Pastebin
API
tools
faq
paste
Login
Sign up
Please fix the following errors:
New Paste
Syntax Highlighting
======= RSA100: 2d:x = 74.65595038420704335515876245183644 x:n = 72.65595038420704335515876245183644 2n+x:n-1 = 74.65595038420704335515876245183644 There are 5424 n-1-base triangles in d(n-1) (with remainder) The sqrt of 5424 is 73 remainder 95 1 minus mantissa = 0.34404961579295664484123754816356 ======= d/e = 0.6373989480536014408413135111373245 1- = 0.3626010519463985591586864888626755 d/f = 2.319519025010811280893057203486599 1- = 0.680480974989188719106942796513401 e/d = 1.568876138019459013133798828702072 1- = 0.431123861980540986866201171297928 e/2d = 0.7844380690097295065668994143510358 1- = 0.2155619309902704934331005856489642 e/f = 3.639038050021622561786114406973198 1- = 0.360961949978377438213885593026802 f/d = 0.4311238619805409868662011712979283 1- = 0.5688761380194590131337988287020717 f/2d = 0.2155619309902704934331005856489642 1- = 0.7844380690097295065668994143510358 f/e = 0.2747978961072028816826270222746490 1- = 0.7252021038927971183173729777253510 2d/f = 4.639038050021622561786114406973198 1- = 0.360961949978377438213885593026802 2(2d/f) = 9.278076100043245123572228813946396 1- = 0.721923899956754876427771186053604 2d/e = 1.274797896107202881682627022274649 1- = 0.725202103892797118317372977725351 2(2d/e) = 2.549595792214405763365254044549298 1- = 0.450404207785594236634745955450702 ======= RSA110: 2d:x = 87.71828422997211118486842582700584 x:n = 85.71828422997211118486842582700584 2n+x:n-1 = 87.71828422997211118486842582700584 There are 7519 n-1-base triangles in d(n-1) (with remainder) The sqrt of 7519 is 86 remainder 123 1 minus mantissa = 0.28171577002788881513157417299416 ======= d/e = 0.8250585506406653401213425904031948 1- = 0.1749414493593346598786574095968052 d/f = 1.269092212794492794929837354068418 1- = 0.730907787205507205070162645931582 e/d = 1.212035193409596277228087329994672 1- = 0.787964806590403722771912670005328 e/2d = 0.6060175967047981386140436649973359 1- = 0.3939824032952018613859563350026641 e/f = 1.538184425588985589859674708136836 1- = 0.461815574411014410140325291863164 f/d = 0.7879648065904037227719126700053281 1- = 0.2120351934095962772280873299946719 f/2d = 0.3939824032952018613859563350026641 1- = 0.6060175967047981386140436649973359 f/e = 0.6501171012813306802426851808063897 1- = 0.3498828987186693197573148191936103 2d/f = 2.538184425588985589859674708136836 1- = 0.461815574411014410140325291863164 2(2d/f) = 5.076368851177971179719349416273672 1- = 0.923631148822028820280650583726328 2d/e = 1.650117101281330680242685180806390 1- = 0.349882898718669319757314819193610 2(2d/e) = 3.300234202562661360485370361612780 1- = 0.699765797437338639514629638387220 ======= RSA120: 2d:x = 6.393599179428234482464031290033635 x:n = 4.393599179428234482464031290033635 2n+x:n-1 = 6.393599179428234482464031290033635 There are 28 n-1-base triangles in d(n-1) (with remainder) The sqrt of 28 is 5 remainder 3 1 minus mantissa = 0.606400820571765517535968709966365 ======= d/e = 1.721309623347003886408763737159343 1- = 0.278690376652996113591236262840657 d/f = 0.7046982969927593008102067233832824 1- = 0.2953017030072406991897932766167176 e/d = 0.5809530060347585990838818387209206 1- = 0.4190469939652414009161181612790794 e/2d = 0.2904765030173792995419409193604603 1- = 0.7095234969826207004580590806395397 e/f = 0.4093965939855186016204134467665648 1- = 0.5906034060144813983795865532334352 f/d = 1.419046993965241400916118161279079 1- = 0.580953006034758599083881838720921 f/2d = 0.7095234969826207004580590806395397 1- = 0.2904765030173792995419409193604603 f/e = 2.442619246694007772817527474318686 1- = 0.557380753305992227182472525681314 2d/f = 1.409396593985518601620413446766565 1- = 0.590603406014481398379586553233435 2(2d/f) = 2.818793187971037203240826893533130 1- = 0.181206812028962796759173106466870 2d/e = 3.442619246694007772817527474318686 1- = 0.557380753305992227182472525681314 2(2d/e) = 6.885238493388015545635054948637372 1- = 0.114761506611984454364945051362628 ======= RSA129: 2d:x = 2.968998682157233147947741325309702 x:n = 0.9689986821572331479477413253097020 2n+x:n-1 = 2.968998682157233147947741325309702 There are 2 n-1-base triangles in d(n-1) (with remainder) The