mantissa = 0.031001317842766852052258674690298
- =======
- d/e = 1.056025136113372087871188231241341
- 1- = 0.943974863886627912128811768758659
- d/f = 0.9496199609742564700812129690872040
- 1- = 0.0503800390257435299187870309127960
- e/d = 0.9469471566561675324991555190904342
- 1- = 0.0530528433438324675008444809095658
- e/2d = 0.4734735783280837662495777595452171
- 1- = 0.5265264216719162337504222404547829
- e/f = 0.8992399219485129401624259381744079
- 1- = 0.1007600780514870598375740618255921
- f/d = 1.053052843343832467500844480909566
- 1- = 0.946947156656167532499155519090434
- f/2d = 0.5265264216719162337504222404547829
- 1- = 0.4734735783280837662495777595452171
- f/e = 1.112050272226744175742376462482683
- 1- = 0.887949727773255824257623537517317
- 2d/f = 1.899239921948512940162425938174408
- 1- = 0.100760078051487059837574061825592
- 2(2d/f) = 3.798479843897025880324851876348816
- 1- = 0.201520156102974119675148123651184
- 2d/e = 2.112050272226744175742376462482683
- 1- = 0.887949727773255824257623537517317
- 2(2d/e) = 4.224100544453488351484752924965366
- 1- = 0.775899455546511648515247075034634
- =======
- RSA130:
- 2d:x = 30.10833514070698491634062416635868
- x:n = 28.10833514070698491634062416635868
- 2n+x:n-1 = 30.10833514070698491634062416635868
- There are 846 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 846 is 29 remainder 5
- 1 minus mantissa = 0.89166485929301508365937583364132
- =======
- d/e = 1.285798967989270995650524839665065
- 1- = 0.714201032010729004349475160334935
- d/f = 0.8181475290553110095494668641120798
- 1- = 0.1818524709446889904505331358879202
- e/d = 0.7777265536025412578930487923545170
- 1- = 0.2222734463974587421069512076454830
- e/2d = 0.3888632768012706289465243961772585
- 1- = 0.6111367231987293710534756038227415
- e/f = 0.6362950581106220190989337282241596
- 1- = 0.3637049418893779809010662717758404
- f/d = 1.222273446397458742106951207645483
- 1- = 0.777726553602541257893048792354517
- f/2d = 0.6111367231987293710534756038227415
- 1- = 0.3888632768012706289465243961772585
- f/e = 1.571597935978541991301049679330130
- 1- = 0.428402064021458008698950320669870
- 2d/f = 1.636295058110622019098933728224160
- 1- = 0.363704941889377980901066271775840
- 2(2d/f) = 3.272590116221244038197867456448320
- 1- = 0.727409883778755961802132543551680
- 2d/e = 2.571597935978541991301049679330130
- 1- = 0.428402064021458008698950320669870
- 2(2d/e) = 5.143195871957083982602099358660260
- 1- = 0.856804128042916017397900641339740
- =======
- RSA140:
- 2d:x = 7.592672210391104757863218211120029
- x:n = 5.592672210391104757863218211120029
- 2n+x:n-1 = 7.592672210391104757863218211120029
- There are 42 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 42 is 6 remainder 6
- 1 minus mantissa = 0.407327789608895242136781788879971
- =======
- d/e = 0.6391984713591626818883095633770757
- 1- = 0.3608015286408373181116904366229243
- d/f = 2.295996734439310013657630684090929
- 1- = 0.704003265560689986342369315909071
- e/d = 1.564459310851675360483419737159041
- 1- = 0.435540689148324639516580262840959
- e/2d = 0.7822296554258376802417098685795205
- 1- = 0.2177703445741623197582901314204795
- e/f = 3.591993468878620027315261368181859
- 1- = 0.408006531121379972684738631818141
- f/d = 0.4355406891483246395165802628409589
- 1- = 0.5644593108516753604834197371590411
- f/2d = 0.2177703445741623197582901314204795
- 1- = 0.7822296554258376802417098685795205
