Advertisement
Le_BuG63

malloc.c

Sep 6th, 2014
322
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
C 194.96 KB | None | 0 0
  1. /*
  2.   $Id: malloc.c,v 1.4 2006/03/30 16:47:29 wg Exp $
  3.  
  4.   This version of malloc.c was adapted for ptmalloc3 by Wolfram Gloger
  5.   <wg@malloc.de>.  Therefore, some of the comments below do not apply
  6.   for this modified version.  However, it is the intention to keep
  7.   differences to Doug Lea's original version minimal, hence the
  8.   comments were mostly left unchanged.
  9.  
  10.  -----------------------------------------------------------------------
  11.  
  12.   This is a version (aka dlmalloc) of malloc/free/realloc written by
  13.   Doug Lea and released to the public domain, as explained at
  14.   http://creativecommons.org/licenses/publicdomain.  Send questions,
  15.   comments, complaints, performance data, etc to dl@cs.oswego.edu
  16.  
  17. * Version pre-2.8.4 Wed Mar 29 19:46:29 2006    (dl at gee)
  18.  
  19.    Note: There may be an updated version of this malloc obtainable at
  20.            ftp://gee.cs.oswego.edu/pub/misc/malloc.c
  21.          Check before installing!
  22.  
  23. * Quickstart
  24.  
  25.   This library is all in one file to simplify the most common usage:
  26.   ftp it, compile it (-O3), and link it into another program. All of
  27.   the compile-time options default to reasonable values for use on
  28.   most platforms.  You might later want to step through various
  29.   compile-time and dynamic tuning options.
  30.  
  31.   For convenience, an include file for code using this malloc is at:
  32.      ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h
  33.   You don't really need this .h file unless you call functions not
  34.   defined in your system include files.  The .h file contains only the
  35.   excerpts from this file needed for using this malloc on ANSI C/C++
  36.   systems, so long as you haven't changed compile-time options about
  37.   naming and tuning parameters.  If you do, then you can create your
  38.   own malloc.h that does include all settings by cutting at the point
  39.   indicated below. Note that you may already by default be using a C
  40.   library containing a malloc that is based on some version of this
  41.   malloc (for example in linux). You might still want to use the one
  42.   in this file to customize settings or to avoid overheads associated
  43.   with library versions.
  44.  
  45. * Vital statistics:
  46.  
  47.   Supported pointer/size_t representation:       4 or 8 bytes
  48.        size_t MUST be an unsigned type of the same width as
  49.        pointers. (If you are using an ancient system that declares
  50.        size_t as a signed type, or need it to be a different width
  51.        than pointers, you can use a previous release of this malloc
  52.        (e.g. 2.7.2) supporting these.)
  53.  
  54.   Alignment:                                     8 bytes (default)
  55.        This suffices for nearly all current machines and C compilers.
  56.        However, you can define MALLOC_ALIGNMENT to be wider than this
  57.        if necessary (up to 128bytes), at the expense of using more space.
  58.  
  59.   Minimum overhead per allocated chunk:   4 or  8 bytes (if 4byte sizes)
  60.                                           8 or 16 bytes (if 8byte sizes)
  61.        Each malloced chunk has a hidden word of overhead holding size
  62.        and status information, and additional cross-check word
  63.        if FOOTERS is defined.
  64.  
  65.   Minimum allocated size: 4-byte ptrs:  16 bytes    (including overhead)
  66.                           8-byte ptrs:  32 bytes    (including overhead)
  67.  
  68.        Even a request for zero bytes (i.e., malloc(0)) returns a
  69.        pointer to something of the minimum allocatable size.
  70.        The maximum overhead wastage (i.e., number of extra bytes
  71.        allocated than were requested in malloc) is less than or equal
  72.        to the minimum size, except for requests >= mmap_threshold that
  73.        are serviced via mmap(), where the worst case wastage is about
  74.        32 bytes plus the remainder from a system page (the minimal
  75.        mmap unit); typically 4096 or 8192 bytes.
  76.  
  77.   Security: static-safe; optionally more or less
  78.        The "security" of malloc refers to the ability of malicious
  79.        code to accentuate the effects of errors (for example, freeing
  80.        space that is not currently malloc'ed or overwriting past the
  81.        ends of chunks) in code that calls malloc.  This malloc
  82.        guarantees not to modify any memory locations below the base of
  83.        heap, i.e., static variables, even in the presence of usage
  84.        errors.  The routines additionally detect most improper frees
  85.        and reallocs.  All this holds as long as the static bookkeeping
  86.        for malloc itself is not corrupted by some other means.  This
  87.        is only one aspect of security -- these checks do not, and
  88.        cannot, detect all possible programming errors.
  89.  
  90.        If FOOTERS is defined nonzero, then each allocated chunk
  91.        carries an additional check word to verify that it was malloced
  92.        from its space.  These check words are the same within each
  93.        execution of a program using malloc, but differ across
  94.        executions, so externally crafted fake chunks cannot be
  95.        freed. This improves security by rejecting frees/reallocs that
  96.        could corrupt heap memory, in addition to the checks preventing
  97.        writes to statics that are always on.  This may further improve
  98.        security at the expense of time and space overhead.  (Note that
  99.        FOOTERS may also be worth using with MSPACES.)
  100.  
  101.        By default detected errors cause the program to abort (calling
  102.        "abort()"). You can override this to instead proceed past
  103.        errors by defining PROCEED_ON_ERROR.  In this case, a bad free
  104.        has no effect, and a malloc that encounters a bad address
  105.        caused by user overwrites will ignore the bad address by
  106.        dropping pointers and indices to all known memory. This may
  107.        be appropriate for programs that should continue if at all
  108.        possible in the face of programming errors, although they may
  109.        run out of memory because dropped memory is never reclaimed.
  110.  
  111.        If you don't like either of these options, you can define
  112.        CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
  113.        else. And if if you are sure that your program using malloc has
  114.        no errors or vulnerabilities, you can define INSECURE to 1,
  115.        which might (or might not) provide a small performance improvement.
  116.  
  117.   Thread-safety: NOT thread-safe unless USE_LOCKS defined
  118.        When USE_LOCKS is defined, each public call to malloc, free,
  119.        etc is surrounded with either a pthread mutex or a win32
  120.        spinlock (depending on WIN32). This is not especially fast, and
  121.        can be a major bottleneck.  It is designed only to provide
  122.        minimal protection in concurrent environments, and to provide a
  123.        basis for extensions.  If you are using malloc in a concurrent
  124.        program, consider instead using nedmalloc
  125.        (http://www.nedprod.com/programs/portable/nedmalloc/) or
  126.        ptmalloc (See http://www.malloc.de), which are derived
  127.        from versions of this malloc.
  128.  
  129.   System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
  130.        This malloc can use unix sbrk or any emulation (invoked using
  131.        the CALL_MORECORE macro) and/or mmap/munmap or any emulation
  132.        (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
  133.        memory.  On most unix systems, it tends to work best if both
  134.        MORECORE and MMAP are enabled.  On Win32, it uses emulations
  135.        based on VirtualAlloc. It also uses common C library functions
  136.        like memset.
  137.  
  138.   Compliance: I believe it is compliant with the Single Unix Specification
  139.        (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
  140.        others as well.
  141.  
  142. * Overview of algorithms
  143.  
  144.   This is not the fastest, most space-conserving, most portable, or
  145.   most tunable malloc ever written. However it is among the fastest
  146.   while also being among the most space-conserving, portable and
  147.   tunable.  Consistent balance across these factors results in a good
  148.   general-purpose allocator for malloc-intensive programs.
  149.  
  150.   In most ways, this malloc is a best-fit allocator. Generally, it
  151.   chooses the best-fitting existing chunk for a request, with ties
  152.   broken in approximately least-recently-used order. (This strategy
  153.   normally maintains low fragmentation.) However, for requests less
  154.   than 256bytes, it deviates from best-fit when there is not an
  155.   exactly fitting available chunk by preferring to use space adjacent
  156.   to that used for the previous small request, as well as by breaking
  157.   ties in approximately most-recently-used order. (These enhance
  158.   locality of series of small allocations.)  And for very large requests
  159.   (>= 256Kb by default), it relies on system memory mapping
  160.   facilities, if supported.  (This helps avoid carrying around and
  161.   possibly fragmenting memory used only for large chunks.)
  162.  
  163.   All operations (except malloc_stats and mallinfo) have execution
  164.   times that are bounded by a constant factor of the number of bits in
  165.   a size_t, not counting any clearing in calloc or copying in realloc,
  166.   or actions surrounding MORECORE and MMAP that have times
  167.   proportional to the number of non-contiguous regions returned by
  168.   system allocation routines, which is often just 1. In real-time
  169.   applications, you can optionally suppress segment traversals using
  170.   NO_SEGMENT_TRAVERSAL, which assures bounded execution even when
  171.   system allocators return non-contiguous spaces, at the typical
  172.   expense of carrying around more memory and increased fragmentation.
  173.  
  174.   The implementation is not very modular and seriously overuses
  175.   macros. Perhaps someday all C compilers will do as good a job
  176.   inlining modular code as can now be done by brute-force expansion,
  177.   but now, enough of them seem not to.
  178.  
  179.   Some compilers issue a lot of warnings about code that is
  180.   dead/unreachable only on some platforms, and also about intentional
  181.   uses of negation on unsigned types. All known cases of each can be
  182.   ignored.
  183.  
  184.   For a longer but out of date high-level description, see
  185.      http://gee.cs.oswego.edu/dl/html/malloc.html
  186.  
  187. * MSPACES
  188.   If MSPACES is defined, then in addition to malloc, free, etc.,
  189.   this file also defines mspace_malloc, mspace_free, etc. These
  190.   are versions of malloc routines that take an "mspace" argument
  191.   obtained using create_mspace, to control all internal bookkeeping.
  192.   If ONLY_MSPACES is defined, only these versions are compiled.
  193.   So if you would like to use this allocator for only some allocations,
  194.   and your system malloc for others, you can compile with
  195.   ONLY_MSPACES and then do something like...
  196.     static mspace mymspace = create_mspace(0,0); // for example
  197.     #define mymalloc(bytes)  mspace_malloc(mymspace, bytes)
  198.  
  199.   (Note: If you only need one instance of an mspace, you can instead
  200.   use "USE_DL_PREFIX" to relabel the global malloc.)
  201.  
  202.   You can similarly create thread-local allocators by storing
  203.   mspaces as thread-locals. For example:
  204.     static __thread mspace tlms = 0;
  205.     void*  tlmalloc(size_t bytes) {
  206.       if (tlms == 0) tlms = create_mspace(0, 0);
  207.       return mspace_malloc(tlms, bytes);
  208.     }
  209.     void  tlfree(void* mem) { mspace_free(tlms, mem); }
  210.  
  211.   Unless FOOTERS is defined, each mspace is completely independent.
  212.   You cannot allocate from one and free to another (although
  213.   conformance is only weakly checked, so usage errors are not always
  214.   caught). If FOOTERS is defined, then each chunk carries around a tag
  215.   indicating its originating mspace, and frees are directed to their
  216.   originating spaces.
  217.  
  218.  -------------------------  Compile-time options ---------------------------
  219.  
  220. Be careful in setting #define values for numerical constants of type
  221. size_t. On some systems, literal values are not automatically extended
  222. to size_t precision unless they are explicitly casted. You can also
  223. use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below.
  224.  
  225. WIN32                    default: defined if _WIN32 defined
  226.   Defining WIN32 sets up defaults for MS environment and compilers.
  227.   Otherwise defaults are for unix.
  228.  
  229. MALLOC_ALIGNMENT         default: (size_t)8
  230.   Controls the minimum alignment for malloc'ed chunks.  It must be a
  231.   power of two and at least 8, even on machines for which smaller
  232.   alignments would suffice. It may be defined as larger than this
  233.   though. Note however that code and data structures are optimized for
  234.   the case of 8-byte alignment.
  235.  
  236. MSPACES                  default: 0 (false)
  237.   If true, compile in support for independent allocation spaces.
  238.   This is only supported if HAVE_MMAP is true.
  239.  
  240. ONLY_MSPACES             default: 0 (false)
  241.   If true, only compile in mspace versions, not regular versions.
  242.  