sqrt of 2 is 1 remainder 1 1 minus mantissa = 0.031001317842766852052258674690298 ======= d/e = 1.056025136113372087871188231241341 1- = 0.943974863886627912128811768758659 d/f = 0.9496199609742564700812129690872040 1- = 0.0503800390257435299187870309127960 e/d = 0.9469471566561675324991555190904342 1- = 0.0530528433438324675008444809095658 e/2d = 0.4734735783280837662495777595452171 1- = 0.5265264216719162337504222404547829 e/f = 0.8992399219485129401624259381744079 1- = 0.1007600780514870598375740618255921 f/d = 1.053052843343832467500844480909566 1- = 0.946947156656167532499155519090434 f/2d = 0.5265264216719162337504222404547829 1- = 0.4734735783280837662495777595452171 f/e = 1.112050272226744175742376462482683 1- = 0.887949727773255824257623537517317 2d/f = 1.899239921948512940162425938174408 1- = 0.100760078051487059837574061825592 2(2d/f) = 3.798479843897025880324851876348816 1- = 0.201520156102974119675148123651184 2d/e = 2.112050272226744175742376462482683 1- = 0.887949727773255824257623537517317 2(2d/e) = 4.224100544453488351484752924965366 1- = 0.775899455546511648515247075034634 ======= RSA130: 2d:x = 30.10833514070698491634062416635868 x:n = 28.10833514070698491634062416635868 2n+x:n-1 = 30.10833514070698491634062416635868 There are 846 n-1-base triangles in d(n-1) (with remainder) The sqrt of 846 is 29 remainder 5 1 minus mantissa = 0.89166485929301508365937583364132 ======= d/e = 1.285798967989270995650524839665065 1- = 0.714201032010729004349475160334935 d/f = 0.8181475290553110095494668641120798 1- = 0.1818524709446889904505331358879202 e/d = 0.7777265536025412578930487923545170 1- = 0.2222734463974587421069512076454830 e/2d = 0.3888632768012706289465243961772585 1- = 0.6111367231987293710534756038227415 e/f = 0.6362950581106220190989337282241596 1- = 0.3637049418893779809010662717758404 f/d = 1.222273446397458742106951207645483 1- = 0.777726553602541257893048792354517 f/2d = 0.6111367231987293710534756038227415 1- = 0.3888632768012706289465243961772585 f/e = 1.571597935978541991301049679330130 1- = 0.428402064021458008698950320669870 2d/f = 1.636295058110622019098933728224160 1- = 0.363704941889377980901066271775840 2(2d/f) = 3.272590116221244038197867456448320 1- = 0.727409883778755961802132543551680 2d/e = 2.571597935978541991301049679330130 1- = 0.428402064021458008698950320669870 2(2d/e) = 5.143195871957083982602099358660260 1- = 0.856804128042916017397900641339740 ======= RSA140: 2d:x = 7.592672210391104757863218211120029 x:n = 5.592672210391104757863218211120029 2n+x:n-1 = 7.592672210391104757863218211120029 There are 42 n-1-base triangles in d(n-1) (with remainder) The sqrt of 42 is 6 remainder 6 1 minus mantissa = 0.407327789608895242136781788879971 ======= d/e = 0.6391984713591626818883095633770757 1- = 0.3608015286408373181116904366229243 d/f = 2.295996734439310013657630684090929 1- = 0.704003265560689986342369315909071 e/d = 1.564459310851675360483419737159041 1- = 0.435540689148324639516580262840959 e/2d = 0.7822296554258376802417098685795205 1- = 0.2177703445741623197582901314204795 e/f = 3.591993468878620027315261368181859 1- = 0.408006531121379972684738631818141 f/d = 0.4355406891483246395165802628409589 1- = 0.5644593108516753604834197371590411 f/2d = 0.2177703445741623197582901314204795 1- = 0.7822296554258376802417098685795205 f/e = 0.2783969427183253637766191267541515 1- = 0.7216030572816746362233808732458485 2d/f = 4.591993468878620027315261368181859 1- = 0.408006531121379972684738631818141 2(2d/f) = 9.183986937757240054630522736363718 1- = 0.816013062242759945369477263636282 2d/e = 1.278396942718325363776619126754151 1- = 0.721603057281674636223380873245849 2(2d/e) = 2.556793885436650727553238253508302 1- = 0.443206114563349272446761746491698 ======= RSA150: 2d:x = 17.19542052635704850967127246023011 x:n = 15.19542052635704850967127246023011 2n+x:n-1 = 17.19542052635704850967127246023011 There are 261 n-1-base triangles in d(n-1) (with remainder) The sqrt of 261 is 16 remainder 5 1 minus mantissa = 0.80457947364295149032872753976989 ======= d/e = 0.9697989841155734208501160636922395 1- = 0.0302010158844265791498839363077605 d/f = 1.032142487431387191650173279596165 1- = 0.967857512568612808349826720403835 e/d = 1.031141521468976345084763471518156 1- = 0.968858478531023654915236528481844 