Advertisement
max2201111

snad korektni hodnota -1000,999

Aug 10th, 2024
162
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 31.92 KB | Science | 0 0
  1. import chess
  2. from typing import Iterator, Optional, Dict, Tuple
  3. from chess import Move, BB_ALL, Bitboard, PieceType, Color
  4. import time
  5. from collections import deque
  6. import threading
  7.  
  8. # Definice nových figur
  9. AMAZON = 7
  10. CYRIL = 8
  11. EVE = 9
  12.  
  13. # Rozšíření seznamu PIECE_SYMBOLS
  14. chess.PIECE_SYMBOLS.append('a')
  15. chess.PIECE_SYMBOLS.append('c')
  16. chess.PIECE_SYMBOLS.append('e')
  17.  
  18. class CustomBoard(chess.Board):
  19.     def __init__(self, fen=None):
  20.         self.amazons_white = chess.BB_EMPTY
  21.         self.amazons_black = chess.BB_EMPTY
  22.         self.cyrils_white = chess.BB_EMPTY
  23.         self.cyrils_black = chess.BB_EMPTY
  24.         self.eves_white = chess.BB_EMPTY
  25.         self.eves_black = chess.BB_EMPTY
  26.         super().__init__(None)
  27.         if fen:
  28.             self.set_custom_fen(fen)
  29.         self.debug_amazons()
  30.         self.debug_cyrils()
  31.         self.debug_eves()
  32.  
  33.     def clear_square(self, square):
  34.         super()._remove_piece_at(square)
  35.         self.amazons_white &= ~chess.BB_SQUARES[square]
  36.         self.amazons_black &= ~chess.BB_SQUARES[square]
  37.         self.cyrils_white &= ~chess.BB_SQUARES[square]
  38.         self.cyrils_black &= ~chess.BB_SQUARES[square]
  39.         self.eves_white &= ~chess.BB_SQUARES[square]
  40.         self.eves_black &= ~chess.BB_SQUARES[square]
  41.  
  42.     def set_custom_fen(self, fen):
  43.         parts = fen.split()
  44.         board_part = parts[0]
  45.    
  46.         self.clear()
  47.         self.amazons_white = chess.BB_EMPTY
  48.         self.amazons_black = chess.BB_EMPTY
  49.         self.cyrils_white = chess.BB_EMPTY
  50.         self.cyrils_black = chess.BB_EMPTY
  51.         self.eves_white = chess.BB_EMPTY
  52.         self.eves_black = chess.BB_EMPTY
  53.    
  54.         square = 56
  55.         for c in board_part:
  56.             if c == '/':
  57.                 square -= 16
  58.             elif c.isdigit():
  59.                 square += int(c)
  60.             else:
  61.                 color = chess.WHITE if c.isupper() else chess.BLACK
  62.                 if c.upper() == 'A':
  63.                     if color == chess.WHITE:
  64.                         self.amazons_white |= chess.BB_SQUARES[square]
  65.                     else:
  66.                         self.amazons_black |= chess.BB_SQUARES[square]
  67.                     piece_type = AMAZON
  68.                 elif c.upper() == 'C':
  69.                     if color == chess.WHITE:
  70.                         self.cyrils_white |= chess.BB_SQUARES[square]
  71.                     else:
  72.                         self.cyrils_black |= chess.BB_SQUARES[square]
  73.                     piece_type = CYRIL
  74.                 elif c.upper() == 'E':
  75.                     if color == chess.WHITE:
  76.                         self.eves_white |= chess.BB_SQUARES[square]
  77.                     else:
  78.                         self.eves_black |= chess.BB_SQUARES[square]
  79.                     piece_type = EVE
  80.                 elif c == 'P' and chess.square_rank(square) == 7:
  81.                     piece_type = chess.QUEEN
  82.                     color = chess.WHITE
  83.                 elif c == 'p' and chess.square_rank(square) == 0:
  84.                     piece_type = chess.QUEEN
  85.                     color = chess.BLACK
  86.                 else:
  87.                     piece_type = chess.PIECE_SYMBOLS.index(c.lower())
  88.                
  89.                 self._set_piece_at(square, piece_type, color)
  90.                 square += 1
  91.    
  92.         self.turn = chess.WHITE if parts[1] == 'w' else chess.BLACK
  93.         self.castling_rights = chess.BB_EMPTY
  94.         if '-' not in parts[2]:
  95.             if 'K' in parts[2]: self.castling_rights |= chess.BB_H1
  96.             if 'Q' in parts[2]: self.castling_rights |= chess.BB_A1
  97.             if 'k' in parts[2]: self.castling_rights |= chess.BB_H8
  98.             if 'q' in parts[2]: self.castling_rights |= chess.BB_A8
  99.         self.ep_square = chess.parse_square(parts[3]) if parts[3] != '-' else None
  100.            