- f/e = 0.2783969427183253637766191267541515
- 1- = 0.7216030572816746362233808732458485
- 2d/f = 4.591993468878620027315261368181859
- 1- = 0.408006531121379972684738631818141
- 2(2d/f) = 9.183986937757240054630522736363718
- 1- = 0.816013062242759945369477263636282
- 2d/e = 1.278396942718325363776619126754151
- 1- = 0.721603057281674636223380873245849
- 2(2d/e) = 2.556793885436650727553238253508302
- 1- = 0.443206114563349272446761746491698
- =======
- RSA150:
- 2d:x = 17.19542052635704850967127246023011
- x:n = 15.19542052635704850967127246023011
- 2n+x:n-1 = 17.19542052635704850967127246023011
- There are 261 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 261 is 16 remainder 5
- 1 minus mantissa = 0.80457947364295149032872753976989
- =======
- d/e = 0.9697989841155734208501160636922395
- 1- = 0.0302010158844265791498839363077605
- d/f = 1.032142487431387191650173279596165
- 1- = 0.967857512568612808349826720403835
- e/d = 1.031141521468976345084763471518156
- 1- = 0.968858478531023654915236528481844
- e/2d = 0.5155707607344881725423817357590780
- 1- = 0.4844292392655118274576182642409220
- e/f = 1.064284974862774383300346559192329
- 1- = 0.935715025137225616699653440807671
- f/d = 0.9688584785310236549152365284818440
- 1- = 0.0311415214689763450847634715181560
- f/2d = 0.4844292392655118274576182642409220
- 1- = 0.5155707607344881725423817357590780
- f/e = 0.9395979682311468417002321273844791
- 1- = 0.0604020317688531582997678726155209
- 2d/f = 2.064284974862774383300346559192329
- 1- = 0.935715025137225616699653440807671
- 2(2d/f) = 4.128569949725548766600693118384658
- 1- = 0.871430050274451233399306881615342
- 2d/e = 1.939597968231146841700232127384479
- 1- = 0.060402031768853158299767872615521
- 2(2d/e) = 3.879195936462293683400464254768958
- 1- = 0.120804063537706316599535745231042
- =======
- RSA155:
- 2d:x = 106.5649947783911171395756696228569
- x:n = 104.5649947783911171395756696228569
- 2n+x:n-1 = 106.5649947783911171395756696228569
- There are 11142 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 11142 is 105 remainder 117
- 1 minus mantissa = 0.4350052216088828604243303771431
- =======
- d/e = 1.907348950198242870095430484140659
- 1- = 0.092651049801757129904569515859341
- d/f = 0.6776389572499303341037163040300827
- 1- = 0.3223610427500696658962836959699173
- e/d = 0.5242879127576858232567112056216641
- 1- = 0.4757120872423141767432887943783359
- e/2d = 0.2621439563788429116283556028108320
- 1- = 0.7378560436211570883716443971891680
- e/f = 0.3552779144998606682074326080601654
- 1- = 0.6447220855001393317925673919398346
- f/d = 1.475712087242314176743288794378336
- 1- = 0.524287912757685823256711205621664
- f/2d = 0.7378560436211570883716443971891680
- 1- = 0.2621439563788429116283556028108320
- f/e = 2.814697900396485740190860968281319
- 1- = 0.185302099603514259809139031718681
- 2d/f = 1.355277914499860668207432608060165
- 1- = 0.644722085500139331792567391939835
- 2(2d/f) = 2.710555828999721336414865216120330
- 1- = 0.289444171000278663585134783879670
- 2d/e = 3.814697900396485740190860968281319
- 1- = 0.185302099603514259809139031718681
- 2(2d/e) = 7.629395800792971480381721936562638
- 1- = 0.370604199207028519618278063437362
- =======
- RSA160:
- 2d:x = 95.69007204442871152317997558207965
- x:n = 93.69007204442871152317997558207965
- 2n+x:n-1 = 95.69007204442871152317997558207965
- There are 8965 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 8965 is 94 remainder 129