  243. USE_LOCKS                default: 0 (false)
  244.   Causes each call to each public routine to be surrounded with
  245.   pthread or WIN32 mutex lock/unlock. (If set true, this can be
  246.   overridden on a per-mspace basis for mspace versions.) If set to a
  247.   non-zero value other than 1, locks are used, but their
  248.   implementation is left out, so lock functions must be supplied manually.
  249.  
  250. USE_SPIN_LOCKS           default: 1 iff USE_LOCKS and on x86 using gcc or MSC
  251.   If true, uses custom spin locks for locking. This is currently
  252.   supported only for x86 platforms using gcc or recent MS compilers.
  253.   Otherwise, posix locks or win32 critical sections are used.
  254.  
  255. FOOTERS                  default: 0
  256.   If true, provide extra checking and dispatching by placing
  257.   information in the footers of allocated chunks. This adds
  258.   space and time overhead.
  259.  
  260. INSECURE                 default: 0
  261.   If true, omit checks for usage errors and heap space overwrites.
  262.  
  263. USE_DL_PREFIX            default: NOT defined
  264.   Causes compiler to prefix all public routines with the string 'dl'.
  265.   This can be useful when you only want to use this malloc in one part
  266.   of a program, using your regular system malloc elsewhere.
  267.  
  268. ABORT                    default: defined as abort()
  269.   Defines how to abort on failed checks.  On most systems, a failed
  270.   check cannot die with an "assert" or even print an informative
  271.   message, because the underlying print routines in turn call malloc,
  272.   which will fail again.  Generally, the best policy is to simply call
  273.   abort(). It's not very useful to do more than this because many
  274.   errors due to overwriting will show up as address faults (null, odd
  275.   addresses etc) rather than malloc-triggered checks, so will also
  276.   abort.  Also, most compilers know that abort() does not return, so
  277.   can better optimize code conditionally calling it.
  278.  
  279. PROCEED_ON_ERROR           default: defined as 0 (false)
  280.   Controls whether detected bad addresses cause them to bypassed
  281.   rather than aborting. If set, detected bad arguments to free and
  282.   realloc are ignored. And all bookkeeping information is zeroed out
  283.   upon a detected overwrite of freed heap space, thus losing the
  284.   ability to ever return it from malloc again, but enabling the
  285.   application to proceed. If PROCEED_ON_ERROR is defined, the
  286.   static variable malloc_corruption_error_count is compiled in
  287.   and can be examined to see if errors have occurred. This option
  288.   generates slower code than the default abort policy.
  289.  
  290. DEBUG                    default: NOT defined
  291.   The DEBUG setting is mainly intended for people trying to modify
  292.   this code or diagnose problems when porting to new platforms.
  293.   However, it may also be able to better isolate user errors than just
  294.   using runtime checks.  The assertions in the check routines spell
  295.   out in more detail the assumptions and invariants underlying the
  296.   algorithms.  The checking is fairly extensive, and will slow down
  297.   execution noticeably. Calling malloc_stats or mallinfo with DEBUG
  298.   set will attempt to check every non-mmapped allocated and free chunk
  299.   in the course of computing the summaries.
  300.  
  301. ABORT_ON_ASSERT_FAILURE   default: defined as 1 (true)
  302.   Debugging assertion failures can be nearly impossible if your
  303.   version of the assert macro causes malloc to be called, which will
  304.   lead to a cascade of further failures, blowing the runtime stack.
  305.   ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
  306.   which will usually make debugging easier.
  307.  
  308. MALLOC_FAILURE_ACTION     default: sets errno to ENOMEM, or no-op on win32
  309.   The action to take before "return 0" when malloc fails to be able to
  310.   return memory because there is none available.
  311.  
  312. HAVE_MORECORE             default: 1 (true) unless win32 or ONLY_MSPACES
  313.   True if this system supports sbrk or an emulation of it.
  314.  
  315. MORECORE                  default: sbrk
  316.   The name of the sbrk-style system routine to call to obtain more
  317.   memory.  See below for guidance on writing custom MORECORE
  318.   functions. The type of the argument to sbrk/MORECORE varies across
  319.   systems.  It cannot be size_t, because it supports negative
  320.   arguments, so it is normally the signed type of the same width as
  321.   size_t (sometimes declared as "intptr_t").  It doesn't much matter
  322.   though. Internally, we only call it with arguments less than half
  323.   the max value of a size_t, which should work across all reasonable
  324.   possibilities, although sometimes generating compiler warnings.  See
  325.   near the end of this file for guidelines for creating a custom
  326.   version of MORECORE.
  327.  
  328. MORECORE_CONTIGUOUS       default: 1 (true) if HAVE_MORECORE
  329.   If true, take advantage of fact that consecutive calls to MORECORE
  330.   with positive arguments always return contiguous increasing
  331.   addresses.  This is true of unix sbrk. It does not hurt too much to
  332.   set it true anyway, since malloc copes with non-contiguities.
  333.   Setting it false when definitely non-contiguous saves time
  334.   and possibly wasted space it would take to discover this though.
  335.  
  336. MORECORE_CANNOT_TRIM      default: NOT defined
  337.   True if MORECORE cannot release space back to the system when given
  338.   negative arguments. This is generally necessary only if you are
  339.   using a hand-crafted MORECORE function that cannot handle negative
  340.   arguments.
  341.  
  342. NO_SEGMENT_TRAVERSAL       default: 0
  343.   If non-zero, suppresses traversals of memory segments
  344.   returned by either MORECORE or CALL_MMAP. This disables
  345.   merging of segments that are contiguous, and selectively
  346.   releasing them to the OS if unused, but bounds execution times.
  347.  
  348. HAVE_MMAP                 default: 1 (true)
  349.   True if this system supports mmap or an emulation of it.  If so, and
  350.   HAVE_MORECORE is not true, MMAP is used for all system
  351.   allocation. If set and HAVE_MORECORE is true as well, MMAP is
  352.   primarily used to directly allocate very large blocks. It is also
  353.   used as a backup strategy in cases where MORECORE fails to provide
  354.   space from system. Note: A single call to MUNMAP is assumed to be
  355.   able to unmap memory that may have be allocated using multiple calls
  356.   to MMAP, so long as they are adjacent.
  357.  
  358. HAVE_MREMAP               default: 1 on linux, else 0
  359.   If true realloc() uses mremap() to re-allocate large blocks and
  360.   extend or shrink allocation spaces.
  361.  
  362. MMAP_CLEARS               default: 1 except on WINCE.
  363.   True if mmap clears memory so calloc doesn't need to. This is true
  364.   for standard unix mmap using /dev/zero and on WIN32 except for WINCE.
  365.  
  366. USE_BUILTIN_FFS            default: 0 (i.e., not used)
  367.   Causes malloc to use the builtin ffs() function to compute indices.
  368.   Some compilers may recognize and intrinsify ffs to be faster than the
  369.   supplied C version. Also, the case of x86 using gcc is special-cased
  370.   to an asm instruction, so is already as fast as it can be, and so
  371.   this setting has no effect. Similarly for Win32 under recent MS compilers.
  372.   (On most x86s, the asm version is only slightly faster than the C version.)
  373.  
  374. malloc_getpagesize         default: derive from system includes, or 4096.
  375.   The system page size. To the extent possible, this malloc manages
  376.   memory from the system in page-size units.  This may be (and
  377.   usually is) a function rather than a constant. This is ignored
  378.   if WIN32, where page size is determined using getSystemInfo during
  379.   initialization.
  380.  
  381. USE_DEV_RANDOM             default: 0 (i.e., not used)
  382.   Causes malloc to use /dev/random to initialize secure magic seed for
  383.   stamping footers. Otherwise, the current time is used.
  384.  
  385. NO_MALLINFO                default: 0
  386.   If defined, don't compile "mallinfo". This can be a simple way
  387.   of dealing with mismatches between system declarations and
  388.   those in this file.
  389.  
  390. MALLINFO_FIELD_TYPE        default: size_t
  391.   The type of the fields in the mallinfo struct. This was originally
  392.   defined as "int" in SVID etc, but is more usefully defined as
  393.   size_t. The value is used only if  HAVE_USR_INCLUDE_MALLOC_H is not set
  394.  
  395. REALLOC_ZERO_BYTES_FREES    default: not defined
  396.   This should be set if a call to realloc with zero bytes should
  397.   be the same as a call to free. Some people think it should. Otherwise,
  398.   since this malloc returns a unique pointer for malloc(0), so does
  399.   realloc(p, 0).
  400.  
  401. LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
  402. LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H,  LACKS_ERRNO_H
  403. LACKS_STDLIB_H                default: NOT defined unless on WIN32
  404.   Define these if your system does not have these header files.
  405.   You might need to manually insert some of the declarations they provide.
  406.  
  407. DEFAULT_GRANULARITY        default: page size if MORECORE_CONTIGUOUS,
  408.                                 system_info.dwAllocationGranularity in WIN32,
  409.                                 otherwise 64K.
  410.       Also settable using mallopt(M_GRANULARITY, x)
  411.   The unit for allocating and deallocating memory from the system.  On
  412.   most systems with contiguous MORECORE, there is no reason to
  413.   make this more than a page. However, systems with MMAP tend to
  414.   either require or encourage larger granularities.  You can increase
  415.   this value to prevent system allocation functions to be called so
  416.   often, especially if they are slow.  The value must be at least one
  417.   page and must be a power of two.  Setting to 0 causes initialization
  418.   to either page size or win32 region size.  (Note: In previous
  419.   versions of malloc, the equivalent of this option was called
  420.   "TOP_PAD")
  421.  
  422. DEFAULT_TRIM_THRESHOLD    default: 2MB
  423.       Also settable using mallopt(M_TRIM_THRESHOLD, x)
  424.   The maximum amount of unused top-most memory to keep before
  425.   releasing via malloc_trim in free().  Automatic trimming is mainly
  426.   useful in long-lived programs using contiguous MORECORE.  Because
  427.   trimming via sbrk can be slow on some systems, and can sometimes be
  428.   wasteful (in cases where programs immediately afterward allocate
  429.   more large chunks) the value should be high enough so that your
  430.   overall system performance would improve by releasing this much
  431.   memory.  As a rough guide, you might set to a value close to the
  432.   average size of a process (program) running on your system.
  433.   Releasing this much memory would allow such a process to run in
  434.   memory.  Generally, it is worth tuning trim thresholds when a
  435.   program undergoes phases where several large chunks are allocated
  436.   and released in ways that can reuse each other's storage, perhaps
  437.   mixed with phases where there are no such chunks at all. The trim
  438.   value must be greater than page size to have any useful effect.  To
  439.   disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
  440.   some people use of mallocing a huge space and then freeing it at
  441.   program startup, in an attempt to reserve system memory, doesn't
  442.   have the intended effect under automatic trimming, since that memory
  443.   will immediately be returned to the system.
  444.  
  445. DEFAULT_MMAP_THRESHOLD       default: 256K
  446.       Also settable using mallopt(M_MMAP_THRESHOLD, x)
  447.   The request size threshold for using MMAP to directly service a
  448.   request. Requests of at least this size that cannot be allocated
  449.   using already-existing space will be serviced via mmap.  (If enough
  450.   normal freed space already exists it is used instead.)  Using mmap
  451.   segregates relatively large chunks of memory so that they can be
  452.   individually obtained and released from the host system. A request
  453.   serviced through mmap is never reused by any other request (at least
  454.   not directly; the system may just so happen to remap successive
  455.   requests to the same locations).  Segregating space in this way has
  456.   the benefits that: Mmapped space can always be individually released
  457.   back to the system, which helps keep the system level memory demands
  458.   of a long-lived program low.  Also, mapped memory doesn't become
  459.   `locked' between other chunks, as can happen with normally allocated
  460.   chunks, which means that even trimming via malloc_trim would not
  461.   release them.  However, it has the disadvantage that the space
  462.   cannot be reclaimed, consolidated, and then used to service later
  463.   requests, as happens with normal chunks.  The advantages of mmap
  464.   nearly always outweigh disadvantages for "large" chunks, but the
  465.   value of "large" may vary across systems.  The default is an
  466.   empirically derived value that works well in most systems. You can
  467.   disable mmap by setting to MAX_SIZE_T.
  468.  