  101.  
  102.     def _set_piece_at(self, square: chess.Square, piece_type: PieceType, color: Color) -> None:
  103.         self.clear_square(square)
  104.         super()._set_piece_at(square, piece_type, color)
  105.         if piece_type == AMAZON:
  106.             if color == chess.WHITE:
  107.                 self.amazons_white |= chess.BB_SQUARES[square]
  108.             else:
  109.                 self.amazons_black |= chess.BB_SQUARES[square]
  110.         elif piece_type == CYRIL:
  111.             if color == chess.WHITE:
  112.                 self.cyrils_white |= chess.BB_SQUARES[square]
  113.             else:
  114.                 self.cyrils_black |= chess.BB_SQUARES[square]
  115.         elif piece_type == EVE:
  116.             if color == chess.WHITE:
  117.                 self.eves_white |= chess.BB_SQUARES[square]
  118.             else:
  119.                 self.eves_black |= chess.BB_SQUARES[square]
  120.  
  121.     def piece_at(self, square: chess.Square) -> Optional[chess.Piece]:
  122.         if self.amazons_white & chess.BB_SQUARES[square]:
  123.             return chess.Piece(AMAZON, chess.WHITE)
  124.         elif self.amazons_black & chess.BB_SQUARES[square]:
  125.             return chess.Piece(AMAZON, chess.BLACK)
  126.         elif self.cyrils_white & chess.BB_SQUARES[square]:
  127.             return chess.Piece(CYRIL, chess.WHITE)
  128.         elif self.cyrils_black & chess.BB_SQUARES[square]:
  129.             return chess.Piece(CYRIL, chess.BLACK)
  130.         elif self.eves_white & chess.BB_SQUARES[square]:
  131.             return chess.Piece(EVE, chess.WHITE)
  132.         elif self.eves_black & chess.BB_SQUARES[square]:
  133.             return chess.Piece(EVE, chess.BLACK)
  134.         return super().piece_at(square)
  135.  
  136.     def generate_pseudo_legal_moves(self, from_mask: Bitboard = BB_ALL, to_mask: Bitboard = BB_ALL) -> Iterator[Move]:
  137.         our_pieces = self.occupied_co[self.turn]
  138.         if self.turn == chess.WHITE:
  139.             our_amazons = self.amazons_white
  140.             our_cyrils = self.cyrils_white
  141.             our_eves = self.eves_white
  142.         else:
  143.             our_amazons = self.amazons_black
  144.             our_cyrils = self.cyrils_black
  145.             our_eves = self.eves_black
  146.    
  147.         # Generování tahů pro amazonky
  148.         for from_square in chess.scan_forward(our_amazons & from_mask):
  149.             attacks = self.amazon_attacks(from_square)
  150.             valid_moves = attacks & ~our_pieces & to_mask
  151.             for to_square in chess.scan_forward(valid_moves):
  152.                 yield Move(from_square, to_square)
  153.    
  154.         # Generování tahů pro Cyrily
  155.         for from_square in chess.scan_forward(our_cyrils & from_mask):
  156.             attacks = self.cyril_attacks(from_square)
  157.             valid_moves = attacks & ~our_pieces & to_mask
  158.             for to_square in chess.scan_forward(valid_moves):
  159.                 yield Move(from_square, to_square)
  160.    
  161.         # Generování tahů pro Evy
  162.         for from_square in chess.scan_forward(our_eves & from_mask):
  163.             attacks = self.eve_attacks(from_square)
  164.             valid_moves = attacks & ~our_pieces & to_mask
  165.             for to_square in chess.scan_forward(valid_moves):
  166.                 yield Move(from_square, to_square)
  167.    
  168.         # Generování tahů pro standardní figury
  169.         for move in super().generate_pseudo_legal_moves(from_mask, to_mask):
  170.             piece = self.piece_at(move.from_square)
  171.             if piece and piece.piece_type not in [AMAZON, CYRIL, EVE]:
  172.                 yield move
  173.  
  174.     def queen_attacks(self, square):
  175.         return self.bishop_attacks(square) | self.rook_attacks(square)
  176.  
  177.     def bishop_attacks(self, square):
  178.         return chess.BB_DIAG_ATTACKS[square][self.occupied & chess.BB_DIAG_MASKS[square]]
  179.  
  180.     def rook_attacks(self, square):
  181.         return (chess.BB_RANK_ATTACKS[square][self.occupied & chess.BB_RANK_MASKS[square]] |
  182.                 chess.BB_FILE_ATTACKS[square][self.occupied & chess.BB_FILE_MASKS[square]])
  183.  
  184.     def amazon_attacks(self, square):
  185.         return self.queen_attacks(square) | chess.BB_KNIGHT_ATTACKS[square]
  186.  