- 1 minus mantissa = 0.30992795557128847682002441792035
- =======
- d/e = 1.218032220977864054821630306605744
- 1- = 0.781967779022135945178369693394256
- d/f = 0.8481737903899818946100161430079616
- 1- = 0.1518262096100181053899838569920384
- e/d = 0.8209963437561423344785457249753473
- 1- = 0.1790036562438576655214542750246527
- e/2d = 0.4104981718780711672392728624876736
- 1- = 0.5895018281219288327607271375123264
- e/f = 0.6963475807799637892200322860159232
- 1- = 0.3036524192200362107799677139840768
- f/d = 1.179003656243857665521454275024653
- 1- = 0.820996343756142334478545724975347
- f/2d = 0.5895018281219288327607271375123264
- 1- = 0.4104981718780711672392728624876736
- f/e = 1.436064441955728109643260613211487
- 1- = 0.563935558044271890356739386788513
- 2d/f = 1.696347580779963789220032286015923
- 1- = 0.303652419220036210779967713984077
- 2(2d/f) = 3.392695161559927578440064572031846
- 1- = 0.607304838440072421559935427968154
- 2d/e = 2.436064441955728109643260613211487
- 1- = 0.563935558044271890356739386788513
- 2(2d/e) = 4.872128883911456219286521226422974
- 1- = 0.127871116088543780713478773577026
- =======
- RSA170:
- 2d:x = 6.722902585817816466561975665603805
- x:n = 4.722902585817816466561975665603805
- 2n+x:n-1 = 6.722902585817816466561975665603805
- There are 31 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 31 is 5 remainder 6
- 1 minus mantissa = 0.277097414182183533438024334396195
- =======
- d/e = 0.5725550962102227559130487988028978
- 1- = 0.4274449037897772440869512011971022
- d/f = 3.945657342602708671297553171284495
- 1- = 0.054342657397291328702446828715505
- e/d = 1.746556805832418990327556560482882
- 1- = 0.253443194167581009672443439517118
- e/2d = 0.8732784029162094951637782802414412
- 1- = 0.1267215970837905048362217197585588
- e/f = 6.891314685205417342595106342568990
- 1- = 0.108685314794582657404893657431010
- f/d = 0.2534431941675810096724434395171175
- 1- = 0.7465568058324189903275565604828825
- f/2d = 0.1267215970837905048362217197585588
- 1- = 0.8732784029162094951637782802414412
- f/e = 0.1451101924204455118260975976057956
- 1- = 0.8548898075795544881739024023942044
- 2d/f = 7.891314685205417342595106342568990
- 1- = 0.108685314794582657404893657431010
- 2(2d/f) = 15.782629370410834685190212685137980
- 1- = 0.217370629589165314809787314862020
- 2d/e = 1.145110192420445511826097597605796
- 1- = 0.854889807579554488173902402394204
- 2(2d/e) = 2.290220384840891023652195195211592
- 1- = 0.709779615159108976347804804788408
- =======
- RSA576:
- 2d:x = 24.27380732382727994219616565677995
- x:n = 22.27380732382727994219616565677995
- 2n+x:n-1 = 24.27380732382727994219616565677995
- There are 540 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 540 is 23 remainder 11
- 1 minus mantissa = 0.72619267617272005780383434322005
- =======
- d/e = 1.234394784587381993787335329026890
- 1- = 0.765605215412618006212664670973110
- d/f = 0.8404163608548254057905504432340063
- 1- = 0.1595836391451745942094495567659937
- e/d = 0.8101135977614061756701929210434024
- 1- = 0.1898864022385938243298070789565976
- e/2d = 0.4050567988807030878350964605217012
- 1- = 0.5949432011192969121649035394782988
- e/f = 0.6808327217096508115811008864680126
- 1- = 0.3191672782903491884188991135319874
- f/d = 1.189886402238593824329807078956598
- 1- = 0.810113597761406175670192921043402
- f/2d = 0.5949432011192969121649035394782988