e/2d = 0.5155707607344881725423817357590780 1- = 0.4844292392655118274576182642409220 e/f = 1.064284974862774383300346559192329 1- = 0.935715025137225616699653440807671 f/d = 0.9688584785310236549152365284818440 1- = 0.0311415214689763450847634715181560 f/2d = 0.4844292392655118274576182642409220 1- = 0.5155707607344881725423817357590780 f/e = 0.9395979682311468417002321273844791 1- = 0.0604020317688531582997678726155209 2d/f = 2.064284974862774383300346559192329 1- = 0.935715025137225616699653440807671 2(2d/f) = 4.128569949725548766600693118384658 1- = 0.871430050274451233399306881615342 2d/e = 1.939597968231146841700232127384479 1- = 0.060402031768853158299767872615521 2(2d/e) = 3.879195936462293683400464254768958 1- = 0.120804063537706316599535745231042 ======= RSA155: 2d:x = 106.5649947783911171395756696228569 x:n = 104.5649947783911171395756696228569 2n+x:n-1 = 106.5649947783911171395756696228569 There are 11142 n-1-base triangles in d(n-1) (with remainder) The sqrt of 11142 is 105 remainder 117 1 minus mantissa = 0.4350052216088828604243303771431 ======= d/e = 1.907348950198242870095430484140659 1- = 0.092651049801757129904569515859341 d/f = 0.6776389572499303341037163040300827 1- = 0.3223610427500696658962836959699173 e/d = 0.5242879127576858232567112056216641 1- = 0.4757120872423141767432887943783359 e/2d = 0.2621439563788429116283556028108320 1- = 0.7378560436211570883716443971891680 e/f = 0.3552779144998606682074326080601654 1- = 0.6447220855001393317925673919398346 f/d = 1.475712087242314176743288794378336 1- = 0.524287912757685823256711205621664 f/2d = 0.7378560436211570883716443971891680 1- = 0.2621439563788429116283556028108320 f/e = 2.814697900396485740190860968281319 1- = 0.185302099603514259809139031718681 2d/f = 1.355277914499860668207432608060165 1- = 0.644722085500139331792567391939835 2(2d/f) = 2.710555828999721336414865216120330 1- = 0.289444171000278663585134783879670 2d/e = 3.814697900396485740190860968281319 1- = 0.185302099603514259809139031718681 2(2d/e) = 7.629395800792971480381721936562638 1- = 0.370604199207028519618278063437362 ======= RSA160: 2d:x = 95.69007204442871152317997558207965 x:n = 93.69007204442871152317997558207965 2n+x:n-1 = 95.69007204442871152317997558207965 There are 8965 n-1-base triangles in d(n-1) (with remainder) The sqrt of 8965 is 94 remainder 129 1 minus mantissa = 0.30992795557128847682002441792035 ======= d/e = 1.218032220977864054821630306605744 1- = 0.781967779022135945178369693394256 d/f = 0.8481737903899818946100161430079616 1- = 0.1518262096100181053899838569920384 e/d = 0.8209963437561423344785457249753473 1- = 0.1790036562438576655214542750246527 e/2d = 0.4104981718780711672392728624876736 1- = 0.5895018281219288327607271375123264 e/f = 0.6963475807799637892200322860159232 1- = 0.3036524192200362107799677139840768 f/d = 1.179003656243857665521454275024653 1- = 0.820996343756142334478545724975347 f/2d = 0.5895018281219288327607271375123264 1- = 0.4104981718780711672392728624876736 f/e = 1.436064441955728109643260613211487 1- = 0.563935558044271890356739386788513 2d/f = 1.696347580779963789220032286015923 1- = 0.303652419220036210779967713984077 2(2d/f) = 3.392695161559927578440064572031846 1- = 0.607304838440072421559935427968154 2d/e = 2.436064441955728109643260613211487 1- = 0.563935558044271890356739386788513 2(2d/e) = 4.872128883911456219286521226422974 1- = 0.127871116088543780713478773577026 ======= RSA170: 2d:x = 6.722902585817816466561975665603805 x:n = 4.722902585817816466561975665603805 2n+x:n-1 = 6.722902585817816466561975665603805 There are 31 n-1-base triangles in d(n-1) (with remainder) The sqrt of 31 is 5 remainder 6 1 minus mantissa = 0.277097414182183533438024334396195 ======= d/e = 0.5725550962102227559130487988028978 1- = 0.4274449037897772440869512011971022 d/f = 3.945657342602708671297553171284495 1- = 0.054342657397291328702446828715505 e/d = 1.746556805832418990327556560482882 1- = 0.253443194167581009672443439517118 e/2d = 0.8732784029162094951637782802414412 1- = 0.1267215970837905048362217197585588 e/f = 6.891314685205417342595106342568990 1- = 0.108685314794582657404893657431010 f/d = 0.2534431941675810096724434395171175 1- = 0.7465568058324189903275565604828825 f/2d = 0.1267215970837905048362217197585588 1- = 