  187.     def cyril_attacks(self, square):
  188.         return self.rook_attacks(square) | chess.BB_KNIGHT_ATTACKS(square)
  189.  
  190.     def eve_attacks(self, square):
  191.         return self.bishop_attacks(square) | chess.BB_KNIGHT_ATTACKS(square)
  192.  
  193.     def is_pseudo_legal(self, move):
  194.         from_square = move.from_square
  195.         to_square = move.to_square
  196.         piece = self.piece_at(from_square)
  197.    
  198.         if not piece or piece.color != self.turn:
  199.             return False
  200.    
  201.         if self.occupied_co[self.turn] & chess.BB_SQUARES[to_square]:
  202.             return False
  203.    
  204.         if self.is_castling(move):
  205.             return True
  206.    
  207.         if piece.piece_type == AMAZON:
  208.             return bool(self.amazon_attacks(from_square) & chess.BB_SQUARES[to_square])
  209.         elif piece.piece_type == CYRIL:
  210.             return bool(self.cyril_attacks(from_square) & chess.BB_SQUARES[to_square])
  211.         elif piece.piece_type == EVE:
  212.             return bool(self.eve_attacks(from_square) & chess.BB_SQUARES[to_square])
  213.         else:
  214.             return super().is_pseudo_legal(move)
  215.  
  216.     def is_legal(self, move):
  217.         if not self.is_pseudo_legal(move):
  218.             return False
  219.    
  220.         from_square = move.from_square
  221.         to_square = move.to_square
  222.         piece = self.piece_at(from_square)
  223.         captured_piece = self.piece_at(to_square)
  224.    
  225.         self.clear_square(from_square)
  226.         self.clear_square(to_square)
  227.         self._set_piece_at(to_square, piece.piece_type, piece.color)
  228.    
  229.         king_square = to_square if piece.piece_type == chess.KING else self.king(self.turn)
  230.         is_check = False
  231.         if king_square is not None:
  232.             is_check = self._is_attacked_by(not self.turn, king_square)
  233.    
  234.         self.clear_square(to_square)
  235.         self._set_piece_at(from_square, piece.piece_type, piece.color)
  236.         if captured_piece:
  237.             self._set_piece_at(to_square, captured_piece.piece_type, captured_piece.color)
  238.    
  239.         return not is_check
  240.    
  241.  
  242.     def _is_attacked_by(self, color, square):
  243.         attackers = self.attackers(color, square)
  244.         return bool(attackers)
  245.  
  246.     def attackers(self, color, square):
  247.         if square is None:
  248.             return chess.BB_EMPTY
  249.  
  250.         attackers = chess.BB_EMPTY
  251.        
  252.         # Knights
  253.         knights = self.knights & self.occupied_co[color]
  254.         if chess.BB_KNIGHT_ATTACKS[square] & knights:
  255.             attackers |= knights & chess.BB_KNIGHT_ATTACKS[square]
  256.        
  257.         # King
  258.         king = self.kings & self.occupied_co[color]
  259.         if chess.BB_KING_ATTACKS[square] & king:
  260.             attackers |= king
  261.        
  262.         # Pawns
  263.         pawns = self.pawns & self.occupied_co[color]
  264.         pawn_attacks = chess.BB_PAWN_ATTACKS[not color][square]
  265.         if pawn_attacks & pawns:
  266.             attackers |= pawns & pawn_attacks
  267.        
  268.         # Queens
  269.         queens = self.queens & self.occupied_co[color]
  270.         queen_attacks = (
  271.             chess.BB_DIAG_ATTACKS[square][self.occupied & chess.BB_DIAG_MASKS[square]] |
  272.             chess.BB_RANK_ATTACKS[square][self.occupied & chess.BB_RANK_MASKS[square]] |
  273.             chess.BB_FILE_ATTACKS[square][self.occupied & chess.BB_FILE_MASKS[square]]
  274.         )
  275.         if queen_attacks & queens:
  276.             attackers |= queens & queen_attacks
  277.        
  278.         # Bishops
  279.         bishops = self.bishops & self.occupied_co[color]
  280.         bishop_attacks = chess.BB_DIAG_ATTACKS[square][self.occupied & chess.BB_DIAG_MASKS[square]]
  281.         if bishop_attacks & bishops:
  282.             attackers |= bishops & bishop_attacks
  283.        
  284.         # Rooks
  285.         rooks = self.rooks & self.occupied_co[color]
  286.         rook_attacks = (
  287.             chess.BB_RANK_ATTACKS[square][self.occupied & chess.BB_RANK_MASKS[square]] |
  288.             chess.BB_FILE_ATTACKS[square][self.occupied & chess.BB_FILE_MASKS[square]]
  289.         )
  290.         if rook_attacks & rooks:
  291.             attackers |= rooks & rook_attacks
  292.        