- 1- = 0.4050567988807030878350964605217012
- f/e = 1.468789569174763987574670658053780
- 1- = 0.531210430825236012425329341946220
- 2d/f = 1.680832721709650811581100886468013
- 1- = 0.319167278290349188418899113531987
- 2(2d/f) = 3.361665443419301623162201772936026
- 1- = 0.638334556580698376837798227063974
- 2d/e = 2.468789569174763987574670658053780
- 1- = 0.531210430825236012425329341946220
- 2(2d/e) = 4.937579138349527975149341316107560
- 1- = 0.062420861650472024850658683892440
- =======
- RSA180:
- 2d:x = 24.00601596312181283444925224468292
- x:n = 22.00601596312181283444925224468292
- 2n+x:n-1 = 24.00601596312181283444925224468292
- There are 528 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 528 is 22 remainder 44
- 1 minus mantissa = -0.00601596312181283444925224468292
- =======
- d/e = 0.7874106642972113478975844045901841
- 1- = 0.2125893357027886521024155954098159
- d/f = 1.369835503881912389451500334559200
- 1- = 0.630164496118087610548499665440800
- e/d = 1.269985339724261018352655608892226
- 1- = 0.730014660275738981647344391107774
- e/2d = 0.6349926698621305091763278044461130
- 1- = 0.3650073301378694908236721955538870
- e/f = 1.739671007763824778903000669118400
- 1- = 0.260328992236175221096999330881600
- f/d = 0.7300146602757389816473443911077740
- 1- = 0.2699853397242610183526556088922260
- f/2d = 0.3650073301378694908236721955538870
- 1- = 0.6349926698621305091763278044461130
- f/e = 0.5748213285944226957951688091803682
- 1- = 0.4251786714055773042048311908196318
- 2d/f = 2.739671007763824778903000669118400
- 1- = 0.260328992236175221096999330881600
- 2(2d/f) = 5.479342015527649557806001338236800
- 1- = 0.520657984472350442193998661763200
- 2d/e = 1.574821328594422695795168809180368
- 1- = 0.425178671405577304204831190819632
- 2(2d/e) = 3.149642657188845391590337618360736
- 1- = 0.850357342811154608409662381639264
- =======
- RSA190:
- 2d:x = 7.301393618066239940206543880379731
- x:n = 5.301393618066239940206543880379731
- 2n+x:n-1 = 7.301393618066239940206543880379731
- There are 38 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 38 is 6 remainder 2
- 1 minus mantissa = 0.698606381933760059793456119620269
- =======
- d/e = 3.058270641357174348955377685539593
- 1- = 0.941729358642825651044622314460407
- d/f = 0.5977222643916102048710026757583028
- 1- = 0.4022777356083897951289973242416972
- e/d = 0.3269821795615276787058889166349901
- 1- = 0.6730178204384723212941110833650099
- e/2d = 0.1634910897807638393529444583174951
- 1- = 0.8365089102192361606470555416825049
- e/f = 0.1954445287832204097420053515166056
- 1- = 0.8045554712167795902579946484833944
- f/d = 1.673017820438472321294111083365010
- 1- = 0.326982179561527678705888916634990
- f/2d = 0.8365089102192361606470555416825049
- 1- = 0.1634910897807638393529444583174951
- f/e = 5.116541282714348697910755371079185
- 1- = 0.883458717285651302089244628920815
- 2d/f = 1.195444528783220409742005351516606
- 1- = 0.804555471216779590257994648483394
- 2(2d/f) = 2.390889057566440819484010703033212
- 1- = 0.609110942433559180515989296966788
- 2d/e = 6.116541282714348697910755371079185
- 1- = 0.883458717285651302089244628920815
- 2(2d/e) = 12.233082565428697395821510742158370
- 1- = 0.766917434571302604178489257841630
- =======
- RSA640:
- 2d:x = 27.53205750858878507762153939647767
- x:n = 25.53205750858878507762153939647767
- 2n+x:n-1 = 27.53205750858878507762153939647767