  469. MAX_RELEASE_CHECK_RATE   default: 255 unless not HAVE_MMAP
  470.   The number of consolidated frees between checks to release
  471.   unused segments when freeing. When using non-contiguous segments,
  472.   especially with multiple mspaces, checking only for topmost space
  473.   doesn't always suffice to trigger trimming. To compensate for this,
  474.   free() will, with a period of MAX_RELEASE_CHECK_RATE (or the
  475.   current number of segments, if greater) try to release unused
  476.   segments to the OS when freeing chunks that result in
  477.   consolidation. The best value for this parameter is a compromise
  478.   between slowing down frees with relatively costly checks that
  479.   rarely trigger versus holding on to unused memory. To effectively
  480.   disable, set to MAX_SIZE_T. This may lead to a very slight speed
  481.   improvement at the expense of carrying around more memory.
  482. */
  483.  
  484. #ifndef WIN32
  485. #ifdef _WIN32
  486. #define WIN32 1
  487. #endif  /* _WIN32 */
  488. #endif  /* WIN32 */
  489. #ifdef WIN32
  490. #define WIN32_LEAN_AND_MEAN
  491. #include <windows.h>
  492. #define HAVE_MMAP 1
  493. #define HAVE_MORECORE 0
  494. #define LACKS_UNISTD_H
  495. #define LACKS_SYS_PARAM_H
  496. #define LACKS_SYS_MMAN_H
  497. #define LACKS_STRING_H
  498. #define LACKS_STRINGS_H
  499. #define LACKS_SYS_TYPES_H
  500. #define LACKS_ERRNO_H
  501. #define MALLOC_FAILURE_ACTION
  502. #ifdef _WIN32_WCE /* WINCE reportedly does not clear */
  503. #define MMAP_CLEARS 0
  504. #else
  505. #define MMAP_CLEARS 1
  506. #endif /* _WIN32_WCE */
  507. #endif  /* WIN32 */
  508.  
  509. #if defined(DARWIN) || defined(_DARWIN)
  510. /* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
  511. #ifndef HAVE_MORECORE
  512. #define HAVE_MORECORE 0
  513. #define HAVE_MMAP 1
  514. #endif  /* HAVE_MORECORE */
  515. #endif  /* DARWIN */
  516.  
  517. #ifndef LACKS_SYS_TYPES_H
  518. #include <sys/types.h>  /* For size_t */
  519. #endif  /* LACKS_SYS_TYPES_H */
  520.  
  521. /* The maximum possible size_t value has all bits set */
  522. #define MAX_SIZE_T           (~(size_t)0)
  523.  
  524. #ifndef ONLY_MSPACES
  525. #define ONLY_MSPACES 0
  526. #endif  /* ONLY_MSPACES */
  527. #ifndef MSPACES
  528. #if ONLY_MSPACES
  529. #define MSPACES 1
  530. #else   /* ONLY_MSPACES */
  531. #define MSPACES 0
  532. #endif  /* ONLY_MSPACES */
  533. #endif  /* MSPACES */
  534. #ifndef MALLOC_ALIGNMENT
  535. #define MALLOC_ALIGNMENT ((size_t)8U)
  536. #endif  /* MALLOC_ALIGNMENT */
  537. #ifndef FOOTERS
  538. #define FOOTERS 0
  539. #endif  /* FOOTERS */
  540. #ifndef ABORT
  541. #define ABORT  abort()
  542. #endif  /* ABORT */
  543. #ifndef ABORT_ON_ASSERT_FAILURE
  544. #define ABORT_ON_ASSERT_FAILURE 1
  545. #endif  /* ABORT_ON_ASSERT_FAILURE */
  546. #ifndef PROCEED_ON_ERROR
  547. #define PROCEED_ON_ERROR 0
  548. #endif  /* PROCEED_ON_ERROR */
  549. #ifndef USE_LOCKS
  550. #define USE_LOCKS 0
  551. #endif  /* USE_LOCKS */
  552. #ifndef USE_SPIN_LOCKS
  553. #if USE_LOCKS && (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))) || (defined(_MSC_VER) && _MSC_VER>=1310)
  554. #define USE_SPIN_LOCKS 1
  555. #else
  556. #define USE_SPIN_LOCKS 0
  557. #endif /* USE_LOCKS && ... */
  558. #endif /* USE_SPIN_LOCKS */
  559. #ifndef INSECURE
  560. #define INSECURE 0
  561. #endif  /* INSECURE */
  562. #ifndef HAVE_MMAP
  563. #define HAVE_MMAP 1
  564. #endif  /* HAVE_MMAP */
  565. #ifndef MMAP_CLEARS
  566. #define MMAP_CLEARS 1
  567. #endif  /* MMAP_CLEARS */
  568. #ifndef HAVE_MREMAP
  569. #ifdef linux
  570. #define HAVE_MREMAP 1
  571. #else   /* linux */
  572. #define HAVE_MREMAP 0
  573. #endif  /* linux */
  574. #endif  /* HAVE_MREMAP */
  575. #ifndef MALLOC_FAILURE_ACTION
  576. #define MALLOC_FAILURE_ACTION  errno = ENOMEM;
  577. #endif  /* MALLOC_FAILURE_ACTION */
  578. #ifndef HAVE_MORECORE
  579. #if ONLY_MSPACES
  580. #define HAVE_MORECORE 0
  581. #else   /* ONLY_MSPACES */
  582. #define HAVE_MORECORE 1
  583. #endif  /* ONLY_MSPACES */
  584. #endif  /* HAVE_MORECORE */
  585. #if !HAVE_MORECORE
  586. #define MORECORE_CONTIGUOUS 0
  587. #else   /* !HAVE_MORECORE */
  588. #ifndef MORECORE
  589. #define MORECORE sbrk
  590. #endif  /* MORECORE */
  591. #ifndef MORECORE_CONTIGUOUS
  592. #define MORECORE_CONTIGUOUS 1
  593. #endif  /* MORECORE_CONTIGUOUS */
  594. #endif  /* HAVE_MORECORE */
  595. #ifndef DEFAULT_GRANULARITY
  596. #if MORECORE_CONTIGUOUS
  597. #define DEFAULT_GRANULARITY (0)  /* 0 means to compute in init_mparams */
  598. #else   /* MORECORE_CONTIGUOUS */
  599. #define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
  600. #endif  /* MORECORE_CONTIGUOUS */
  601. #endif  /* DEFAULT_GRANULARITY */
  602. #ifndef DEFAULT_TRIM_THRESHOLD
  603. #ifndef MORECORE_CANNOT_TRIM
  604. #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
  605. #else   /* MORECORE_CANNOT_TRIM */
  606. #define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
  607. #endif  /* MORECORE_CANNOT_TRIM */
  608. #endif  /* DEFAULT_TRIM_THRESHOLD */
  609. #ifndef DEFAULT_MMAP_THRESHOLD
  610. #if HAVE_MMAP
  611. #define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
  612. #else   /* HAVE_MMAP */
  613. #define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
  614. #endif  /* HAVE_MMAP */
  615. #endif  /* DEFAULT_MMAP_THRESHOLD */
  616. #ifndef MAX_RELEASE_CHECK_RATE
  617. #if HAVE_MMAP
  618. #define MAX_RELEASE_CHECK_RATE 255
  619. #else
  620. #define MAX_RELEASE_CHECK_RATE MAX_SIZE_T
  621. #endif /* HAVE_MMAP */
  622. #endif /* MAX_RELEASE_CHECK_RATE */
  623. #ifndef USE_BUILTIN_FFS
  624. #define USE_BUILTIN_FFS 0
  625. #endif  /* USE_BUILTIN_FFS */
  626. #ifndef USE_DEV_RANDOM
  627. #define USE_DEV_RANDOM 0
  628. #endif  /* USE_DEV_RANDOM */
  629. #ifndef NO_MALLINFO
  630. #define NO_MALLINFO 0
  631. #endif  /* NO_MALLINFO */
  632. #ifndef MALLINFO_FIELD_TYPE
  633. #define MALLINFO_FIELD_TYPE size_t
  634. #endif  /* MALLINFO_FIELD_TYPE */
  635. #ifndef NO_SEGMENT_TRAVERSAL
  636. #define NO_SEGMENT_TRAVERSAL 0
  637. #endif /* NO_SEGMENT_TRAVERSAL */
  638.  
  639. /*
  640.   mallopt tuning options.  SVID/XPG defines four standard parameter
  641.   numbers for mallopt, normally defined in malloc.h.  None of these
  642.   are used in this malloc, so setting them has no effect. But this
  643.   malloc does support the following options.
  644. */
  645.  
  646. #define M_TRIM_THRESHOLD     (-1)
  647. #define M_GRANULARITY        (-2)
  648. #define M_MMAP_THRESHOLD     (-3)
  649.  
  650. /* ------------------------ Mallinfo declarations ------------------------ */
  651.  
  652. #if !NO_MALLINFO
  653. /*
  654.   This version of malloc supports the standard SVID/XPG mallinfo
  655.   routine that returns a struct containing usage properties and
  656.   statistics. It should work on any system that has a
  657.   /usr/include/malloc.h defining struct mallinfo.  The main
  658.   declaration needed is the mallinfo struct that is returned (by-copy)
  659.   by mallinfo().  The malloinfo struct contains a bunch of fields that
  660.   are not even meaningful in this version of malloc.  These fields are
  661.   are instead filled by mallinfo() with other numbers that might be of
  662.   interest.
  663.  
  664.   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
  665.   /usr/include/malloc.h file that includes a declaration of struct
  666.   mallinfo.  If so, it is included; else a compliant version is
  667.   declared below.  These must be precisely the same for mallinfo() to
  668.   work.  The original SVID version of this struct, defined on most
  669.   systems with mallinfo, declares all fields as ints. But some others
  670.   define as unsigned long. If your system defines the fields using a
  671.   type of different width than listed here, you MUST #include your
  672.   system version and #define HAVE_USR_INCLUDE_MALLOC_H.
  673. */
  674.  
  675. /* #define HAVE_USR_INCLUDE_MALLOC_H */
  676.  
  677. #ifdef HAVE_USR_INCLUDE_MALLOC_H
  678. #include "/usr/include/malloc.h"
  679. #else /* HAVE_USR_INCLUDE_MALLOC_H */
  680.  
  681. struct mallinfo {
  682.   MALLINFO_FIELD_TYPE arena;    /* non-mmapped space allocated from system */
  683.   MALLINFO_FIELD_TYPE ordblks;  /* number of free chunks */
  684.   MALLINFO_FIELD_TYPE smblks;   /* always 0 */
  685.   MALLINFO_FIELD_TYPE hblks;    /* always 0 */
  686.   MALLINFO_FIELD_TYPE hblkhd;   /* space in mmapped regions */
  687.   MALLINFO_FIELD_TYPE usmblks;  /* maximum total allocated space */
  688.   MALLINFO_FIELD_TYPE fsmblks;  /* always 0 */
  689.   MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
  690.   MALLINFO_FIELD_TYPE fordblks; /* total free space */
  691.   MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
  692. };
  693.  
  694. #endif /* HAVE_USR_INCLUDE_MALLOC_H */
  695. #endif /* NO_MALLINFO */
  696.  
  697. /*
  698.   Try to persuade compilers to inline. The most critical functions for
  699.   inlining are defined as macros, so these aren't used for them.
  700. */
  701.  
  702. #ifndef FORCEINLINE
  703.   #if defined(__GNUC__)
  704. #define FORCEINLINE __inline __attribute__ ((always_inline))
  705.   #elif defined(_MSC_VER)
  706.     #define FORCEINLINE __forceinline
  707.   #endif
  708. #endif
  709. #ifndef NOINLINE
  710.   #if defined(__GNUC__)
  711.     #define NOINLINE __attribute__ ((noinline))
  712.   #elif defined(_MSC_VER)
  713.     #define NOINLINE __declspec(noinline)
  714.   #else
  715.     #define NOINLINE
  716.   #endif
  717. #endif
  718.  
  719. #ifdef __cplusplus
  720. extern "C" {
  721. #ifndef FORCEINLINE
  722.  #define FORCEINLINE inline
  723. #endif
  724. #endif /* __cplusplus */
  725. #ifndef FORCEINLINE
  726.  #define FORCEINLINE
  727. #endif
  728.  
  729. #if !ONLY_MSPACES
  730.  
  731. /* ------------------- Declarations of public routines ------------------- */
  732.  