  293.         # Amazons (Queen + Knight)
  294.         amazons = self.amazons_white if color == chess.WHITE else self.amazons_black
  295.         for amazon_square in chess.scan_forward(amazons):
  296.             amazon_attacks = (
  297.                 chess.BB_DIAG_ATTACKS[amazon_square][self.occupied & chess.BB_DIAG_MASKS[amazon_square]] |
  298.                 chess.BB_RANK_ATTACKS[amazon_square][self.occupied & chess.BB_RANK_MASKS[amazon_square]] |
  299.                 chess.BB_FILE_ATTACKS[amazon_square][self.occupied & chess.BB_FILE_MASKS[amazon_square]] |
  300.                 chess.BB_KNIGHT_ATTACKS[amazon_square]
  301.             )
  302.             if amazon_attacks & chess.BB_SQUARES[square]:
  303.                 attackers |= chess.BB_SQUARES[amazon_square]
  304.        
  305.         # Cyrils (Rook + Knight)
  306.         cyrils = self.cyrils_white if color == chess.WHITE else self.cyrils_black
  307.         for cyril_square in chess.scan_forward(cyrils):
  308.             cyril_attacks = (
  309.                 chess.BB_RANK_ATTACKS[cyril_square][self.occupied & chess.BB_RANK_MASKS[cyril_square]] |
  310.                 chess.BB_FILE_ATTACKS[cyril_square][self.occupied & chess.BB_FILE_MASKS[cyril_square]] |
  311.                 chess.BB_KNIGHT_ATTACKS[cyril_square]
  312.             )
  313.             if cyril_attacks & chess.BB_SQUARES[square]:
  314.                 attackers |= chess.BB_SQUARES[cyril_square]
  315.        
  316.         # Eves (Bishop + Knight)
  317. # Eves (Bishop + Knight)
  318.         eves = self.eves_white if color == chess.WHITE else self.eves_black
  319.         for eve_square in chess.scan_forward(eves):
  320.             eve_attacks = (
  321.                 chess.BB_DIAG_ATTACKS[eve_square][self.occupied & chess.BB_DIAG_MASKS[eve_square]] |
  322.                 chess.BB_KNIGHT_ATTACKS[eve_square]
  323.             )
  324.             if eve_attacks & chess.BB_SQUARES[square]:
  325.                 attackers |= chess.BB_SQUARES[eve_square]
  326.        
  327.         return attackers
  328.  
  329.     def push(self, move):
  330.         if not self.is_legal(move):
  331.             raise ValueError(f"Move {move} is not legal in position {self.fen()}")
  332.  
  333.         piece = self.piece_at(move.from_square)
  334.         captured_piece = self.piece_at(move.to_square)
  335.  
  336.         self.clear_square(move.from_square)
  337.         self.clear_square(move.to_square)
  338.         self._set_piece_at(move.to_square, piece.piece_type, piece.color)
  339.  
  340.         self.turn = not self.turn
  341.  
  342.         self.move_stack.append((move, captured_piece))
  343.  
  344.     def pop(self):
  345.         if not self.move_stack:
  346.             return None
  347.  
  348.         move, captured_piece = self.move_stack.pop()
  349.  
  350.         piece = self.piece_at(move.to_square)
  351.        
  352.         self.clear_square(move.from_square)
  353.         self.clear_square(move.to_square)
  354.  
  355.         self._set_piece_at(move.from_square, piece.piece_type, piece.color)
  356.  
  357.         if captured_piece:
  358.             self._set_piece_at(move.to_square, captured_piece.piece_type, captured_piece.color)
  359.  
  360.         self.turn = not self.turn
  361.  
  362.         return move
  363.  
  364.     def is_check(self):
  365.         king_square = self.king(self.turn)
  366.         if king_square is None:
  367.             return False
  368.         is_check = self._is_attacked_by(not self.turn, king_square)
  369.         return is_check
  370.  
  371.     def is_checkmate(self):
  372.         if not self.is_check():
  373.             return False
  374.         legal_moves = list(self.generate_legal_moves())
  375.         return len(legal_moves) == 0
  376.  
  377.     def is_game_over(self):
  378.         return self.is_checkmate() or self.is_stalemate() or self.is_insufficient_material()
  379.  
  380.     def is_stalemate(self):
  381.         if self.is_check():
  382.             return False
  383.         legal_moves = list(self.generate_legal_moves())
  384.         return len(legal_moves) == 0
  385.    
  386.     def is_insufficient_material(self):
  387.         return (self.pawns | self.rooks | self.queens | self.amazons_white | self.amazons_black |
  388.                 self.cyrils_white | self.cyrils_black | self.eves_white | self.eves_black) == 0 and (
  389.             chess.popcount(self.occupied) <= 3
  390.         )
  391.  