- There are 702 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 702 is 26 remainder 26
- 1 minus mantissa = 0.46794249141121492237846060352233
- =======
- d/e = 2.274155514986659982366025191522225
- 1- = 0.725844485013340017633974808477775
- d/f = 0.6409121116430877087199198639347804
- 1- = 0.3590878883569122912800801360652196
- e/d = 0.4397236659542458429708162186410098
- 1- = 0.5602763340457541570291837813589902
- e/2d = 0.2198618329771229214854081093205049
- 1- = 0.7801381670228770785145918906794951
- e/f = 0.2818242232861754174398397278695608
- 1- = 0.7181757767138245825601602721304392
- f/d = 1.560276334045754157029183781358990
- 1- = 0.439723665954245842970816218641010
- f/2d = 0.7801381670228770785145918906794951
- 1- = 0.2198618329771229214854081093205049
- f/e = 3.548311029973319964732050383044449
- 1- = 0.451688970026680035267949616955551
- 2d/f = 1.281824223286175417439839727869561
- 1- = 0.718175776713824582560160272130439
- 2(2d/f) = 2.563648446572350834879679455739122
- 1- = 0.436351553427649165120320544260878
- 2d/e = 4.548311029973319964732050383044449
- 1- = 0.451688970026680035267949616955551
- 2(2d/e) = 9.096622059946639929464100766088898
- 1- = 0.903377940053360070535899233911102
- =======
- RSA200:
- 2d:x = 6.016817848969399227174763962472299
- x:n = 4.016817848969399227174763962472299
- 2n+x:n-1 = 6.016817848969399227174763962472299
- There are 24 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 24 is 4 remainder 8
- 1 minus mantissa = -0.016817848969399227174763962472299
- =======
- d/e = 1.788998886259271433667693223943876
- 1- = 0.211001113740728566332306776056124
- d/f = 0.6939489650960913039618957553834327
- 1- = 0.3060510349039086960381042446165673
- e/d = 0.5589718404414224825564722739301867
- 1- = 0.4410281595585775174435277260698133
- e/2d = 0.2794859202207112412782361369650934
- 1- = 0.7205140797792887587217638630349066
- e/f = 0.3878979301921826079237915107668655
- 1- = 0.6121020698078173920762084892331345
- f/d = 1.441028159558577517443527726069813
- 1- = 0.558971840441422482556472273930187
- f/2d = 0.7205140797792887587217638630349066
- 1- = 0.2794859202207112412782361369650934
- f/e = 2.577997772518542867335386447887751
- 1- = 0.422002227481457132664613552112249
- 2d/f = 1.387897930192182607923791510766865
- 1- = 0.612102069807817392076208489233135
- 2(2d/f) = 2.775795860384365215847583021533730
- 1- = 0.224204139615634784152416978466270
- 2d/e = 3.577997772518542867335386447887751
- 1- = 0.422002227481457132664613552112249
- 2(2d/e) = 7.155995545037085734670772895775502
- 1- = 0.844004454962914265329227104224498
- =======
- RSA210:
- 2d:x = 16.71211070312445737386664845755151
- x:n = 14.71211070312445737386664845755151
- 2n+x:n-1 = 16.71211070312445737386664845755151
- There are 245 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 245 is 15 remainder 20
- 1 minus mantissa = 0.28788929687554262613335154244849
- =======
- d/e = 2.603818370920805460278829338288300
- 1- = 0.396181629079194539721170661711700
- d/f = 0.6188315509815513489421548476619397
- 1- = 0.3811684490184486510578451523380603
- e/d = 0.3840513651673651130767433682584713
- 1- = 0.6159486348326348869232566317415287
- e/2d = 0.1920256825836825565383716841292356
- 1- = 0.8079743174163174434616283158707644
- e/f = 0.2376631019631026978843096953238793
- 1- = 0.7623368980368973021156903046761207
- f/d = 1.615948634832634886923256631741529