0.8732784029162094951637782802414412 f/e = 0.1451101924204455118260975976057956 1- = 0.8548898075795544881739024023942044 2d/f = 7.891314685205417342595106342568990 1- = 0.108685314794582657404893657431010 2(2d/f) = 15.782629370410834685190212685137980 1- = 0.217370629589165314809787314862020 2d/e = 1.145110192420445511826097597605796 1- = 0.854889807579554488173902402394204 2(2d/e) = 2.290220384840891023652195195211592 1- = 0.709779615159108976347804804788408 ======= RSA576: 2d:x = 24.27380732382727994219616565677995 x:n = 22.27380732382727994219616565677995 2n+x:n-1 = 24.27380732382727994219616565677995 There are 540 n-1-base triangles in d(n-1) (with remainder) The sqrt of 540 is 23 remainder 11 1 minus mantissa = 0.72619267617272005780383434322005 ======= d/e = 1.234394784587381993787335329026890 1- = 0.765605215412618006212664670973110 d/f = 0.8404163608548254057905504432340063 1- = 0.1595836391451745942094495567659937 e/d = 0.8101135977614061756701929210434024 1- = 0.1898864022385938243298070789565976 e/2d = 0.4050567988807030878350964605217012 1- = 0.5949432011192969121649035394782988 e/f = 0.6808327217096508115811008864680126 1- = 0.3191672782903491884188991135319874 f/d = 1.189886402238593824329807078956598 1- = 0.810113597761406175670192921043402 f/2d = 0.5949432011192969121649035394782988 1- = 0.4050567988807030878350964605217012 f/e = 1.468789569174763987574670658053780 1- = 0.531210430825236012425329341946220 2d/f = 1.680832721709650811581100886468013 1- = 0.319167278290349188418899113531987 2(2d/f) = 3.361665443419301623162201772936026 1- = 0.638334556580698376837798227063974 2d/e = 2.468789569174763987574670658053780 1- = 0.531210430825236012425329341946220 2(2d/e) = 4.937579138349527975149341316107560 1- = 0.062420861650472024850658683892440 ======= RSA180: 2d:x = 24.00601596312181283444925224468292 x:n = 22.00601596312181283444925224468292 2n+x:n-1 = 24.00601596312181283444925224468292 There are 528 n-1-base triangles in d(n-1) (with remainder) The sqrt of 528 is 22 remainder 44 1 minus mantissa = -0.00601596312181283444925224468292 ======= d/e = 0.7874106642972113478975844045901841 1- = 0.2125893357027886521024155954098159 d/f = 1.369835503881912389451500334559200 1- = 0.630164496118087610548499665440800 e/d = 1.269985339724261018352655608892226 1- = 0.730014660275738981647344391107774 e/2d = 0.6349926698621305091763278044461130 1- = 0.3650073301378694908236721955538870 e/f = 1.739671007763824778903000669118400 1- = 0.260328992236175221096999330881600 f/d = 0.7300146602757389816473443911077740 1- = 0.2699853397242610183526556088922260 f/2d = 0.3650073301378694908236721955538870 1- = 0.6349926698621305091763278044461130 f/e = 0.5748213285944226957951688091803682 1- = 0.4251786714055773042048311908196318 2d/f = 2.739671007763824778903000669118400 1- = 0.260328992236175221096999330881600 2(2d/f) = 5.479342015527649557806001338236800 1- = 0.520657984472350442193998661763200 2d/e = 1.574821328594422695795168809180368 1- = 0.425178671405577304204831190819632 2(2d/e) = 3.149642657188845391590337618360736 1- = 0.850357342811154608409662381639264 ======= RSA190: 2d:x = 7.301393618066239940206543880379731 x:n = 5.301393618066239940206543880379731 2n+x:n-1 = 7.301393618066239940206543880379731 There are 38 n-1-base triangles in d(n-1) (with remainder) The sqrt of 38 is 6 remainder 2 1 minus mantissa = 0.698606381933760059793456119620269 ======= d/e = 3.058270641357174348955377685539593 1- = 0.941729358642825651044622314460407 d/f = 0.5977222643916102048710026757583028 1- = 0.4022777356083897951289973242416972 e/d = 0.3269821795615276787058889166349901 1- = 0.6730178204384723212941110833650099 e/2d = 0.1634910897807638393529444583174951 1- = 0.8365089102192361606470555416825049 e/f = 0.1954445287832204097420053515166056 1- = 0.8045554712167795902579946484833944 f/d = 1.673017820438472321294111083365010 1- = 0.326982179561527678705888916634990 f/2d = 0.8365089102192361606470555416825049 1- = 0.1634910897807638393529444583174951 f/e = 5.116541282714348697910755371079185 1- = 0.883458717285651302089244628920815 2d/f = 1.195444528783220409742005351516606 1- = 0.804555471216779590257994648483394 2(2d/f) = 2.390889057566440819484010703033212 1- = 0.609110942433559180515989296966788 2d/e = 6.116541282714348697910755371079185 