  392.     def generate_legal_moves(self, from_mask=chess.BB_ALL, to_mask=chess.BB_ALL):
  393.         for move in self.generate_pseudo_legal_moves(from_mask, to_mask):
  394.             if self.is_legal(move):
  395.                 yield move
  396.  
  397.     def debug_amazons(self):
  398.         pass
  399.  
  400.     def debug_cyrils(self):
  401.         pass
  402.  
  403.     def debug_eves(self):
  404.         pass
  405.  
  406.     def piece_symbol(self, piece):
  407.         if piece is None:
  408.             return '.'
  409.         if piece.piece_type == AMAZON:
  410.             return 'A' if piece.color == chess.WHITE else 'a'
  411.         if piece.piece_type == CYRIL:
  412.             return 'C' if piece.color == chess.WHITE else 'c'
  413.         if piece.piece_type == EVE:
  414.             return 'E' if piece.color == chess.WHITE else 'e'
  415.         return piece.symbol()
  416.  
  417.     def piece_type_at(self, square):
  418.         if (self.amazons_white | self.amazons_black) & chess.BB_SQUARES[square]:
  419.             return AMAZON
  420.         if (self.cyrils_white | self.cyrils_black) & chess.BB_SQUARES[square]:
  421.             return CYRIL
  422.         if (self.eves_white | self.eves_black) & chess.BB_SQUARES[square]:
  423.             return EVE
  424.         return super().piece_type_at(square)
  425.  
  426.     def color_at(self, square):
  427.         if self.amazons_white & chess.BB_SQUARES[square]:
  428.             return chess.WHITE
  429.         if self.amazons_black & chess.BB_SQUARES[square]:
  430.             return chess.BLACK
  431.         if self.cyrils_white & chess.BB_SQUARES[square]:
  432.             return chess.WHITE
  433.         if self.cyrils_black & chess.BB_SQUARES[square]:
  434.             return chess.BLACK
  435.         if self.eves_white & chess.BB_SQUARES[square]:
  436.             return chess.WHITE
  437.         if self.eves_black & chess.BB_SQUARES[square]:
  438.             return chess.BLACK
  439.         return super().color_at(square)
  440.  
  441.     @property
  442.     def legal_moves(self):
  443.         return list(self.generate_legal_moves())
  444.  
  445.     def __str__(self):
  446.         builder = []
  447.         for square in chess.SQUARES_180:
  448.             piece = self.piece_at(square)
  449.             symbol = self.piece_symbol(piece) if piece else '.'
  450.             builder.append(symbol)
  451.             if chess.square_file(square) == 7:
  452.                 if square != chess.H1:
  453.                     builder.append('\n')
  454.         return ''.join(builder)
  455.  
  456. def format_time(seconds):
  457.     hours, remainder = divmod(seconds, 3600)
  458.     minutes, seconds = divmod(remainder, 60)
  459.     return f"{int(hours):02d}h {int(minutes):02d}m {int(seconds):02d}s"
  460.  
  461. def print_elapsed_time(stop_event, start_time):
  462.     while not stop_event.is_set():
  463.         elapsed_time = time.time() - start_time
  464.         print(f"\rUplynulý čas: {format_time(elapsed_time)}", end="", flush=True)
  465.         time.sleep(1)
  466.  
  467. def simplify_fen(fen):
  468.     return ' '.join(fen.split()[:4])
  469.  
  470. def calculate_optimal_moves(start_fen: str) -> Dict[str, Tuple[int, str]]:
  471.     print("Funkce calculate_optimal_moves byla zavolána")
  472.     print(f"Počáteční FEN: {start_fen}")
  473.    
  474.     board = CustomBoard(start_fen)
  475.     POZ = {1: simplify_fen(start_fen)}
  476.     AR = {simplify_fen(start_fen): {'used': 0, 'to_end': None, 'depth': 0, 'type': 'normal'}}
  477.     N = 1
  478.     M = 0
  479.  
  480.     start_time = time.time()
  481.     current_depth = 0
  482.     positions_at_depth = {0: 0}
  483.     depth_start_time = start_time
  484.  
  485.     stop_event = threading.Event()
  486.     timer_thread = threading.Thread(target=print_elapsed_time, args=(stop_event, start_time))
  487.     timer_thread.start()
  488.  
  489.     try:
  490.         print("Začínám generovat pozice...")
  491.         print("Počáteční pozice:")
  492.         print_board(start_fen)
  493.        
  494.         depth_1_positions = []  # Seznam pro ukládání pozic v hloubce 1
  495.  
  496.         # Generate all positions
  497.         while M < N:
  498.             M += 1
  499.             current_fen = POZ[M]
  500.             board.set_custom_fen(current_fen)
  501.             simplified_current_fen = simplify_fen(current_fen)
  502.             current_depth = AR[simplified_current_fen]['depth']
  503.  