- 1- = 0.384051365167365113076743368258471
- f/2d = 0.8079743174163174434616283158707644
- 1- = 0.1920256825836825565383716841292356
- f/e = 4.207636741841610920557658676576601
- 1- = 0.792363258158389079442341323423399
- 2d/f = 1.237663101963102697884309695323879
- 1- = 0.762336898036897302115690304676121
- 2(2d/f) = 2.475326203926205395768619390647758
- 1- = 0.524673796073794604231380609352242
- 2d/e = 5.207636741841610920557658676576601
- 1- = 0.792363258158389079442341323423399
- 2(2d/e) = 10.415273483683221841115317353153202
- 1- = 0.584726516316778158884682646846798
- =======
- RSA704:
- 2d:x = 37.35819303042291323005855588778036
- x:n = 35.35819303042291323005855588778036
- 2n+x:n-1 = 37.35819303042291323005855588778036
- There are 1320 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 1320 is 36 remainder 24
- 1 minus mantissa = 0.64180696957708676994144411221964
- =======
- d/e = 0.5516753663775525634337986633659519
- 1- = 0.4483246336224474365662013366340481
- d/f = 5.337895065386480599665404424560047
- 1- = 0.662104934613519400334595575439953
- e/d = 1.812660236338385791066710638009127
- 1- = 0.187339763661614208933289361990873
- e/2d = 0.9063301181691928955333553190045635
- 1- = 0.0936698818308071044666446809954365
- e/f = 9.675790130772961199330808849120094
- 1- = 0.324209869227038800669191150879906
- f/d = 0.1873397636616142089332893619908730
- 1- = 0.8126602363383857910667106380091270
- f/2d = 0.09366988183080710446664468099543650
- 1- = 0.90633011816919289553335531900456350
- f/e = 0.1033507327551051268675973267319038
- 1- = 0.8966492672448948731324026732680962
- 2d/f = 10.67579013077296119933080884912009
- 1- = 0.32420986922703880066919115087991
- 2(2d/f) = 21.35158026154592239866161769824018
- 1- = 0.64841973845407760133838230175982
- 2d/e = 1.103350732755105126867597326731904
- 1- = 0.896649267244894873132402673268096
- 2(2d/e) = 2.206701465510210253735194653463808
- 1- = 0.793298534489789746264805346536192
- =======
- RSA220:
- 2d:x = 6.507177023210027255145074503885760
- x:n = 4.507177023210027255145074503885760
- 2n+x:n-1 = 6.507177023210027255145074503885760
- There are 29 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 29 is 5 remainder 4
- 1 minus mantissa = 0.492822976789972744854925496114240
- =======
- d/e = 0.7088489419415996604892592896392827
- 1- = 0.2911510580584003395107407103607173
- d/f = 1.697037426552572107919673148213885
- 1- = 0.302962573447427892080326851786115
- e/d = 1.410737804391598523027923586636903
- 1- = 0.589262195608401476972076413363097
- e/2d = 0.7053689021957992615139617933184513
- 1- = 0.2946310978042007384860382066815487
- e/f = 2.394074853105144215839346296427771
- 1- = 0.605925146894855784160653703572229
- f/d = 0.5892621956084014769720764133630974
- 1- = 0.4107378043915985230279235866369026
- f/2d = 0.2946310978042007384860382066815487
- 1- = 0.7053689021957992615139617933184513
- f/e = 0.4176978838831993209785185792785653
- 1- = 0.5823021161168006790214814207214347
- 2d/f = 3.394074853105144215839346296427771
- 1- = 0.605925146894855784160653703572229
- 2(2d/f) = 6.788149706210288431678692592855542
- 1- = 0.211850293789711568321307407144458
- 2d/e = 1.417697883883199320978518579278565
- 1- = 0.582302116116800679021481420721435
- 2(2d/e) = 2.835395767766398641957037158557130
- 1- = 0.164604232233601358042962841442870
- =======
- RSA230:
- 2d:x = 31.29472270900031331157989221961913
- x:n = 29.29472270900031331157989221961913