1- = 0.883458717285651302089244628920815 2(2d/e) = 12.233082565428697395821510742158370 1- = 0.766917434571302604178489257841630 ======= RSA640: 2d:x = 27.53205750858878507762153939647767 x:n = 25.53205750858878507762153939647767 2n+x:n-1 = 27.53205750858878507762153939647767 There are 702 n-1-base triangles in d(n-1) (with remainder) The sqrt of 702 is 26 remainder 26 1 minus mantissa = 0.46794249141121492237846060352233 ======= d/e = 2.274155514986659982366025191522225 1- = 0.725844485013340017633974808477775 d/f = 0.6409121116430877087199198639347804 1- = 0.3590878883569122912800801360652196 e/d = 0.4397236659542458429708162186410098 1- = 0.5602763340457541570291837813589902 e/2d = 0.2198618329771229214854081093205049 1- = 0.7801381670228770785145918906794951 e/f = 0.2818242232861754174398397278695608 1- = 0.7181757767138245825601602721304392 f/d = 1.560276334045754157029183781358990 1- = 0.439723665954245842970816218641010 f/2d = 0.7801381670228770785145918906794951 1- = 0.2198618329771229214854081093205049 f/e = 3.548311029973319964732050383044449 1- = 0.451688970026680035267949616955551 2d/f = 1.281824223286175417439839727869561 1- = 0.718175776713824582560160272130439 2(2d/f) = 2.563648446572350834879679455739122 1- = 0.436351553427649165120320544260878 2d/e = 4.548311029973319964732050383044449 1- = 0.451688970026680035267949616955551 2(2d/e) = 9.096622059946639929464100766088898 1- = 0.903377940053360070535899233911102 ======= RSA200: 2d:x = 6.016817848969399227174763962472299 x:n = 4.016817848969399227174763962472299 2n+x:n-1 = 6.016817848969399227174763962472299 There are 24 n-1-base triangles in d(n-1) (with remainder) The sqrt of 24 is 4 remainder 8 1 minus mantissa = -0.016817848969399227174763962472299 ======= d/e = 1.788998886259271433667693223943876 1- = 0.211001113740728566332306776056124 d/f = 0.6939489650960913039618957553834327 1- = 0.3060510349039086960381042446165673 e/d = 0.5589718404414224825564722739301867 1- = 0.4410281595585775174435277260698133 e/2d = 0.2794859202207112412782361369650934 1- = 0.7205140797792887587217638630349066 e/f = 0.3878979301921826079237915107668655 1- = 0.6121020698078173920762084892331345 f/d = 1.441028159558577517443527726069813 1- = 0.558971840441422482556472273930187 f/2d = 0.7205140797792887587217638630349066 1- = 0.2794859202207112412782361369650934 f/e = 2.577997772518542867335386447887751 1- = 0.422002227481457132664613552112249 2d/f = 1.387897930192182607923791510766865 1- = 0.612102069807817392076208489233135 2(2d/f) = 2.775795860384365215847583021533730 1- = 0.224204139615634784152416978466270 2d/e = 3.577997772518542867335386447887751 1- = 0.422002227481457132664613552112249 2(2d/e) = 7.155995545037085734670772895775502 1- = 0.844004454962914265329227104224498 ======= RSA210: 2d:x = 16.71211070312445737386664845755151 x:n = 14.71211070312445737386664845755151 2n+x:n-1 = 16.71211070312445737386664845755151 There are 245 n-1-base triangles in d(n-1) (with remainder) The sqrt of 245 is 15 remainder 20 1 minus mantissa = 0.28788929687554262613335154244849 ======= d/e = 2.603818370920805460278829338288300 1- = 0.396181629079194539721170661711700 d/f = 0.6188315509815513489421548476619397 1- = 0.3811684490184486510578451523380603 e/d = 0.3840513651673651130767433682584713 1- = 0.6159486348326348869232566317415287 e/2d = 0.1920256825836825565383716841292356 1- = 0.8079743174163174434616283158707644 e/f = 0.2376631019631026978843096953238793 1- = 0.7623368980368973021156903046761207 f/d = 1.615948634832634886923256631741529 1- = 0.384051365167365113076743368258471 f/2d = 0.8079743174163174434616283158707644 1- = 0.1920256825836825565383716841292356 f/e = 4.207636741841610920557658676576601 1- = 0.792363258158389079442341323423399 2d/f = 1.237663101963102697884309695323879 1- = 0.762336898036897302115690304676121 2(2d/f) = 2.475326203926205395768619390647758 1- = 0.524673796073794604231380609352242 2d/e = 5.207636741841610920557658676576601 1- = 0.792363258158389079442341323423399 2(2d/e) = 10.415273483683221841115317353153202 1- = 0.584726516316778158884682646846798 ======= RSA704: 2d:x = 37.35819303042291323005855588778036 x:n = 35.35819303042291323005855588778036 2n+x:n-1 = 37.35819303042291323005855588778036 There are 1320 n-1-base triangles