  504.             if current_depth not in positions_at_depth:
  505.                 positions_at_depth[current_depth] = 0
  506.                 if current_depth > 0:
  507.                     depth_time = time.time() - depth_start_time
  508.                     total_time = time.time() - start_time
  509.                     print(f"\nHloubka {current_depth - 1}: {positions_at_depth[current_depth - 1]} pozic, "
  510.                           f"Čas hloubky: {format_time(depth_time)} / Celkový čas: {format_time(total_time)}")
  511.                    
  512.                     if current_depth == 1:
  513.                         print("Všechny pozice v hloubce 1:")
  514.                         for pos in depth_1_positions:
  515.                             print_board(pos)
  516.                             print()
  517.                
  518.                 depth_start_time = time.time()
  519.  
  520.             positions_at_depth[current_depth] += 1
  521.  
  522.             if current_depth == 1:
  523.                 depth_1_positions.append(current_fen)
  524.  
  525.             if AR[simplified_current_fen]['used'] == 0:
  526.                 AR[simplified_current_fen]['used'] = 1
  527.                 legal_moves = list(board.legal_moves)
  528.                 for move in legal_moves:
  529.                     board.push(move)
  530.                     POZ2 = board.fen()
  531.                     simplified_POZ2 = simplify_fen(POZ2)
  532.                     if simplified_POZ2 not in AR:
  533.                         N += 1
  534.                         POZ[N] = simplified_POZ2
  535.                         AR[simplified_POZ2] = {'used': 0, 'to_end': None, 'depth': current_depth + 1, 'type': 'normal'}
  536.                     board.pop()
  537.    
  538.         # Print last depth
  539.         depth_time = time.time() - depth_start_time
  540.         total_time = time.time() - start_time
  541.         print(f"\nHloubka {current_depth}: {positions_at_depth[current_depth]} pozic, "
  542.               f"Čas hloubky: {format_time(depth_time)} / Celkový čas: {format_time(total_time)}")
  543.         print(f"Příklad pozice v hloubce {current_depth}:")
  544.         print_board(current_fen)
  545.  
  546.         print(f"Generování pozic dokončeno. Celkový počet pozic: {N}")
  547.  
  548.         # Initial evaluation
  549.         print("\nZačínám počáteční ohodnocení...")
  550.         F_checkmate = 0
  551.         F_stalemate = 0
  552.         F_drawing = 0
  553.         F_check = 0
  554.         F_normal = 0
  555.         for i in range(1, N + 1):
  556.             current_fen = POZ[i]
  557.             board.set_custom_fen(current_fen)
  558.             simplified_current_fen = simplify_fen(current_fen)
  559.  
  560.             if board.is_checkmate():
  561.                 AR[simplified_current_fen]['to_end'] = -1000
  562.                 AR[simplified_current_fen]['type'] = 'checkmate'
  563.                 F_checkmate += 1
  564.             elif board.is_stalemate():
  565.                 AR[simplified_current_fen]['to_end'] = 0
  566.                 AR[simplified_current_fen]['type'] = 'stalemate'
  567.                 F_stalemate += 1
  568.             elif board.is_insufficient_material():
  569.                 AR[simplified_current_fen]['to_end'] = 0
  570.                 AR[simplified_current_fen]['type'] = 'drawing'
  571.                 F_drawing += 1
  572.             elif board.is_check():
  573.                 AR[simplified_current_fen]['to_end'] = None
  574.                 AR[simplified_current_fen]['type'] = 'check'
  575.                 F_check += 1
  576.             else:
  577.                 AR[simplified_current_fen]['to_end'] = None
  578.                 AR[simplified_current_fen]['type'] = 'normal'
  579.                 F_normal += 1
  580.  
  581.         print(f"Počet pozic v matu je {F_checkmate}")
  582.         print(f"Počet pozic v patu je {F_stalemate}")
  583.         print(f"Počet pozic v remíze je {F_drawing}")
  584.         print(f"Počet pozic v šachu je {F_check}")
  585.         print(f"Počet normálních pozic je {F_normal}")
  586.  
  587.         # Iterative evaluation
  588.         print("\nZačínám iterativní ohodnocení...")
  589.         uroven = 0
  590.         while True:
  591.             uroven += 1
  592.             level_start_time = time.time()
  593.             print(f"Výpočet v úrovni {uroven}")
  594.            
  595.             changed = False
  596.             current_level_positions = 0
  597.             for i in range(1, N + 1):
  598.                 current_fen = POZ[i]
  599.                 board.set_custom_fen(current_fen)
  600.                 simplified_current_fen = simplify_fen(current_fen)
  601.                 if AR[simplified_current_fen]['to_end'] is None or AR[simplified_current_fen]['to_end'] == 0:
  602.                     hod = -2000
  603.                     for move in board.legal_moves:
  604.                         board.push(move)
  605.                         POZ2 = board.fen()
  606.                         simplified_POZ2 = simplify_fen(POZ2)
  607.                         if simplified_POZ2 in AR and AR[simplified_POZ2]['to_end'] is not None:
  608.                             hod2 = -AR[simplified_POZ2]['to_end']
  609.                             if hod2 > hod:
  610.                                 hod = hod2
  611.                         board.pop()
  612.                    