  733. #ifndef USE_DL_PREFIX
  734. #define dlcalloc               calloc
  735. #define dlfree                 free
  736. #define dlmalloc               malloc
  737. #define dlmemalign             memalign
  738. #define dlrealloc              realloc
  739. #define dlvalloc               valloc
  740. #define dlpvalloc              pvalloc
  741. #define dlmallinfo             mallinfo
  742. #define dlmallopt              mallopt
  743. #define dlmalloc_trim          malloc_trim
  744. #define dlmalloc_stats         malloc_stats
  745. #define dlmalloc_usable_size   malloc_usable_size
  746. #define dlmalloc_footprint     malloc_footprint
  747. #define dlmalloc_max_footprint malloc_max_footprint
  748. #define dlindependent_calloc   independent_calloc
  749. #define dlindependent_comalloc independent_comalloc
  750. #endif /* USE_DL_PREFIX */
  751.  
  752.  
  753. /*
  754.   malloc(size_t n)
  755.   Returns a pointer to a newly allocated chunk of at least n bytes, or
  756.   null if no space is available, in which case errno is set to ENOMEM
  757.   on ANSI C systems.
  758.  
  759.   If n is zero, malloc returns a minimum-sized chunk. (The minimum
  760.   size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
  761.   systems.)  Note that size_t is an unsigned type, so calls with
  762.   arguments that would be negative if signed are interpreted as
  763.   requests for huge amounts of space, which will often fail. The
  764.   maximum supported value of n differs across systems, but is in all
  765.   cases less than the maximum representable value of a size_t.
  766. */
  767. void* dlmalloc(size_t);
  768.  
  769. /*
  770.   free(void* p)
  771.   Releases the chunk of memory pointed to by p, that had been previously
  772.   allocated using malloc or a related routine such as realloc.
  773.   It has no effect if p is null. If p was not malloced or already
  774.   freed, free(p) will by default cause the current program to abort.
  775. */
  776. void  dlfree(void*);
  777.  
  778. /*
  779.   calloc(size_t n_elements, size_t element_size);
  780.   Returns a pointer to n_elements * element_size bytes, with all locations
  781.   set to zero.
  782. */
  783. void* dlcalloc(size_t, size_t);
  784.  
  785. /*
  786.   realloc(void* p, size_t n)
  787.   Returns a pointer to a chunk of size n that contains the same data
  788.   as does chunk p up to the minimum of (n, p's size) bytes, or null
  789.   if no space is available.
  790.  
  791.   The returned pointer may or may not be the same as p. The algorithm
  792.   prefers extending p in most cases when possible, otherwise it
  793.   employs the equivalent of a malloc-copy-free sequence.
  794.  
  795.   If p is null, realloc is equivalent to malloc.
  796.  
  797.   If space is not available, realloc returns null, errno is set (if on
  798.   ANSI) and p is NOT freed.
  799.  
  800.   if n is for fewer bytes than already held by p, the newly unused
  801.   space is lopped off and freed if possible.  realloc with a size
  802.   argument of zero (re)allocates a minimum-sized chunk.
  803.  
  804.   The old unix realloc convention of allowing the last-free'd chunk
  805.   to be used as an argument to realloc is not supported.
  806. */
  807.  
  808. void* dlrealloc(void*, size_t);
  809.  
  810. /*
  811.   memalign(size_t alignment, size_t n);
  812.   Returns a pointer to a newly allocated chunk of n bytes, aligned
  813.   in accord with the alignment argument.
  814.  
  815.   The alignment argument should be a power of two. If the argument is
  816.   not a power of two, the nearest greater power is used.
  817.   8-byte alignment is guaranteed by normal malloc calls, so don't
  818.   bother calling memalign with an argument of 8 or less.
  819.  
  820.   Overreliance on memalign is a sure way to fragment space.
  821. */
  822. void* dlmemalign(size_t, size_t);
  823.  
  824. /*
  825.   valloc(size_t n);
  826.   Equivalent to memalign(pagesize, n), where pagesize is the page
  827.   size of the system. If the pagesize is unknown, 4096 is used.
  828. */
  829. void* dlvalloc(size_t);
  830.  
  831. /*
  832.   mallopt(int parameter_number, int parameter_value)
  833.   Sets tunable parameters The format is to provide a
  834.   (parameter-number, parameter-value) pair.  mallopt then sets the
  835.   corresponding parameter to the argument value if it can (i.e., so
  836.   long as the value is meaningful), and returns 1 if successful else
  837.   0.  SVID/XPG/ANSI defines four standard param numbers for mallopt,
  838.   normally defined in malloc.h.  None of these are use in this malloc,
  839.   so setting them has no effect. But this malloc also supports other
  840.   options in mallopt. See below for details.  Briefly, supported
  841.   parameters are as follows (listed defaults are for "typical"
  842.   configurations).
  843.  
  844.   Symbol            param #  default    allowed param values
  845.   M_TRIM_THRESHOLD     -1   2*1024*1024   any   (MAX_SIZE_T disables)
  846.   M_GRANULARITY        -2     page size   any power of 2 >= page size
  847.   M_MMAP_THRESHOLD     -3      256*1024   any   (or 0 if no MMAP support)
  848. */
  849. int dlmallopt(int, int);
  850.  
  851. /*
  852.   malloc_footprint();
  853.   Returns the number of bytes obtained from the system.  The total
  854.   number of bytes allocated by malloc, realloc etc., is less than this
  855.   value. Unlike mallinfo, this function returns only a precomputed
  856.   result, so can be called frequently to monitor memory consumption.
  857.   Even if locks are otherwise defined, this function does not use them,
  858.   so results might not be up to date.
  859. */
  860. size_t dlmalloc_footprint(void);
  861.  
  862. /*
  863.   malloc_max_footprint();
  864.   Returns the maximum number of bytes obtained from the system. This
  865.   value will be greater than current footprint if deallocated space
  866.   has been reclaimed by the system. The peak number of bytes allocated
  867.   by malloc, realloc etc., is less than this value. Unlike mallinfo,
  868.   this function returns only a precomputed result, so can be called
  869.   frequently to monitor memory consumption.  Even if locks are
  870.   otherwise defined, this function does not use them, so results might
  871.   not be up to date.
  872. */
  873. size_t dlmalloc_max_footprint(void);
  874.  
  875. #if !NO_MALLINFO
  876. /*
  877.   mallinfo()
  878.   Returns (by copy) a struct containing various summary statistics:
  879.  
  880.   arena:     current total non-mmapped bytes allocated from system
  881.   ordblks:   the number of free chunks
  882.   smblks:    always zero.
  883.   hblks:     current number of mmapped regions
  884.   hblkhd:    total bytes held in mmapped regions
  885.   usmblks:   the maximum total allocated space. This will be greater
  886.                 than current total if trimming has occurred.
  887.   fsmblks:   always zero
  888.   uordblks:  current total allocated space (normal or mmapped)
  889.   fordblks:  total free space
  890.   keepcost:  the maximum number of bytes that could ideally be released
  891.                back to system via malloc_trim. ("ideally" means that
  892.                it ignores page restrictions etc.)
  893.  
  894.   Because these fields are ints, but internal bookkeeping may
  895.   be kept as longs, the reported values may wrap around zero and
  896.   thus be inaccurate.
  897. */
  898. struct mallinfo dlmallinfo(void);
  899. #endif /* NO_MALLINFO */
  900.  
  901. /*
  902.   independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
  903.  
  904.   independent_calloc is similar to calloc, but instead of returning a
  905.   single cleared space, it returns an array of pointers to n_elements
  906.   independent elements that can hold contents of size elem_size, each
  907.   of which starts out cleared, and can be independently freed,
  908.   realloc'ed etc. The elements are guaranteed to be adjacently
  909.   allocated (this is not guaranteed to occur with multiple callocs or
  910.   mallocs), which may also improve cache locality in some
  911.   applications.
  912.  
  913.   The "chunks" argument is optional (i.e., may be null, which is
  914.   probably the most typical usage). If it is null, the returned array
  915.   is itself dynamically allocated and should also be freed when it is
  916.   no longer needed. Otherwise, the chunks array must be of at least
  917.   n_elements in length. It is filled in with the pointers to the
  918.   chunks.
  919.  
  920.   In either case, independent_calloc returns this pointer array, or
  921.   null if the allocation failed.  If n_elements is zero and "chunks"
  922.   is null, it returns a chunk representing an array with zero elements
  923.   (which should be freed if not wanted).
  924.  
  925.   Each element must be individually freed when it is no longer
  926.   needed. If you'd like to instead be able to free all at once, you
  927.   should instead use regular calloc and assign pointers into this
  928.   space to represent elements.  (In this case though, you cannot
  929.   independently free elements.)
  930.  
  931.   independent_calloc simplifies and speeds up implementations of many
  932.   kinds of pools.  It may also be useful when constructing large data
  933.   structures that initially have a fixed number of fixed-sized nodes,
  934.   but the number is not known at compile time, and some of the nodes
  935.   may later need to be freed. For example:
  936.  
  937.   struct Node { int item; struct Node* next; };
  938.  
  939.   struct Node* build_list() {
  940.     struct Node** pool;
  941.     int n = read_number_of_nodes_needed();
  942.     if (n <= 0) return 0;
  943.     pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
  944.     if (pool == 0) die();
  945.     // organize into a linked list...
  946.     struct Node* first = pool[0];
  947.     for (i = 0; i < n-1; ++i)
  948.       pool[i]->next = pool[i+1];
  949.     free(pool);     // Can now free the array (or not, if it is needed later)
  950.     return first;
  951.   }
  952. */
  953. void** dlindependent_calloc(size_t, size_t, void**);
  954.  
  955. /*
  956.   independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
  957.  
  958.   independent_comalloc allocates, all at once, a set of n_elements
  959.   chunks with sizes indicated in the "sizes" array.    It returns
  960.   an array of pointers to these elements, each of which can be
  961.   independently freed, realloc'ed etc. The elements are guaranteed to
  962.   be adjacently allocated (this is not guaranteed to occur with
  963.   multiple callocs or mallocs), which may also improve cache locality
  964.   in some applications.
  965.  
  966.   The "chunks" argument is optional (i.e., may be null). If it is null
  967.   the returned array is itself dynamically allocated and should also
  968.   be freed when it is no longer needed. Otherwise, the chunks array
  969.   must be of at least n_elements in length. It is filled in with the
  970.   pointers to the chunks.
  971.  
  972.   In either case, independent_comalloc returns this pointer array, or
  973.   null if the allocation failed.  If n_elements is zero and chunks is
  974.   null, it returns a chunk representing an array with zero elements
  975.   (which should be freed if not wanted).
  976.  
  977.   Each element must be individually freed when it is no longer
  978.   needed. If you'd like to instead be able to free all at once, you
  979.   should instead use a single regular malloc, and assign pointers at
  980.   particular offsets in the aggregate space. (In this case though, you
  981.   cannot independently free elements.)
  982.  
  983.   independent_comallac differs from independent_calloc in that each
  984.   element may have a different size, and also that it does not
  985.   automatically clear elements.
  986.  
  987.   independent_comalloc can be used to speed up allocation in cases
  988.   where several structs or objects must always be allocated at the
  989.   same time.  For example:
  990.  
  991.   struct Head { ... }
  992.   struct Foot { ... }
  993.  
  994.   void send_message(char* msg) {
  995.     int msglen = strlen(msg);
  996.     size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
  997.     void* chunks[3];
  998.     if (independent_comalloc(3, sizes, chunks) == 0)
  999.       die();
  1000.     struct Head* head = (struct Head*)(chunks[0]);
  1001.     char*        body = (char*)(chunks[1]);
  1002.     struct Foot* foot = (struct Foot*)(chunks[2]);
  1003.     // ...
  1004.   }
  1005.  
  1006.   In general though, independent_comalloc is worth using only for
  1007.   larger values of n_elements. For small values, you probably won't
  1008.   detect enough difference from series of malloc calls to bother.
  1009.  
  1010.   Overuse of independent_comalloc can increase overall memory usage,
  1011.   since it cannot reuse existing noncontiguous small chunks that
  1012.   might be available for some of the elements.
  1013. */
  1014. void** dlindependent_comalloc(size_t, size_t*, void**);
  1015.  
  1016.  