in d(n-1) (with remainder) The sqrt of 1320 is 36 remainder 24 1 minus mantissa = 0.64180696957708676994144411221964 ======= d/e = 0.5516753663775525634337986633659519 1- = 0.4483246336224474365662013366340481 d/f = 5.337895065386480599665404424560047 1- = 0.662104934613519400334595575439953 e/d = 1.812660236338385791066710638009127 1- = 0.187339763661614208933289361990873 e/2d = 0.9063301181691928955333553190045635 1- = 0.0936698818308071044666446809954365 e/f = 9.675790130772961199330808849120094 1- = 0.324209869227038800669191150879906 f/d = 0.1873397636616142089332893619908730 1- = 0.8126602363383857910667106380091270 f/2d = 0.09366988183080710446664468099543650 1- = 0.90633011816919289553335531900456350 f/e = 0.1033507327551051268675973267319038 1- = 0.8966492672448948731324026732680962 2d/f = 10.67579013077296119933080884912009 1- = 0.32420986922703880066919115087991 2(2d/f) = 21.35158026154592239866161769824018 1- = 0.64841973845407760133838230175982 2d/e = 1.103350732755105126867597326731904 1- = 0.896649267244894873132402673268096 2(2d/e) = 2.206701465510210253735194653463808 1- = 0.793298534489789746264805346536192 ======= RSA220: 2d:x = 6.507177023210027255145074503885760 x:n = 4.507177023210027255145074503885760 2n+x:n-1 = 6.507177023210027255145074503885760 There are 29 n-1-base triangles in d(n-1) (with remainder) The sqrt of 29 is 5 remainder 4 1 minus mantissa = 0.492822976789972744854925496114240 ======= d/e = 0.7088489419415996604892592896392827 1- = 0.2911510580584003395107407103607173 d/f = 1.697037426552572107919673148213885 1- = 0.302962573447427892080326851786115 e/d = 1.410737804391598523027923586636903 1- = 0.589262195608401476972076413363097 e/2d = 0.7053689021957992615139617933184513 1- = 0.2946310978042007384860382066815487 e/f = 2.394074853105144215839346296427771 1- = 0.605925146894855784160653703572229 f/d = 0.5892621956084014769720764133630974 1- = 0.4107378043915985230279235866369026 f/2d = 0.2946310978042007384860382066815487 1- = 0.7053689021957992615139617933184513 f/e = 0.4176978838831993209785185792785653 1- = 0.5823021161168006790214814207214347 2d/f = 3.394074853105144215839346296427771 1- = 0.605925146894855784160653703572229 2(2d/f) = 6.788149706210288431678692592855542 1- = 0.211850293789711568321307407144458 2d/e = 1.417697883883199320978518579278565 1- = 0.582302116116800679021481420721435 2(2d/e) = 2.835395767766398641957037158557130 1- = 0.164604232233601358042962841442870 ======= RSA230: 2d:x = 31.29472270900031331157989221961913 x:n = 29.29472270900031331157989221961913 2n+x:n-1 = 31.29472270900031331157989221961913 There are 916 n-1-base triangles in d(n-1) (with remainder) The sqrt of 916 is 30 remainder 16 1 minus mantissa = 0.70527729099968668842010778038087 ======= d/e = 7.353863512356568628445509040857398 1- = 0.646136487643431371554490959142602 d/f = 0.5364757774282030205201060315265764 1- = 0.4635242225717969794798939684734236 e/d = 0.1359829426150917048268100068020826 1- = 0.8640170573849082951731899931979174 e/2d = 0.06799147130754585241340500340104132 1- = 0.93200852869245414758659499659895868 e/f = 0.07295155485640604104021206305315270 1- = 0.92704844514359395895978793694684730 f/d = 1.864017057384908295173189993197917 1- = 0.135982942615091704826810006802083 f/2d = 0.9320085286924541475865949965989587 1- = 0.0679914713075458524134050034010413 f/e = 13.70772702471313725689101808171480 1- = 0.29227297528686274310898191828520 2d/f = 1.072951554856406041040212063053153 1- = 0.927048445143593958959787936946847 2(2d/f) = 2.145903109712812082080424126106306 1- = 0.854096890287187917919575873893694 2d/e = 14.70772702471313725689101808171480 1- = 0.29227297528686274310898191828520 2(2d/e) = 29.41545404942627451378203616342960 1- = 0.58454595057372548621796383657040 ======= RSA232: 2d:x = 30.12852470057733793140249034281414 x:n = 28.12852470057733793140249034281414 2n+x:n-1 = 30.12852470057733793140249034281414 There are 847 n-1-base triangles in d(n-1) (with remainder) The sqrt of 847 is 29 remainder 6 1 minus mantissa = 0.87147529942266206859750965718586 ======= d/e = 0.9863902579927104833725295486409785 1- = 0.0136097420072895166274704513590215 d/f = 1.013990557770889281909165436108468 1- = 0.986009442229110718090834563891532 e/d = 1.013797522732011911150528976244041 