  613.                     if hod == 1001 - uroven:
  614.                         new_to_end = 1000 - uroven
  615.                         new_type = 'winning'
  616.                     elif hod == -1001 + uroven:
  617.                         new_to_end = -1000 + uroven
  618.                         new_type = 'losing'
  619.                     elif hod == 0:
  620.                         new_to_end = 0
  621.                         new_type = 'drawing'
  622.                     elif hod > -2000:  # Pokud byl nalezen alespoň jeden platný tah
  623.                         new_to_end = hod
  624.                         new_type = 'normal'
  625.                     else:
  626.                         new_to_end = None
  627.                         new_type = None
  628.                    
  629.                     if new_to_end is not None and (AR[simplified_current_fen]['to_end'] != new_to_end or AR[simplified_current_fen]['type'] != new_type):
  630.                         AR[simplified_current_fen]['to_end'] = new_to_end
  631.                         AR[simplified_current_fen]['type'] = new_type
  632.                         changed = True
  633.                         current_level_positions += 1
  634.            
  635.             level_end_time = time.time()
  636.             total_elapsed_time = level_end_time - start_time
  637.             level_elapsed_time = level_end_time - level_start_time
  638.             print(f"Nalezeno {current_level_positions} pozic v úrovni {uroven}")
  639.             print(f"Čas úrovně: {format_time(level_elapsed_time)} / Celkový čas: {format_time(total_elapsed_time)}")
  640.            
  641.             if not changed:
  642.                 print("Hodnocení ukončeno - žádné další změny.")
  643.                 break
  644.        
  645.         print(f"Celkem nalezeno {sum(1 for data in AR.values() if data['to_end'] is not None)} ohodnocených pozic")
  646.  
  647.         print("\nVýpočet dokončen.")
  648.         return {fen: (data['to_end'], data['type']) for fen, data in AR.items() if data['to_end'] is not None}
  649.  
  650.     finally:
  651.         stop_event.set()
  652.         timer_thread.join()
  653.  
  654.  
  655. # Helper function to print the board
  656. def print_board(fen):
  657.     board = CustomBoard(fen)
  658.     print(board)
  659.  
  660. # Najděte nejmenší kladnou hodnotu to_end ve všech FEN záznamech v AR
  661. def find_min_positive_value(AR):
  662.     min_positive_value = float('inf')
  663.     min_fen = None
  664.    
  665.     for fen, (value, type_pozice) in AR.items():
  666.         if value is not None and value > 0 and value < min_positive_value:
  667.             min_positive_value = value
  668.             min_fen = fen
  669.    
  670.     if min_positive_value == float('inf'):
  671.         print("Žádná kladná hodnota nebyla nalezena.")
  672.     else:
  673.         print(f"Nejmenší kladná hodnota: {min_positive_value}, FEN: {min_fen}")
  674.  
  675. # Main execution
  676. # Main execution
  677. if __name__ == "__main__":
  678.     start_fen = "7K/8/k1P5/7p/8/8/8/8 w - - 0 1"
  679.  
  680.     start_fen = "7K/8/8/8/8/k7/8/7A w - - 0 1"
  681.  
  682.  #   start_fen = "7K/8/8/2a5/8/1k6/8/7A w - - 0 1"
  683.  
  684.     start_fen = "7K/8/k1P5/7p/8/8/8/8 w - - 0 1"
  685.  
  686.     start_fen = "6K1/3P4/8/8/8/k7/8/8 w - - 0 1"
  687.    
  688. #    AR = calculate_optimal_moves(start_fen)
  689.  
  690.     find_min_positive_value(AR)
  691.  
  692.     # print("\nVýsledky:")
  693.     # for hodnota in range(-996, -1001, -1):  # Generuje hodnoty -996, -997, -998, -999, -1000
  694.     #     for fen, (fen_hodnota, typ_pozice) in AR.items():
  695.     #         if fen_hodnota == hodnota:
  696.     #             print(f"FEN: {fen}")
  697.     #             print(f"Hodnota: {fen_hodnota}")
  698.     #             print(f"Typ pozice: {typ_pozice}")
  699.                
  700.     #             temp_board = CustomBoard(fen)
  701.                