  1017. /*
  1018.   pvalloc(size_t n);
  1019.   Equivalent to valloc(minimum-page-that-holds(n)), that is,
  1020.   round up n to nearest pagesize.
  1021.  */
  1022. void*  dlpvalloc(size_t);
  1023.  
  1024. /*
  1025.   malloc_trim(size_t pad);
  1026.  
  1027.   If possible, gives memory back to the system (via negative arguments
  1028.   to sbrk) if there is unused memory at the `high' end of the malloc
  1029.   pool or in unused MMAP segments. You can call this after freeing
  1030.   large blocks of memory to potentially reduce the system-level memory
  1031.   requirements of a program. However, it cannot guarantee to reduce
  1032.   memory. Under some allocation patterns, some large free blocks of
  1033.   memory will be locked between two used chunks, so they cannot be
  1034.   given back to the system.
  1035.  
  1036.   The `pad' argument to malloc_trim represents the amount of free
  1037.   trailing space to leave untrimmed. If this argument is zero, only
  1038.   the minimum amount of memory to maintain internal data structures
  1039.   will be left. Non-zero arguments can be supplied to maintain enough
  1040.   trailing space to service future expected allocations without having
  1041.   to re-obtain memory from the system.
  1042.  
  1043.   Malloc_trim returns 1 if it actually released any memory, else 0.
  1044. */
  1045. int  dlmalloc_trim(size_t);
  1046.  
  1047. /*
  1048.   malloc_usable_size(void* p);
  1049.  
  1050.   Returns the number of bytes you can actually use in
  1051.   an allocated chunk, which may be more than you requested (although
  1052.   often not) due to alignment and minimum size constraints.
  1053.   You can use this many bytes without worrying about
  1054.   overwriting other allocated objects. This is not a particularly great
  1055.   programming practice. malloc_usable_size can be more useful in
  1056.   debugging and assertions, for example:
  1057.  
  1058.   p = malloc(n);
  1059.   assert(malloc_usable_size(p) >= 256);
  1060. */
  1061. size_t dlmalloc_usable_size(void*);
  1062.  
  1063. /*
  1064.   malloc_stats();
  1065.   Prints on stderr the amount of space obtained from the system (both
  1066.   via sbrk and mmap), the maximum amount (which may be more than
  1067.   current if malloc_trim and/or munmap got called), and the current
  1068.   number of bytes allocated via malloc (or realloc, etc) but not yet
  1069.   freed. Note that this is the number of bytes allocated, not the
  1070.   number requested. It will be larger than the number requested
  1071.   because of alignment and bookkeeping overhead. Because it includes
  1072.   alignment wastage as being in use, this figure may be greater than
  1073.   zero even when no user-level chunks are allocated.
  1074.  
  1075.   The reported current and maximum system memory can be inaccurate if
  1076.   a program makes other calls to system memory allocation functions
  1077.   (normally sbrk) outside of malloc.
  1078.  
  1079.   malloc_stats prints only the most commonly interesting statistics.
  1080.   More information can be obtained by calling mallinfo.
  1081. */
  1082. void  dlmalloc_stats(void);
  1083.  
  1084. #endif /* ONLY_MSPACES */
  1085.  
  1086. #if MSPACES
  1087.  
  1088. /*
  1089.   mspace is an opaque type representing an independent
  1090.   region of space that supports mspace_malloc, etc.
  1091. */
  1092. typedef void* mspace;
  1093.  
  1094. /*
  1095.   create_mspace creates and returns a new independent space with the
  1096.   given initial capacity, or, if 0, the default granularity size.  It
  1097.   returns null if there is no system memory available to create the
  1098.   space.  If argument locked is non-zero, the space uses a separate
  1099.   lock to control access. The capacity of the space will grow
  1100.   dynamically as needed to service mspace_malloc requests.  You can
  1101.   control the sizes of incremental increases of this space by
  1102.   compiling with a different DEFAULT_GRANULARITY or dynamically
  1103.   setting with mallopt(M_GRANULARITY, value).
  1104. */
  1105. mspace create_mspace(size_t capacity, int locked);
  1106.  
  1107. /*
  1108.   destroy_mspace destroys the given space, and attempts to return all
  1109.   of its memory back to the system, returning the total number of
  1110.   bytes freed. After destruction, the results of access to all memory
  1111.   used by the space become undefined.
  1112. */
  1113. size_t destroy_mspace(mspace msp);
  1114.  
  1115. /*
  1116.   create_mspace_with_base uses the memory supplied as the initial base
  1117.   of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
  1118.   space is used for bookkeeping, so the capacity must be at least this
  1119.   large. (Otherwise 0 is returned.) When this initial space is
  1120.   exhausted, additional memory will be obtained from the system.
  1121.   Destroying this space will deallocate all additionally allocated
  1122.   space (if possible) but not the initial base.
  1123. */
  1124. mspace create_mspace_with_base(void* base, size_t capacity, int locked);
  1125.  
  1126. /*
  1127.   mspace_malloc behaves as malloc, but operates within
  1128.   the given space.
  1129. */
  1130. void* mspace_malloc(mspace msp, size_t bytes);
  1131.  
  1132. /*
  1133.   mspace_free behaves as free, but operates within
  1134.   the given space.
  1135.  
  1136.   If compiled with FOOTERS==1, mspace_free is not actually needed.
  1137.   free may be called instead of mspace_free because freed chunks from
  1138.   any space are handled by their originating spaces.
  1139. */
  1140. void mspace_free(mspace msp, void* mem);
  1141.  
  1142. /*
  1143.   mspace_realloc behaves as realloc, but operates within
  1144.   the given space.
  1145.  
  1146.   If compiled with FOOTERS==1, mspace_realloc is not actually
  1147.   needed.  realloc may be called instead of mspace_realloc because
  1148.   realloced chunks from any space are handled by their originating
  1149.   spaces.
  1150. */
  1151. void* mspace_realloc(mspace msp, void* mem, size_t newsize);
  1152.  
  1153. /*
  1154.   mspace_calloc behaves as calloc, but operates within
  1155.   the given space.
  1156. */
  1157. void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
  1158.  
  1159. /*
  1160.   mspace_memalign behaves as memalign, but operates within
  1161.   the given space.
  1162. */
  1163. void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
  1164.  
  1165. /*
  1166.   mspace_independent_calloc behaves as independent_calloc, but
  1167.   operates within the given space.
  1168. */
  1169. void** mspace_independent_calloc(mspace msp, size_t n_elements,
  1170.                                  size_t elem_size, void* chunks[]);
  1171.  
  1172. /*
  1173.   mspace_independent_comalloc behaves as independent_comalloc, but
  1174.   operates within the given space.
  1175. */
  1176. void** mspace_independent_comalloc(mspace msp, size_t n_elements,
  1177.                                    size_t sizes[], void* chunks[]);
  1178.  
  1179. /*
  1180.   mspace_footprint() returns the number of bytes obtained from the
  1181.   system for this space.
  1182. */
  1183. size_t mspace_footprint(mspace msp);
  1184.  
  1185. /*
  1186.   mspace_max_footprint() returns the peak number of bytes obtained from the
  1187.   system for this space.
  1188. */
  1189. size_t mspace_max_footprint(mspace msp);
  1190.  
  1191.  
  1192. #if !NO_MALLINFO
  1193. /*
  1194.   mspace_mallinfo behaves as mallinfo, but reports properties of
  1195.   the given space.
  1196. */
  1197. struct mallinfo mspace_mallinfo(mspace msp);
  1198. #endif /* NO_MALLINFO */
  1199.  
  1200. /*
  1201.   mspace_malloc_stats behaves as malloc_stats, but reports
  1202.   properties of the given space.
  1203. */
  1204. void mspace_malloc_stats(mspace msp);
  1205.  
  1206. /*
  1207.   mspace_trim behaves as malloc_trim, but
  1208.   operates within the given space.
  1209. */
  1210. int mspace_trim(mspace msp, size_t pad);
  1211.  
  1212. /*
  1213.   An alias for mallopt.
  1214. */
  1215. int mspace_mallopt(int, int);
  1216.  
  1217. #endif /* MSPACES */
  1218.  
  1219. #ifdef __cplusplus
  1220. };  /* end of extern "C" */
  1221. #endif /* __cplusplus */
  1222.  
  1223. /*
  1224.   ========================================================================
  1225.   To make a fully customizable malloc.h header file, cut everything
  1226.   above this line, put into file malloc.h, edit to suit, and #include it
  1227.   on the next line, as well as in programs that use this malloc.
  1228.   ========================================================================
  1229. */
  1230.  
  1231. /* #include "malloc.h" */
  1232.  
  1233. /*------------------------------ internal #includes ---------------------- */
  1234.  
  1235. #ifdef WIN32
  1236. #pragma warning( disable : 4146 ) /* no "unsigned" warnings */
  1237. #endif /* WIN32 */
  1238.  
  1239. #include <stdio.h>       /* for printing in malloc_stats */
  1240.  
  1241. #ifndef LACKS_ERRNO_H
  1242. #include <errno.h>       /* for MALLOC_FAILURE_ACTION */
  1243. #endif /* LACKS_ERRNO_H */
  1244. #if FOOTERS
  1245. #include <time.h>        /* for magic initialization */
  1246. #endif /* FOOTERS */
  1247. #ifndef LACKS_STDLIB_H
  1248. #include <stdlib.h>      /* for abort() */
  1249. #endif /* LACKS_STDLIB_H */
  1250. #ifdef DEBUG
  1251. #if ABORT_ON_ASSERT_FAILURE
  1252. #define assert(x) if(!(x)) ABORT
  1253. #else /* ABORT_ON_ASSERT_FAILURE */
  1254. #include <assert.h>
  1255. #endif /* ABORT_ON_ASSERT_FAILURE */
  1256. #else  /* DEBUG */
  1257. #define assert(x)
  1258. #endif /* DEBUG */
  1259. #ifndef LACKS_STRING_H
  1260. #include <string.h>      /* for memset etc */
  1261. #endif  /* LACKS_STRING_H */
  1262. #if USE_BUILTIN_FFS
  1263. #ifndef LACKS_STRINGS_H
  1264. #include <strings.h>     /* for ffs */
  1265. #endif /* LACKS_STRINGS_H */
  1266. #endif /* USE_BUILTIN_FFS */
  1267. #if HAVE_MMAP
  1268. #ifndef LACKS_SYS_MMAN_H
  1269. #include <sys/mman.h>    /* for mmap */
  1270. #endif /* LACKS_SYS_MMAN_H */
  1271. #ifndef LACKS_FCNTL_H
  1272. #include <fcntl.h>
  1273. #endif /* LACKS_FCNTL_H */
  1274. #endif /* HAVE_MMAP */
  1275. #if HAVE_MORECORE
  1276. #ifndef LACKS_UNISTD_H
  1277. #include <unistd.h>     /* for sbrk */
  1278. #else /* LACKS_UNISTD_H */
  1279. #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
  1280. extern void*     sbrk(ptrdiff_t);
  1281. #endif /* FreeBSD etc */
  1282. #endif /* LACKS_UNISTD_H */
  1283. #endif /* HAVE_MMAP */
  1284.  
  1285. /* Declarations for locking */
  1286. #if USE_LOCKS
  1287. #ifndef WIN32
  1288. #include <pthread.h>
  1289. #if defined (__SVR4) && defined (__sun)  /* solaris */
  1290. #include <thread.h>
  1291. #endif /* solaris */
  1292. #else
  1293. #ifndef _M_AMD64
  1294. /* These are already defined on AMD64 builds */
  1295. #ifdef __cplusplus
  1296. extern "C" {
  1297. #endif /* __cplusplus */
  1298. LONG __cdecl _InterlockedCompareExchange(LPLONG volatile Dest, LONG Exchange, LONG Comp);
  1299. LONG __cdecl _InterlockedExchange(LPLONG volatile Target, LONG Value);
  1300. #ifdef __cplusplus
  1301. }
  1302. #endif /* __cplusplus */
  1303. #endif /* _M_AMD64 */
  1304. #pragma intrinsic (_InterlockedCompareExchange)
  1305. #pragma intrinsic (_InterlockedExchange)
  1306. #define interlockedcompareexchange _InterlockedCompareExchange
  1307. #define interlockedexchange _InterlockedExchange
  1308. #endif /* Win32 */
  1309. #endif /* USE_LOCKS */
  1310.  
