Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- using System;
- using System.Collections.Generic;
- using System.Linq;
- using System.Text;
- using System.Threading.Tasks;
- using Encog.Engine.Network.Activation;
- using Encog.MathUtil.Randomize;
- using Encog.ML.Data;
- using Encog.ML.Data.Basic;
- using Encog.ML.Train;
- using Encog.Neural.Networks;
- using Encog.Neural.Networks.Layers;
- using Encog.Neural.Networks.Training;
- using Encog.Neural.Networks.Training.PSO;
- using Encog.Util.Error;
- namespace QuantSys.MachineLearning.NeuralNetwork
- {
- class PSO
- {
- private IMLTrain train;
- private BasicNetwork network;
- public PSO()
- {
- network = new BasicNetwork();
- network.AddLayer(new BasicLayer(5));
- network.AddLayer(new BasicLayer(1));
- network.AddLayer(new BasicLayer(1));
- network.Structure.FinalizeStructure();
- network.Reset();
- IMLDataSet dataSet = new BasicMLDataSet();
- dataSet.Add(new BasicMLData(new double[] { 1.0, 4.0, 3.0, 4.0, 5.0}) , new BasicMLData(new double[] { 2.0, 4.0, 6.0 , 8.0, 10} ));
- train = new NeuralPSO(network, new RangeRandomizer(0, 10), new TrainingSetScore(dataSet),5);
- }
- public void Iterate()
- {
- train.Iteration();
- }
- public void Compute()
- {
- var output = network.Compute(new BasicMLData(new double[] {0.5, 1, 1.5, 2, 2.5}));
- }
- }
- }
Advertisement
Add Comment
Please, Sign In to add comment