- 2n+x:n-1 = 31.29472270900031331157989221961913
- There are 916 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 916 is 30 remainder 16
- 1 minus mantissa = 0.70527729099968668842010778038087
- =======
- d/e = 7.353863512356568628445509040857398
- 1- = 0.646136487643431371554490959142602
- d/f = 0.5364757774282030205201060315265764
- 1- = 0.4635242225717969794798939684734236
- e/d = 0.1359829426150917048268100068020826
- 1- = 0.8640170573849082951731899931979174
- e/2d = 0.06799147130754585241340500340104132
- 1- = 0.93200852869245414758659499659895868
- e/f = 0.07295155485640604104021206305315270
- 1- = 0.92704844514359395895978793694684730
- f/d = 1.864017057384908295173189993197917
- 1- = 0.135982942615091704826810006802083
- f/2d = 0.9320085286924541475865949965989587
- 1- = 0.0679914713075458524134050034010413
- f/e = 13.70772702471313725689101808171480
- 1- = 0.29227297528686274310898191828520
- 2d/f = 1.072951554856406041040212063053153
- 1- = 0.927048445143593958959787936946847
- 2(2d/f) = 2.145903109712812082080424126106306
- 1- = 0.854096890287187917919575873893694
- 2d/e = 14.70772702471313725689101808171480
- 1- = 0.29227297528686274310898191828520
- 2(2d/e) = 29.41545404942627451378203616342960
- 1- = 0.58454595057372548621796383657040
- =======
- RSA232:
- 2d:x = 30.12852470057733793140249034281414
- x:n = 28.12852470057733793140249034281414
- 2n+x:n-1 = 30.12852470057733793140249034281414
- There are 847 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 847 is 29 remainder 6
- 1 minus mantissa = 0.87147529942266206859750965718586
- =======
- d/e = 0.9863902579927104833725295486409785
- 1- = 0.0136097420072895166274704513590215
- d/f = 1.013990557770889281909165436108468
- 1- = 0.986009442229110718090834563891532
- e/d = 1.013797522732011911150528976244041
- 1- = 0.986202477267988088849471023755959
- e/2d = 0.5068987613660059555752644881220206
- 1- = 0.4931012386339940444247355118779794
- e/f = 1.027981115541778563818330872216937
- 1- = 0.972018884458221436181669127783063
- f/d = 0.9862024772679880888494710237559588
- 1- = 0.0137975227320119111505289762440412
- f/2d = 0.4931012386339940444247355118779794
- 1- = 0.5068987613660059555752644881220206
- f/e = 0.9727805159854209667450590972819571
- 1- = 0.0272194840145790332549409027180429
- 2d/f = 2.027981115541778563818330872216937
- 1- = 0.972018884458221436181669127783063
- 2(2d/f) = 4.055962231083557127636661744433874
- 1- = 0.944037768916442872363338255566126
- 2d/e = 1.972780515985420966745059097281957
- 1- = 0.027219484014579033254940902718043
- 2(2d/e) = 3.945561031970841933490118194563914
- 1- = 0.054438968029158066509881805436086
- =======
- RSA768:
- 2d:x = 43.95390266612161886980472722768841
- x:n = 41.95390266612161886980472722768841
- 2n+x:n-1 = 43.95390266612161886980472722768841
- There are 1844 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 1844 is 42 remainder 80
- 1 minus mantissa = 0.04609733387838113019527277231159
- =======
- d/e = 0.7618931738750801038029548062111626
- 1- = 0.2381068261249198961970451937888374
- d/f = 1.454587690472784125350427423613854
- 1- = 0.545412309527215874649572576386146
- e/d = 1.312519962495371900354460333615247
- 1- = 0.687480037504628099645539666384753
- e/2d = 0.6562599812476859501772301668076237
- 1- = 0.3437400187523140498227698331923763
- e/f = 1.909175380945568250700854847227709
- 1- = 0.090824619054431749299145152772291