  1311. /* Declarations for bit scanning on win32 */
  1312. #if defined(_MSC_VER) && _MSC_VER>=1300
  1313. #ifndef BitScanForward  /* Try to avoid pulling in WinNT.h */
  1314. #ifdef __cplusplus
  1315. extern "C" {
  1316. #endif /* __cplusplus */
  1317. unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
  1318. unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
  1319. #ifdef __cplusplus
  1320. }
  1321. #endif /* __cplusplus */
  1322.  
  1323. #define BitScanForward _BitScanForward
  1324. #define BitScanReverse _BitScanReverse
  1325. #pragma intrinsic(_BitScanForward)
  1326. #pragma intrinsic(_BitScanReverse)
  1327. #endif /* BitScanForward */
  1328. #endif /* defined(_MSC_VER) && _MSC_VER>=1300 */
  1329.  
  1330. #ifndef WIN32
  1331. #ifndef malloc_getpagesize
  1332. #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
  1333. #    ifndef _SC_PAGE_SIZE
  1334. #      define _SC_PAGE_SIZE _SC_PAGESIZE
  1335. #    endif
  1336. #  endif
  1337. #  ifdef _SC_PAGE_SIZE
  1338. #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
  1339. #  else
  1340. #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
  1341.        extern size_t getpagesize();
  1342. #      define malloc_getpagesize getpagesize()
  1343. #    else
  1344. #      ifdef WIN32 /* use supplied emulation of getpagesize */
  1345. #        define malloc_getpagesize getpagesize()
  1346. #      else
  1347. #        ifndef LACKS_SYS_PARAM_H
  1348. #          include <sys/param.h>
  1349. #        endif
  1350. #        ifdef EXEC_PAGESIZE
  1351. #          define malloc_getpagesize EXEC_PAGESIZE
  1352. #        else
  1353. #          ifdef NBPG
  1354. #            ifndef CLSIZE
  1355. #              define malloc_getpagesize NBPG
  1356. #            else
  1357. #              define malloc_getpagesize (NBPG * CLSIZE)
  1358. #            endif
  1359. #          else
  1360. #            ifdef NBPC
  1361. #              define malloc_getpagesize NBPC
  1362. #            else
  1363. #              ifdef PAGESIZE
  1364. #                define malloc_getpagesize PAGESIZE
  1365. #              else /* just guess */
  1366. #                define malloc_getpagesize ((size_t)4096U)
  1367. #              endif
  1368. #            endif
  1369. #          endif
  1370. #        endif
  1371. #      endif
  1372. #    endif
  1373. #  endif
  1374. #endif
  1375. #endif
  1376.  
  1377.  
  1378.  
  1379. /* ------------------- size_t and alignment properties -------------------- */
  1380.  
  1381. /* The byte and bit size of a size_t */
  1382. #define SIZE_T_SIZE         (sizeof(size_t))
  1383. #define SIZE_T_BITSIZE      (sizeof(size_t) << 3)
  1384.  
  1385. /* Some constants coerced to size_t */
  1386. /* Annoying but necessary to avoid errors on some platforms */
  1387. #define SIZE_T_ZERO         ((size_t)0)
  1388. #define SIZE_T_ONE          ((size_t)1)
  1389. #define SIZE_T_TWO          ((size_t)2)
  1390. #define SIZE_T_FOUR         ((size_t)4)
  1391. #define TWO_SIZE_T_SIZES    (SIZE_T_SIZE<<1)
  1392. #define FOUR_SIZE_T_SIZES   (SIZE_T_SIZE<<2)
  1393. #define SIX_SIZE_T_SIZES    (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
  1394. #define HALF_MAX_SIZE_T     (MAX_SIZE_T / 2U)
  1395.  
  1396. /* The bit mask value corresponding to MALLOC_ALIGNMENT */
  1397. #define CHUNK_ALIGN_MASK    (MALLOC_ALIGNMENT - SIZE_T_ONE)
  1398.  
  1399. /* True if address a has acceptable alignment */
  1400. #define is_aligned(A)       (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
  1401.  
  1402. /* the number of bytes to offset an address to align it */
  1403. #define align_offset(A)\
  1404.  ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
  1405.   ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
  1406.  
  1407. /* -------------------------- MMAP preliminaries ------------------------- */
  1408.  
  1409. /*
  1410.    If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
  1411.    checks to fail so compiler optimizer can delete code rather than
  1412.    using so many "#if"s.
  1413. */
  1414.  
  1415.  
  1416. /* MORECORE and MMAP must return MFAIL on failure */
  1417. #define MFAIL                ((void*)(MAX_SIZE_T))
  1418. #define CMFAIL               ((char*)(MFAIL)) /* defined for convenience */
  1419.  
  1420. #if !HAVE_MMAP
  1421. #define IS_MMAPPED_BIT       (SIZE_T_ZERO)
  1422. #define USE_MMAP_BIT         (SIZE_T_ZERO)
  1423. #define CALL_MMAP(s)         MFAIL
  1424. #define CALL_MUNMAP(a, s)    (-1)
  1425. #define DIRECT_MMAP(s)       MFAIL
  1426.  
  1427. #else /* HAVE_MMAP */
  1428. #define IS_MMAPPED_BIT       (SIZE_T_ONE)
  1429. #define USE_MMAP_BIT         (SIZE_T_ONE)
  1430.  
  1431. #ifndef WIN32
  1432. #define CALL_MUNMAP(a, s)    munmap((a), (s))
  1433. #define MMAP_PROT            (PROT_READ|PROT_WRITE)
  1434. #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
  1435. #define MAP_ANONYMOUS        MAP_ANON
  1436. #endif /* MAP_ANON */
  1437. #ifdef MAP_ANONYMOUS
  1438. #define MMAP_FLAGS           (MAP_PRIVATE|MAP_ANONYMOUS)
  1439. #define CALL_MMAP(s)         mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
  1440. #else /* MAP_ANONYMOUS */
  1441. /*
  1442.    Nearly all versions of mmap support MAP_ANONYMOUS, so the following
  1443.    is unlikely to be needed, but is supplied just in case.
  1444. */
  1445. #define MMAP_FLAGS           (MAP_PRIVATE)
  1446. static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
  1447. #define CALL_MMAP(s) ((dev_zero_fd < 0) ? \
  1448.            (dev_zero_fd = open("/dev/zero", O_RDWR), \
  1449.             mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
  1450.             mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
  1451. #endif /* MAP_ANONYMOUS */
  1452.  
  1453. #define DIRECT_MMAP(s)       CALL_MMAP(s)
  1454. #else /* WIN32 */
  1455.  
  1456. /* Win32 MMAP via VirtualAlloc */
  1457. static FORCEINLINE void* win32mmap(size_t size) {
  1458.   void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
  1459.   return (ptr != 0)? ptr: MFAIL;
  1460. }
  1461.  
  1462. /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
  1463. static FORCEINLINE void* win32direct_mmap(size_t size) {
  1464.   void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
  1465.                            PAGE_READWRITE);
  1466.   return (ptr != 0)? ptr: MFAIL;
  1467. }
  1468.  
  1469. /* This function supports releasing coalesed segments */
  1470. static FORCEINLINE int win32munmap(void* ptr, size_t size) {
  1471.   MEMORY_BASIC_INFORMATION minfo;
  1472.   char* cptr = (char*)ptr;
  1473.   while (size) {
  1474.     if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
  1475.       return -1;
  1476.     if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
  1477.         minfo.State != MEM_COMMIT || minfo.RegionSize > size)
  1478.       return -1;
  1479.     if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
  1480.       return -1;
  1481.     cptr += minfo.RegionSize;
  1482.     size -= minfo.RegionSize;
  1483.   }
  1484.   return 0;
  1485. }
  1486.  
  1487. #define CALL_MMAP(s)         win32mmap(s)
  1488. #define CALL_MUNMAP(a, s)    win32munmap((a), (s))
  1489. #define DIRECT_MMAP(s)       win32direct_mmap(s)
  1490. #endif /* WIN32 */
  1491. #endif /* HAVE_MMAP */
  1492.  
  1493. #if HAVE_MMAP && HAVE_MREMAP
  1494. #define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
  1495. #else  /* HAVE_MMAP && HAVE_MREMAP */
  1496. #define CALL_MREMAP(addr, osz, nsz, mv) ((void)(addr),(void)(osz), \
  1497.                                          (void)(nsz), (void)(mv),MFAIL)
  1498. #endif /* HAVE_MMAP && HAVE_MREMAP */
  1499.  
  1500. #if HAVE_MORECORE
  1501. #define CALL_MORECORE(S)     MORECORE(S)
  1502. #else  /* HAVE_MORECORE */
  1503. #define CALL_MORECORE(S)     MFAIL
  1504. #endif /* HAVE_MORECORE */
  1505.  
  1506. /* mstate bit set if continguous morecore disabled or failed */
  1507. #define USE_NONCONTIGUOUS_BIT (4U)
  1508.  
  1509. /* segment bit set in create_mspace_with_base */
  1510. #define EXTERN_BIT            (8U)
  1511.  
  1512.  
  1513. /* --------------------------- Lock preliminaries ------------------------ */
  1514.  
  1515. /*
  1516.   When locks are defined, there are up to two global locks:
  1517.  
  1518.   * If HAVE_MORECORE, morecore_mutex protects sequences of calls to
  1519.     MORECORE.  In many cases sys_alloc requires two calls, that should
  1520.     not be interleaved with calls by other threads.  This does not
  1521.     protect against direct calls to MORECORE by other threads not
  1522.     using this lock, so there is still code to cope the best we can on
  1523.     interference.
  1524.  
  1525.   * magic_init_mutex ensures that mparams.magic and other
  1526.     unique mparams values are initialized only once.
  1527.  
  1528.    To enable use in layered extensions, locks are reentrant.
  1529.  
  1530.    Because lock-protected regions generally have bounded times, we use
  1531.    the supplied simple spinlocks in the custom versions for x86.
  1532.  
  1533.    If USE_LOCKS is > 1, the definitions of lock routines here are
  1534.    bypassed, in which case you will need to define at least
  1535.    INITIAL_LOCK, ACQUIRE_LOCK, RELEASE_LOCK, and
  1536.    NULL_LOCK_INITIALIZER, and possibly TRY_LOCK and IS_LOCKED
  1537.    (The latter two are not used in this malloc, but are
  1538.    commonly needed in extensions.)
  1539. */
  1540.  
  1541. #if USE_LOCKS == 1
  1542.  
  1543. #if USE_SPIN_LOCKS
  1544. #ifndef WIN32
  1545. /* Custom pthread-style spin locks on x86 and x64 for gcc */
  1546. struct pthread_mlock_t
  1547. {
  1548.   volatile pthread_t threadid;
  1549.   volatile unsigned int c;
  1550.   volatile unsigned int l;
  1551. };
  1552. #define MLOCK_T struct pthread_mlock_t
  1553. #define CURRENT_THREAD        pthread_self()
  1554. #define SPINS_PER_YIELD       63
  1555. static FORCEINLINE int pthread_acquire_lock (MLOCK_T *sl) {
  1556.   if(CURRENT_THREAD==sl->threadid)
  1557.     ++sl->c;
  1558.   else {
  1559.     int spins = 0;
  1560.     for (;;) {
  1561.       int ret;
  1562.       __asm__ __volatile__ ("lock cmpxchgl %2,(%1)" : "=a" (ret) : "r" (&sl->l), "r" (1), "a" (0));
  1563.       if(!ret) {
  1564.         assert(!sl->threadid);
  1565.         sl->threadid=CURRENT_THREAD;
  1566.         sl->c=1;
  1567.         break;
  1568.       }
  1569.       if ((++spins & SPINS_PER_YIELD) == 0) {
  1570. #if defined (__SVR4) && defined (__sun) /* solaris */
  1571.         thr_yield();
  1572. #else
  1573. #ifdef linux
  1574.         sched_yield();
  1575. #else  /* no-op yield on unknown systems */
  1576.         ;
  1577. #endif /* linux */
  1578. #endif /* solaris */
  1579.       }
  1580.     }
  1581.   }
  1582.  
  1583.   return 0;
  1584. }
  1585.  