  702.     #             if temp_board.is_checkmate():
  703.     #                 print("Stav: Mat")
  704.     #             elif temp_board.is_stalemate():
  705.     #                 print("Stav: Pat")
  706.     #             elif temp_board.is_insufficient_material():
  707.     #                 print("Stav: Nedostatečný materiál")
  708.     #             elif temp_board.is_check():
  709.     #                 print("Stav: Šach")
  710.     #             else:
  711.     #                 print("Stav: Normální pozice")
  712.      
  713.     #             print_board(fen)
  714.                
  715.     #             print()
  716.  
  717.     # Print optimal moves
  718. # Print optimal moves
  719.     current_fen = start_fen
  720.     simplified_current_fen = simplify_fen(current_fen)
  721.     simplified_current_fen1 = simplified_current_fen
  722.     optimal_moves = []
  723.    
  724.     while True:
  725.         board = CustomBoard(current_fen)
  726.         if board.is_checkmate():
  727.             print("Mat detekován!")
  728.             break
  729.        
  730.         # Opravená část
  731.         half_move_clock = current_fen.split()[-2]
  732.         if board.is_insufficient_material() or (half_move_clock != '-' and int(half_move_clock) >= 100):
  733.             if board.is_insufficient_material():
  734.                 print("Nedostatečný materiál detekován!")
  735.             else:
  736.                 print("Remíza pravidlem 50 tahů detekována!")
  737.             AR[simplified_current_fen] = (0, 'drawing')  # Aktualizujeme AR pro tuto pozici
  738.             break
  739.        
  740.         if simplified_current_fen not in AR:
  741.             print(f"Pozice {simplified_current_fen} není v AR.")
  742.             break
  743.        
  744.         current_value = AR[simplified_current_fen][0]
  745.        
  746.         if current_value == 0:
  747.             print("Remíza dosažena!")
  748.             break
  749.        
  750.         hod = -2000 if current_value > 0 else 2000
  751.         best_fen = None
  752.         for move in board.legal_moves:
  753.             board.push(move)
  754.             POZ2 = board.fen()
  755.             simplified_POZ2 = simplify_fen(POZ2)
  756.             if simplified_POZ2 in AR:
  757.                 hod2 = -AR[simplified_POZ2][0]
  758.                 if current_value > 0:  # Silnější hráč
  759.                     if hod2 > hod:
  760.                         hod = hod2
  761.                         best_fen = simplified_POZ2
  762.                 else:  # Slabší hráč
  763.                     if hod2 < hod:
  764.                         hod = hod2
  765.                         best_fen = simplified_POZ2
  766.             board.pop()
  767.        
  768.         if best_fen is None:
  769.             print("Žádný další tah nebyl nalezen.")
  770.             break
  771.         optimal_moves.append(best_fen)
  772.         current_fen = best_fen
  773.         simplified_current_fen = simplify_fen(current_fen)
  774.  
  775.     # print(AR[optimal_moves[-1]][0])
  776.    
  777.     # print("\nOptimální tahy:")
  778.     # for fen in reversed(optimal_moves):
  779.     #     print_board(fen)
  780.     #     hodnota, typ_pozice = AR[simplify_fen(fen)]
  781.     #     print(f"Hodnota: {hodnota}, Typ: {typ_pozice}")
  782.     #     print(fen)
  783.     #     print("\n")
  784.        
  785.     # print_board(simplified_current_fen1)
  786.     # hodnota, typ_pozice = AR[simplified_current_fen1]
  787.     # print(f"Hodnota: {hodnota}, Typ: {typ_pozice}")
  788.     # print(simplified_current_fen1)
  789.     # print("\n")
  790.  
  791.     def calculate_parent_value(n):
  792.         if n == 1000:
  793.             return -999
  794.         elif n == -1000:
  795.             return 999
  796.         elif n == 0:
  797.             return 0
  798.         else:
  799.             return -(1 - 2*((abs(n) - 1) % 2)) * (abs(n) - 1)
  800.    
  801.     # Předpokládáme, že optimal_moves a AR jsou již definovány
  802.    
  803.     # Začneme s poslední položkou z optimal_moves
  804.     T = [AR[simplify_fen(optimal_moves[-1])][0]]
  805.    
  806.     # Doplníme zbytek seznamu T
  807.     for i in range(1, len(optimal_moves)):
  808.         T.append(calculate_parent_value(T[-1]))
  809.    
  810.     # Přidáme ještě jednu položku navíc
  811.     T.append(calculate_parent_value(T[-1]))
  812.    
  813. #    print("Seznam T:")
  814. #    print(T)
  815.     H = 0
  816.     print("\nOptimální tahy2:")
  817.     for fen in reversed(optimal_moves):
  818.         print_board(fen)
  819.         hodnota, typ_pozice = AR[simplify_fen(fen)]
  820.         print(f"Hodnota: {hodnota}, Typ: {typ_pozice}, Hodn: {T[H]}")
  821.         H += 1
  822.         print(fen)
  823.         print("\n")
  824.    
  825.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement