CGC_Codes

NN PSO

Jun 7th, 2017
116
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
C# 1.46 KB | None | 0 0
  1. using System;
  2. using System.Collections.Generic;
  3. using System.Linq;
  4. using System.Text;
  5. using System.Threading.Tasks;
  6. using Encog.Engine.Network.Activation;
  7. using Encog.MathUtil.Randomize;
  8. using Encog.ML.Data;
  9. using Encog.ML.Data.Basic;
  10. using Encog.ML.Train;
  11. using Encog.Neural.Networks;
  12. using Encog.Neural.Networks.Layers;
  13. using Encog.Neural.Networks.Training;
  14. using Encog.Neural.Networks.Training.PSO;
  15. using Encog.Util.Error;
  16.  
  17. namespace QuantSys.MachineLearning.NeuralNetwork
  18. {
  19.     class PSO
  20.     {
  21.         private IMLTrain train;
  22.         private BasicNetwork network;
  23.         public PSO()
  24.         {
  25.             network = new BasicNetwork();
  26.             network.AddLayer(new BasicLayer(5));
  27.             network.AddLayer(new BasicLayer(1));
  28.             network.AddLayer(new BasicLayer(1));
  29.             network.Structure.FinalizeStructure();
  30.             network.Reset();
  31.  
  32.             IMLDataSet dataSet = new BasicMLDataSet();
  33.             dataSet.Add(new BasicMLData(new double[] { 1.0, 4.0, 3.0, 4.0, 5.0}) , new BasicMLData(new double[] { 2.0, 4.0, 6.0 , 8.0, 10} ));
  34.            
  35.             train = new NeuralPSO(network, new RangeRandomizer(0, 10), new TrainingSetScore(dataSet),5);
  36.            
  37.         }
  38.  
  39.         public void Iterate()
  40.         {
  41.             train.Iteration();
  42.         }
  43.  
  44.         public void Compute()
  45.         {
  46.             var output = network.Compute(new BasicMLData(new double[] {0.5, 1, 1.5, 2, 2.5}));
  47.         }
  48.  
  49.  
  50.  
  51.     }
  52. }
Advertisement
Add Comment
Please, Sign In to add comment