  1586. static FORCEINLINE void pthread_release_lock (MLOCK_T *sl) {
  1587.   int ret;
  1588.   assert(CURRENT_THREAD==sl->threadid);
  1589.   if (!--sl->c) {
  1590.     sl->threadid=0;
  1591.     __asm__ __volatile__ ("xchgl %2,(%1)" : "=r" (ret) : "r" (&sl->l), "0" (0));
  1592.   }
  1593. }
  1594.  
  1595. static FORCEINLINE int pthread_try_lock (MLOCK_T *sl) {
  1596.   int ret;
  1597.   __asm__ __volatile__ ("lock cmpxchgl %2,(%1)" : "=a" (ret) : "r" (&sl->l), "r" (1), "a" (0));
  1598.   if(!ret){
  1599.     assert(!sl->threadid);
  1600.     sl->threadid=CURRENT_THREAD;
  1601.     sl->c=1;
  1602.     return 1;
  1603.   }
  1604.   return 0;
  1605. }
  1606.  
  1607. #define INITIAL_LOCK(sl)      (memset((sl), 0, sizeof(MLOCK_T)), 0)
  1608. #define ACQUIRE_LOCK(sl)      pthread_acquire_lock(sl)
  1609. #define RELEASE_LOCK(sl)      pthread_release_lock(sl)
  1610. #define TRY_LOCK(sl)          pthread_try_lock(sl)
  1611. #define IS_LOCKED(sl)         ((sl)->l)
  1612.  
  1613. static MLOCK_T magic_init_mutex = {0, 0, 0 };
  1614. #if HAVE_MORECORE
  1615. static MLOCK_T morecore_mutex = {0, 0, 0 };
  1616. #endif /* HAVE_MORECORE */
  1617.  
  1618. #else /* WIN32 */
  1619. /* Custom win32-style spin locks on x86 and x64 for MSC */
  1620. struct win32_mlock_t
  1621. {
  1622.   volatile long threadid;
  1623.   volatile unsigned int c;
  1624.   long l;
  1625. };
  1626. #define MLOCK_T struct win32_mlock_t
  1627. #define CURRENT_THREAD        GetCurrentThreadId()
  1628. #define SPINS_PER_YIELD    63
  1629. static FORCEINLINE int win32_acquire_lock (MLOCK_T *sl) {
  1630.   long mythreadid=CURRENT_THREAD;
  1631.   if(mythreadid==sl->threadid)
  1632.     ++sl->c;
  1633.   else {
  1634.     int spins = 0;
  1635.     for (;;) {
  1636.       if (!interlockedexchange(&sl->l, 1)) {
  1637.         assert(!sl->threadid);
  1638.         sl->threadid=mythreadid;
  1639.         sl->c=1;
  1640.         break;
  1641.       }
  1642.       if ((++spins & SPINS_PER_YIELD) == 0)
  1643.         SleepEx(0, FALSE);
  1644.     }
  1645.   }
  1646.   return 0;
  1647. }
  1648.  
  1649. static FORCEINLINE void win32_release_lock (MLOCK_T *sl) {
  1650.   assert(CURRENT_THREAD==sl->threadid);
  1651.   if (!--sl->c) {
  1652.     sl->threadid=0;
  1653.     interlockedexchange (&sl->l, 0);
  1654.   }
  1655. }
  1656.  
  1657. static FORCEINLINE int win32_try_lock (MLOCK_T *sl) {
  1658.   if (!interlockedexchange(&sl->l, 1)){
  1659.     assert(!sl->threadid);
  1660.     sl->threadid=CURRENT_THREAD;
  1661.     sl->c=1;
  1662.     return 1;
  1663.   }
  1664.   return 0;
  1665. }
  1666.  
  1667. #define INITIAL_LOCK(sl)      (memset(sl, 0, sizeof(MLOCK_T)), 0)
  1668. #define ACQUIRE_LOCK(sl)      win32_acquire_lock(sl)
  1669. #define RELEASE_LOCK(sl)      win32_release_lock(sl)
  1670. #define TRY_LOCK(sl)          win32_try_lock(sl)
  1671. #define IS_LOCKED(sl)         ((sl)->l)
  1672.  
  1673. static MLOCK_T magic_init_mutex = {0, 0 };
  1674. #if HAVE_MORECORE
  1675. static MLOCK_T morecore_mutex = {0, 0 };
  1676. #endif /* HAVE_MORECORE */
  1677.  
  1678. #endif /* WIN32 */
  1679. #else /* USE_SPIN_LOCKS */
  1680.  
  1681. #ifndef WIN32
  1682. /* pthreads-based locks */
  1683. struct pthread_mlock_t
  1684. {
  1685.   volatile unsigned int c;
  1686.   pthread_mutex_t l;
  1687. };
  1688. #define MLOCK_T struct pthread_mlock_t
  1689. #define CURRENT_THREAD        pthread_self()
  1690. static FORCEINLINE int pthread_acquire_lock (MLOCK_T *sl) {
  1691.   if(!pthread_mutex_lock(&(sl)->l)){
  1692.     sl->c++;
  1693.     return 0;
  1694.   }
  1695.   return 1;
  1696. }
  1697.  
  1698. static FORCEINLINE void pthread_release_lock (MLOCK_T *sl) {
  1699.   --sl->c;
  1700.   pthread_mutex_unlock(&(sl)->l);
  1701. }
  1702.  
  1703. static FORCEINLINE int pthread_try_lock (MLOCK_T *sl) {
  1704.   if(!pthread_mutex_trylock(&(sl)->l)){
  1705.     sl->c++;
  1706.     return 1;
  1707.   }
  1708.   return 0;
  1709. }
  1710.  
  1711. static FORCEINLINE int pthread_init_lock (MLOCK_T *sl) {
  1712.   pthread_mutexattr_t attr;
  1713.   sl->c=0;
  1714.   if(pthread_mutexattr_init(&attr)) return 1;
  1715.   if(pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1;
  1716.   if(pthread_mutex_init(&sl->l, &attr)) return 1;
  1717.   pthread_mutexattr_destroy(&attr);
  1718.   return 0;
  1719. }
  1720.  
  1721. static FORCEINLINE int pthread_islocked (MLOCK_T *sl) {
  1722.   if(!pthread_try_lock(sl)){
  1723.     int ret = (sl->c != 0);
  1724.     pthread_mutex_unlock(sl);
  1725.     return ret;
  1726.   }
  1727.   return 0;
  1728. }
  1729.  
  1730. #define INITIAL_LOCK(sl)      pthread_init_lock(sl)
  1731. #define ACQUIRE_LOCK(sl)      pthread_acquire_lock(sl)
  1732. #define RELEASE_LOCK(sl)      pthread_release_lock(sl)
  1733. #define TRY_LOCK(sl)          pthread_try_lock(sl)
  1734. #define IS_LOCKED(sl)         pthread_islocked(sl)
  1735.  
  1736. static MLOCK_T magic_init_mutex = {0, PTHREAD_MUTEX_INITIALIZER };
  1737. #if HAVE_MORECORE
  1738. static MLOCK_T morecore_mutex = {0, PTHREAD_MUTEX_INITIALIZER };
  1739. #endif /* HAVE_MORECORE */
  1740.  
  1741. #else /* WIN32 */
  1742. /* Win32 critical sections */
  1743. #define MLOCK_T         CRITICAL_SECTION
  1744. #define CURRENT_THREAD  GetCurrentThreadId()
  1745. #define INITIAL_LOCK(s) (!InitializeCriticalSectionAndSpinCount((s), 4000)
  1746. #define ACQUIRE_LOCK(s) ( (!((s))->DebugInfo ? INITIAL_LOCK((s)) : 0), !EnterCriticalSection((s)), 0)
  1747. #define RELEASE_LOCK(s) ( LeaveCriticalSection((s)), 0 )
  1748. #define TRY_LOCK(s)     ( TryEnterCriticalSection((s)) )
  1749. #define IS_LOCKED(s)    ( (s)->LockCount >= 0 )
  1750. #define NULL_LOCK_INITIALIZER
  1751. static MLOCK_T magic_init_mutex;
  1752. #if HAVE_MORECORE
  1753. static MLOCK_T morecore_mutex;
  1754. #endif /* HAVE_MORECORE */
  1755. #endif /* WIN32 */
  1756. #endif /* USE_SPIN_LOCKS */
  1757. #endif /* USE_LOCKS == 1 */
  1758.  
  1759. /* -----------------------  User-defined locks ------------------------ */
  1760.  
  1761. #if USE_LOCKS > 1
  1762. /* Define your own lock implementation here */
  1763. /* #define INITIAL_LOCK(sl)  ... */
  1764. /* #define ACQUIRE_LOCK(sl)  ... */
  1765. /* #define RELEASE_LOCK(sl)  ... */
  1766. /* #define TRY_LOCK(sl) ... */
  1767. /* #define IS_LOCKED(sl) ... */
  1768. /* #define NULL_LOCK_INITIALIZER ... */
  1769.  
  1770. static MLOCK_T magic_init_mutex = NULL_LOCK_INITIALIZER;
  1771. #if HAVE_MORECORE
  1772. static MLOCK_T morecore_mutex = NULL_LOCK_INITIALIZER;
  1773. #endif /* HAVE_MORECORE */
  1774. #endif /* USE_LOCKS > 1 */
  1775.  
  1776. /* -----------------------  Lock-based state ------------------------ */
  1777.  
  1778.  
  1779. #if USE_LOCKS
  1780. #define USE_LOCK_BIT               (2U)
  1781. #else  /* USE_LOCKS */
  1782. #define USE_LOCK_BIT               (0U)
  1783. #define INITIAL_LOCK(l)
  1784. #endif /* USE_LOCKS */
  1785.  
  1786. #if USE_LOCKS && HAVE_MORECORE
  1787. #define ACQUIRE_MORECORE_LOCK()    ACQUIRE_LOCK(&morecore_mutex);
  1788. #define RELEASE_MORECORE_LOCK()    RELEASE_LOCK(&morecore_mutex);
  1789. #else /* USE_LOCKS && HAVE_MORECORE */
  1790. #define ACQUIRE_MORECORE_LOCK()
  1791. #define RELEASE_MORECORE_LOCK()
  1792. #endif /* USE_LOCKS && HAVE_MORECORE */
  1793.  
  1794. #if USE_LOCKS
  1795. #define ACQUIRE_MAGIC_INIT_LOCK()  ACQUIRE_LOCK(&magic_init_mutex);
  1796. #define RELEASE_MAGIC_INIT_LOCK()  RELEASE_LOCK(&magic_init_mutex);
  1797. #else  /* USE_LOCKS */
  1798. #define ACQUIRE_MAGIC_INIT_LOCK()
  1799. #define RELEASE_MAGIC_INIT_LOCK()
  1800. #endif /* USE_LOCKS */
  1801.  
  1802.  
  1803. /* -----------------------  Chunk representations ------------------------ */
  1804.  
  1805. /*
  1806.   (The following includes lightly edited explanations by Colin Plumb.)
  1807.  
  1808.   The malloc_chunk declaration below is misleading (but accurate and
  1809.   necessary).  It declares a "view" into memory allowing access to
  1810.   necessary fields at known offsets from a given base.
  1811.  
  1812.   Chunks of memory are maintained using a `boundary tag' method as
  1813.   originally described by Knuth.  (See the paper by Paul Wilson
  1814.   ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
  1815.   techniques.)  Sizes of free chunks are stored both in the front of
  1816.   each chunk and at the end.  This makes consolidating fragmented
  1817.   chunks into bigger chunks fast.  The head fields also hold bits
  1818.   representing whether chunks are free or in use.
  1819.  
  1820.   Here are some pictures to make it clearer.  They are "exploded" to
  1821.   show that the state of a chunk can be thought of as extending from
  1822.   the high 31 bits of the head field of its header through the
  1823.   prev_foot and PINUSE_BIT bit of the following chunk header.
  1824.  
  1825.   A chunk that's in use looks like:
  1826.  
  1827.    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  1828.            | Size of previous chunk (if P = 1)                             |
  1829.            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  1830.          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
  1831.          | Size of this chunk                                         1| +-+
  1832.    mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  1833.          |                                                               |
  1834.          +-                                                             -+
  1835.          |                                                               |
  1836.          +-                                                             -+
  1837.          |                                                               :
  1838.          +-      size - sizeof(size_t) available payload bytes          -+
  1839.          :                                                               |
  1840.  chunk-> +-                                                             -+
  1841.          |                                                               |
  1842.          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  1843.        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
  1844.        | Size of next chunk (may or may not be in use)               | +-+
  1845.  mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  1846.  