- f/d = 0.6874800375046280996455396663847526
- 1- = 0.3125199624953719003544603336152474
- f/2d = 0.3437400187523140498227698331923763
- 1- = 0.6562599812476859501772301668076237
- f/e = 0.5237863477501602076059096124223252
- 1- = 0.4762136522498397923940903875776748
- 2d/f = 2.909175380945568250700854847227709
- 1- = 0.090824619054431749299145152772291
- 2(2d/f) = 5.818350761891136501401709694455418
- 1- = 0.181649238108863498598290305544582
- 2d/e = 1.523786347750160207605909612422325
- 1- = 0.476213652249839792394090387577675
- 2(2d/e) = 3.047572695500320415211819224844650
- 1- = 0.952427304499679584788180775155350
- =======
- RSA240:
- 2d:x = 6.513699437555326692057635325994532
- x:n = 4.513699437555326692057635325994532
- 2n+x:n-1 = 6.513699437555326692057635325994532
- There are 29 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 29 is 5 remainder 4
- 1 minus mantissa = 0.486300562444673307942364674005468
- =======
- d/e = 0.7055869991729713985211452235062590
- 1- = 0.2944130008270286014788547764937410
- d/f = 1.716030201353644718691137903802326
- 1- = 0.283969798646355281308862096197674
- e/d = 1.417259673395505140571840326186331
- 1- = 0.582740326604494859428159673813669
- e/2d = 0.7086298366977525702859201630931653
- 1- = 0.2913701633022474297140798369068347
- e/f = 2.432060402707289437382275807604651
- 1- = 0.567939597292710562617724192395349
- f/d = 0.5827403266044948594281596738136695
- 1- = 0.4172596733955051405718403261863305
- f/2d = 0.2913701633022474297140798369068347
- 1- = 0.7086298366977525702859201630931653
- f/e = 0.4111739983459427970422904470125181
- 1- = 0.5888260016540572029577095529874819
- 2d/f = 3.432060402707289437382275807604651
- 1- = 0.567939597292710562617724192395349
- 2(2d/f) = 6.864120805414578874764551615209302
- 1- = 0.135879194585421125235448384790698
- 2d/e = 1.411173998345942797042290447012518
- 1- = 0.588826001654057202957709552987482
- 2(2d/e) = 2.822347996691885594084580894025036
- 1- = 0.177652003308114405915419105974964
- =======
- RSA250:
- 2d:x = 7.177322922093026994658899138985152
- x:n = 5.177322922093026994658899138985152
- 2n+x:n-1 = 7.177322922093026994658899138985152
- There are 37 n-1-base triangles in d(n-1) (with remainder)
- The sqrt of 37 is 6 remainder 1
- 1 minus mantissa = 0.822677077906973005341100861014848
- =======
- d/e = 1.565201919857580945586117486458003
- 1- = 0.434798080142419054413882513541997
- d/f = 0.7346972863449451589373320975723234
- 1- = 0.2653027136550548410626679024276766
- e/d = 0.6388952040711723959764762327002431
- 1- = 0.3611047959288276040235237672997569
- e/2d = 0.3194476020355861979882381163501215
- 1- = 0.6805523979644138020117618836498785
- e/f = 0.4693945726898903178746641951446468
- 1- = 0.5306054273101096821253358048553532
- f/d = 1.361104795928827604023523767299757
- 1- = 0.638895204071172395976476232700243
- f/2d = 0.6805523979644138020117618836498785
- 1- = 0.3194476020355861979882381163501215
- f/e = 2.130403839715161891172234972916006
- 1- = 0.869596160284838108827765027083994
- 2d/f = 1.469394572689890317874664195144647
- 1- = 0.530605427310109682125335804855353
- 2(2d/f) = 2.938789145379780635749328390289294
- 1- = 0.061210854620219364250671609710706
- 2d/e = 3.130403839715161891172234972916006
- 1- = 0.869596160284838108827765027083994
- 2(2d/e) = 6.260807679430323782344469945832012
- 1- = 0.739192320569676217655530054167988
Advertisement
Add Comment
Please, Sign In to add comment