1- = 0.986202477267988088849471023755959 e/2d = 0.5068987613660059555752644881220206 1- = 0.4931012386339940444247355118779794 e/f = 1.027981115541778563818330872216937 1- = 0.972018884458221436181669127783063 f/d = 0.9862024772679880888494710237559588 1- = 0.0137975227320119111505289762440412 f/2d = 0.4931012386339940444247355118779794 1- = 0.5068987613660059555752644881220206 f/e = 0.9727805159854209667450590972819571 1- = 0.0272194840145790332549409027180429 2d/f = 2.027981115541778563818330872216937 1- = 0.972018884458221436181669127783063 2(2d/f) = 4.055962231083557127636661744433874 1- = 0.944037768916442872363338255566126 2d/e = 1.972780515985420966745059097281957 1- = 0.027219484014579033254940902718043 2(2d/e) = 3.945561031970841933490118194563914 1- = 0.054438968029158066509881805436086 ======= RSA768: 2d:x = 43.95390266612161886980472722768841 x:n = 41.95390266612161886980472722768841 2n+x:n-1 = 43.95390266612161886980472722768841 There are 1844 n-1-base triangles in d(n-1) (with remainder) The sqrt of 1844 is 42 remainder 80 1 minus mantissa = 0.04609733387838113019527277231159 ======= d/e = 0.7618931738750801038029548062111626 1- = 0.2381068261249198961970451937888374 d/f = 1.454587690472784125350427423613854 1- = 0.545412309527215874649572576386146 e/d = 1.312519962495371900354460333615247 1- = 0.687480037504628099645539666384753 e/2d = 0.6562599812476859501772301668076237 1- = 0.3437400187523140498227698331923763 e/f = 1.909175380945568250700854847227709 1- = 0.090824619054431749299145152772291 f/d = 0.6874800375046280996455396663847526 1- = 0.3125199624953719003544603336152474 f/2d = 0.3437400187523140498227698331923763 1- = 0.6562599812476859501772301668076237 f/e = 0.5237863477501602076059096124223252 1- = 0.4762136522498397923940903875776748 2d/f = 2.909175380945568250700854847227709 1- = 0.090824619054431749299145152772291 2(2d/f) = 5.818350761891136501401709694455418 1- = 0.181649238108863498598290305544582 2d/e = 1.523786347750160207605909612422325 1- = 0.476213652249839792394090387577675 2(2d/e) = 3.047572695500320415211819224844650 1- = 0.952427304499679584788180775155350 ======= RSA240: 2d:x = 6.513699437555326692057635325994532 x:n = 4.513699437555326692057635325994532 2n+x:n-1 = 6.513699437555326692057635325994532 There are 29 n-1-base triangles in d(n-1) (with remainder) The sqrt of 29 is 5 remainder 4 1 minus mantissa = 0.486300562444673307942364674005468 ======= d/e = 0.7055869991729713985211452235062590 1- = 0.2944130008270286014788547764937410 d/f = 1.716030201353644718691137903802326 1- = 0.283969798646355281308862096197674 e/d = 1.417259673395505140571840326186331 1- = 0.582740326604494859428159673813669 e/2d = 0.7086298366977525702859201630931653 1- = 0.2913701633022474297140798369068347 e/f = 2.432060402707289437382275807604651 1- = 0.567939597292710562617724192395349 f/d = 0.5827403266044948594281596738136695 1- = 0.4172596733955051405718403261863305 f/2d = 0.2913701633022474297140798369068347 1- = 0.7086298366977525702859201630931653 f/e = 0.4111739983459427970422904470125181 1- = 0.5888260016540572029577095529874819 2d/f = 3.432060402707289437382275807604651 1- = 0.567939597292710562617724192395349 2(2d/f) = 6.864120805414578874764551615209302 1- = 0.135879194585421125235448384790698 2d/e = 1.411173998345942797042290447012518 1- = 0.588826001654057202957709552987482 2(2d/e) = 2.822347996691885594084580894025036 1- = 0.177652003308114405915419105974964 ======= RSA250: 2d:x = 7.177322922093026994658899138985152 x:n = 5.177322922093026994658899138985152 2n+x:n-1 = 7.177322922093026994658899138985152 There are 37 n-1-base triangles in d(n-1) (with remainder) The sqrt of 37 is 6 remainder 1 1 minus mantissa = 0.822677077906973005341100861014848 ======= d/e = 1.565201919857580945586117486458003 1- = 0.434798080142419054413882513541997 d/f = 0.7346972863449451589373320975723234 1- = 0.2653027136550548410626679024276766 e/d = 0.6388952040711723959764762327002431 1- = 0.3611047959288276040235237672997569 e/2d = 0.3194476020355861979882381163501215 1- = 0.6805523979644138020117618836498785 e/f = 0.4693945726898903178746641951446468 1- = 0.5306054273101096821253358048553532 f/d = 1.361104795928827604023523767299757 1- = 0.638895204071172395976476232700243 f/2d = 0.6805523979644138020117618836498785 1- = 0.3194476020355861979882381163501215 f/e = 2.130403839715161891172234972916006 1- = 0.869596160284838108827765027083994 2d/f = 1.469394572689890317874664195144647 1- = 0.530605427310109682125335804855353 2(2d/f) = 2.938789145379780635749328390289294 1- = 0.061210854620219364250671609710706 2d/e = 3.130403839715161891172234972916006 1- = 0.869596160284838108827765027083994 2(2d/e) = 6.260807679430323782344469945832012 1- = 0.739192320569676217655530054167988
Optional Paste Settings
Category:
None
Cryptocurrency
Cybersecurity
Fixit
Food
Gaming
Haiku
Help
History
Housing
Jokes
Legal
Money
Movies
Music
Pets
Photo
Science
Software
Source Code
Spirit
Sports
Travel
TV
Writing
Tags:
Syntax Highlighting:
None
Bash
C
C#
C++
CSS
HTML
JSON
Java
JavaScript
Lua
Markdown (PRO members only)
Objective C
PHP
Perl
Python
Ruby
Swift
4CS
6502 ACME Cross Assembler
6502 Kick Assembler
6502 TASM/64TASS
ABAP
AIMMS
ALGOL 68
APT Sources
ARM
ASM (NASM)
ASP
ActionScript
ActionScript 3
Ada
Apache Log
AppleScript
Arduino
Asymptote
AutoIt
Autohotkey
Avisynth
Awk
BASCOM AVR
BNF
BOO
Bash
Basic4GL
Batch
BibTeX
Blitz Basic
Blitz3D
BlitzMax
BrainFuck
C
C (WinAPI)
C Intermediate Language
C for Macs
C#
C++
C++ (WinAPI)
C++ (with Qt extensions)
C: Loadrunner
CAD DCL
CAD Lisp
CFDG
CMake
COBOL
CSS
Ceylon
ChaiScript
Chapel
Clojure
Clone C
Clone C++
CoffeeScript
ColdFusion
Cuesheet
D
DCL
DCPU-16
DCS
DIV
DOT
Dart
Delphi
Delphi Prism (Oxygene)
Diff
E
ECMAScript
EPC
Easytrieve
Eiffel
Email
Erlang
Euphoria
F#
FO Language
Falcon
Filemaker
Formula One
Fortran
FreeBasic
FreeSWITCH
GAMBAS
GDB
GDScript
Game Maker
Genero
Genie
GetText
Go
Godot GLSL
Groovy
GwBasic
HQ9 Plus
HTML
HTML 5
Haskell
Haxe
HicEst
IDL
INI file
INTERCAL
IO
ISPF Panel Definition
Icon
Inno Script
J
JCL
JSON
Java
Java 5
JavaScript
Julia
KSP (Kontakt Script)
KiXtart
Kotlin
LDIF
LLVM
LOL Code
LScript
Latex
Liberty BASIC
Linden Scripting
Lisp
Loco Basic
Logtalk
Lotus Formulas
Lotus Script
Lua
M68000 Assembler
MIX Assembler
MK-61/52
MPASM
MXML
MagikSF
Make
MapBasic
Markdown (PRO members only)
MatLab
Mercury
MetaPost
Modula 2
Modula 3
Motorola 68000 HiSoft Dev
MySQL
Nagios
NetRexx
Nginx
Nim
NullSoft Installer
OCaml
OCaml Brief
Oberon 2
Objeck Programming Langua
Objective C
Octave
Open Object Rexx
OpenBSD PACKET FILTER
OpenGL Shading
Openoffice BASIC
Oracle 11
Oracle 8
Oz
PARI/GP
PCRE
PHP
PHP Brief
PL/I
PL/SQL
POV-Ray
ParaSail
Pascal
Pawn
Per
Perl
Perl 6
Phix
Pic 16
Pike
Pixel Bender
PostScript
PostgreSQL
PowerBuilder
PowerShell
ProFTPd
Progress
Prolog
Properties
ProvideX
Puppet
PureBasic
PyCon
Python
Python for S60
QBasic
QML
R
RBScript
REBOL
REG
RPM Spec
Racket
Rails
Rexx
Robots
Roff Manpage
Ruby
Ruby Gnuplot
Rust
SAS
SCL
SPARK
SPARQL
SQF
SQL
SSH Config
Scala
Scheme
Scilab
SdlBasic
Smalltalk
Smarty
StandardML
StoneScript
SuperCollider
Swift
SystemVerilog
T-SQL
TCL
TeXgraph
Tera Term
TypeScript
TypoScript
UPC
Unicon
UnrealScript
Urbi
VB.NET
VBScript
VHDL
VIM
Vala
Vedit
VeriLog
Visual Pro Log
VisualBasic
VisualFoxPro
WHOIS
WhiteSpace
Winbatch
XBasic
XML
XPP
Xojo
Xorg Config
YAML
YARA
Z80 Assembler
ZXBasic
autoconf
jQuery
mIRC
newLISP
q/kdb+
thinBasic
Paste Expiration:
Never
Burn after read
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Exposure:
Public
Unlisted
Private
Folder:
(members only)
Password
NEW
Enabled
Disabled
Burn after read
NEW
Paste Name / Title:
Create New Paste
Hello
Guest
Sign Up
or
Login
Sign in with Facebook
Sign in with Twitter
Sign in with Google
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Public Pastes
✅✅ Earn 18,000$ Monthly Leaked Guide
JavaScript | 1 min ago | 0.67 KB
⭐⭐ Crypto Swap Glitch ✅ Easy money ⭐⭐
JavaScript | 11 min ago | 0.67 KB
⭐⭐ Free Crypto Method ⭐⭐ ✅
JavaScript | 21 min ago | 0.67 KB
Nano_button_led_hc05
C++ | 29 min ago | 1.50 KB
Infinite Money Glitch
JavaScript | 31 min ago | 0.67 KB
🔥🔥🔥 Swapzone Trading Glitch 🔥🔥🔥
JavaScript | 42 min ago | 0.67 KB
⭐⭐ Instant Money Method ⭐⭐ ✅
JavaScript | 52 min ago | 0.67 KB
VanillaAmmoCraftsRecipes.json
JSON | 1 hour ago | 78.72 KB
We use cookies for various purposes including analytics. By continuing to use Pastebin, you agree to our use of cookies as described in the
Cookies Policy
.
OK, I Understand
Not a member of Pastebin yet?
Sign Up
, it unlocks many cool features!