  1847.     And if it's free, it looks like this:
  1848.  
  1849.    chunk-> +-                                                             -+
  1850.            | User payload (must be in use, or we would have merged!)       |
  1851.            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  1852.          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
  1853.          | Size of this chunk                                         0| +-+
  1854.    mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  1855.          | Next pointer                                                  |
  1856.          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  1857.          | Prev pointer                                                  |
  1858.          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  1859.          |                                                               :
  1860.          +-      size - sizeof(struct chunk) unused bytes               -+
  1861.          :                                                               |
  1862.  chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  1863.          | Size of this chunk                                            |
  1864.          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  1865.        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
  1866.        | Size of next chunk (must be in use, or we would have merged)| +-+
  1867.  mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  1868.        |                                                               :
  1869.        +- User payload                                                -+
  1870.        :                                                               |
  1871.        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  1872.                                                                      |0|
  1873.                                                                      +-+
  1874.   Note that since we always merge adjacent free chunks, the chunks
  1875.   adjacent to a free chunk must be in use.
  1876.  
  1877.   Given a pointer to a chunk (which can be derived trivially from the
  1878.   payload pointer) we can, in O(1) time, find out whether the adjacent
  1879.   chunks are free, and if so, unlink them from the lists that they
  1880.   are on and merge them with the current chunk.
  1881.  
  1882.   Chunks always begin on even word boundaries, so the mem portion
  1883.   (which is returned to the user) is also on an even word boundary, and
  1884.   thus at least double-word aligned.
  1885.  
  1886.   The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
  1887.   chunk size (which is always a multiple of two words), is an in-use
  1888.   bit for the *previous* chunk.  If that bit is *clear*, then the
  1889.   word before the current chunk size contains the previous chunk
  1890.   size, and can be used to find the front of the previous chunk.
  1891.   The very first chunk allocated always has this bit set, preventing
  1892.   access to non-existent (or non-owned) memory. If pinuse is set for
  1893.   any given chunk, then you CANNOT determine the size of the
  1894.   previous chunk, and might even get a memory addressing fault when
  1895.   trying to do so.
  1896.  
  1897.   The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
  1898.   the chunk size redundantly records whether the current chunk is
  1899.   inuse. This redundancy enables usage checks within free and realloc,
  1900.   and reduces indirection when freeing and consolidating chunks.
  1901.  
  1902.   Each freshly allocated chunk must have both cinuse and pinuse set.
  1903.   That is, each allocated chunk borders either a previously allocated
  1904.   and still in-use chunk, or the base of its memory arena. This is
  1905.   ensured by making all allocations from the the `lowest' part of any
  1906.   found chunk.  Further, no free chunk physically borders another one,
  1907.   so each free chunk is known to be preceded and followed by either
  1908.   inuse chunks or the ends of memory.
  1909.  
  1910.   Note that the `foot' of the current chunk is actually represented
  1911.   as the prev_foot of the NEXT chunk. This makes it easier to
  1912.   deal with alignments etc but can be very confusing when trying
  1913.   to extend or adapt this code.
  1914.  
  1915.   The exceptions to all this are
  1916.  
  1917.      1. The special chunk `top' is the top-most available chunk (i.e.,
  1918.         the one bordering the end of available memory). It is treated
  1919.         specially.  Top is never included in any bin, is used only if
  1920.         no other chunk is available, and is released back to the
  1921.         system if it is very large (see M_TRIM_THRESHOLD).  In effect,
  1922.         the top chunk is treated as larger (and thus less well
  1923.         fitting) than any other available chunk.  The top chunk
  1924.         doesn't update its trailing size field since there is no next
  1925.         contiguous chunk that would have to index off it. However,
  1926.         space is still allocated for it (TOP_FOOT_SIZE) to enable
  1927.         separation or merging when space is extended.
  1928.  
  1929.      3. Chunks allocated via mmap, which have the lowest-order bit
  1930.         (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
  1931.         PINUSE_BIT in their head fields.  Because they are allocated
  1932.         one-by-one, each must carry its own prev_foot field, which is
  1933.         also used to hold the offset this chunk has within its mmapped
  1934.         region, which is needed to preserve alignment. Each mmapped
  1935.         chunk is trailed by the first two fields of a fake next-chunk
  1936.         for sake of usage checks.
  1937.  
  1938. */
  1939.  
  1940. struct malloc_chunk {
  1941.   size_t               prev_foot;  /* Size of previous chunk (if free).  */
  1942.   size_t               head;       /* Size and inuse bits. */
  1943.   struct malloc_chunk* fd;         /* double links -- used only if free. */
  1944.   struct malloc_chunk* bk;
  1945. };
  1946.  
  1947. typedef struct malloc_chunk  mchunk;
  1948. typedef struct malloc_chunk* mchunkptr;
  1949. typedef struct malloc_chunk* sbinptr;  /* The type of bins of chunks */
  1950. typedef unsigned int bindex_t;         /* Described below */
  1951. typedef unsigned int binmap_t;         /* Described below */
  1952. typedef unsigned int flag_t;           /* The type of various bit flag sets */
  1953.  
  1954. /* ------------------- Chunks sizes and alignments ----------------------- */
  1955.  
  1956. #define MCHUNK_SIZE         (sizeof(mchunk))
  1957.  
  1958. #if FOOTERS
  1959. #define CHUNK_OVERHEAD      (TWO_SIZE_T_SIZES)
  1960. #else /* FOOTERS */
  1961. #define CHUNK_OVERHEAD      (SIZE_T_SIZE)
  1962. #endif /* FOOTERS */
  1963.  
  1964. /* MMapped chunks need a second word of overhead ... */
  1965. #define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
  1966. /* ... and additional padding for fake next-chunk at foot */
  1967. #define MMAP_FOOT_PAD       (FOUR_SIZE_T_SIZES)
  1968.  
  1969. /* The smallest size we can malloc is an aligned minimal chunk */
  1970. #define MIN_CHUNK_SIZE\
  1971.   ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
  1972.  
  1973. /* conversion from malloc headers to user pointers, and back */
  1974. #define chunk2mem(p)        ((void*)((char*)(p)       + TWO_SIZE_T_SIZES))
  1975. #define mem2chunk(mem)      ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
  1976. /* chunk associated with aligned address A */
  1977. #define align_as_chunk(A)   (mchunkptr)((A) + align_offset(chunk2mem(A)))
  1978.  
  1979. /* Bounds on request (not chunk) sizes. */
  1980. #define MAX_REQUEST         ((-MIN_CHUNK_SIZE) << 2)
  1981. #define MIN_REQUEST         (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
  1982.  
  1983. /* pad request bytes into a usable size */
  1984. #define pad_request(req) \
  1985.    (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
  1986.  
  1987. /* pad request, checking for minimum (but not maximum) */
  1988. #define request2size(req) \
  1989.   (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
  1990.  
  1991.  
  1992. /* ------------------ Operations on head and foot fields ----------------- */
  1993.  
  1994. /*
  1995.   The head field of a chunk is or'ed with PINUSE_BIT when previous
  1996.   adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
  1997.   use. If the chunk was obtained with mmap, the prev_foot field has
  1998.   IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
  1999.   mmapped region to the base of the chunk.
  2000.  
  2001.   FLAG4_BIT is not used by this malloc, but might be useful in extensions.
  2002. */
  2003.  
  2004. #define PINUSE_BIT          (SIZE_T_ONE)
  2005. #define CINUSE_BIT          (SIZE_T_TWO)
  2006. #define FLAG4_BIT           (SIZE_T_FOUR)
  2007. #define INUSE_BITS          (PINUSE_BIT|CINUSE_BIT)
  2008. #define FLAG_BITS           (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT)
  2009.  
  2010. /* Head value for fenceposts */
  2011. #define FENCEPOST_HEAD      (INUSE_BITS|SIZE_T_SIZE)
  2012.  
  2013. /* extraction of fields from head words */
  2014. #define cinuse(p)           ((p)->head & CINUSE_BIT)
  2015. #define pinuse(p)           ((p)->head & PINUSE_BIT)
  2016. #define chunksize(p)        ((p)->head & ~(FLAG_BITS))
  2017.  
  2018. #define clear_pinuse(p)     ((p)->head &= ~PINUSE_BIT)
  2019. #define clear_cinuse(p)     ((p)->head &= ~CINUSE_BIT)
  2020.  
  2021. /* Treat space at ptr +/- offset as a chunk */
  2022. #define chunk_plus_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
  2023. #define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
  2024.  
  2025. /* Ptr to next or previous physical malloc_chunk. */
  2026. #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS)))
  2027. #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
  2028.  
  2029. /* extract next chunk's pinuse bit */
  2030. #define next_pinuse(p)  ((next_chunk(p)->head) & PINUSE_BIT)
  2031.  
  2032. /* Get/set size at footer */
  2033. #define get_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot)
  2034. #define set_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
  2035.  
  2036. /* Set size, pinuse bit, and foot */
  2037. #define set_size_and_pinuse_of_free_chunk(p, s)\
  2038.   ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
  2039.  
  2040. /* Set size, pinuse bit, foot, and clear next pinuse */
  2041. #define set_free_with_pinuse(p, s, n)\
  2042.   (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
  2043.  
  2044. #define is_mmapped(p)\
  2045.   (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
  2046.  
  2047. /* Get the internal overhead associated with chunk p */
  2048. #define overhead_for(p)\
  2049.  (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
  2050.  
  2051. /* Return true if malloced space is not necessarily cleared */
  2052. #if MMAP_CLEARS
  2053. #define calloc_must_clear(p) (!is_mmapped(p))
  2054. #else /* MMAP_CLEARS */
  2055. #define calloc_must_clear(p) (1)
  2056. #endif /* MMAP_CLEARS */
  2057.  
  2058. /* ---------------------- Overlaid data structures ----------------------- */
  2059.  
  2060. /*
  2061.   When chunks are not in use, they are treated as nodes of either
  2062.   lists or trees.
  2063.  
  2064.   "Small"  chunks are stored in circular doubly-linked lists, and look
  2065.   like this:
  2066.  
  2067.     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  2068.             |             Size of previous chunk                            |
  2069.             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  2070.     `head:' |             Size of chunk, in bytes                         |P|
  2071.       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  2072.             |             Forward pointer to next chunk in list             |
  2073.             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  2074.             |             Back pointer to previous chunk in list            |
  2075.             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  2076.             |             Unused space (may be 0 bytes long)                .
  2077.             .                                                               .
  2078.             .                                                               |
  2079. nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  2080.     `foot:' |             Size of chunk, in bytes                           |
  2081.             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  2082.  
  2083.   Larger chunks are kept in a form of bitwise digital trees (aka
  2084.   tries) keyed on chunksizes.  Because malloc_tree_chunks are only for
  2085.   free chunks greater than 256 bytes, their size doesn't impose any
  2086.   constraints on user chunk sizes.  Each node looks like:
  2087.  
  2088.     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  2089.             |             Size of previous chunk                            |
  2090.             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  2091.     `head:' |             Size of chunk, in bytes                         |P|
  2092.       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  2093.             |             Forward pointer to next chunk of same size        |
  2094.             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  2095.             |             Back pointer to previous chunk of same size       |
  2096.             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  2097.             |             Pointer to left child (child[0])                  |
  2098.             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  2099.             |             Pointer to right child (child[1])                 |
  2100.             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  2101.             |             Pointer to parent                                 |
  2102.             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  2103.             |             bin index of this chunk                           |
  2104.             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  2105.             |             Unused space                                      .
  2106.             .                                                               |
  2107. nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  2108.     `foot:' |             Size of chunk, in bytes                           |
  2109.             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  2110.  
  2111.   Each tree holding treenodes is a tree of unique chunk sizes.  Chunks
  2112.   of the same size are arranged in a circularly-linked list, with only
  2113.   the oldest chunk (the next to be used, in our FIFO ordering)
  2114.   actually in the tree.  (Tree members are distinguished by a non-null
  2115.   parent pointer.)  If a chunk with the same size an an existing node
  2116.   is inserted, it is linked off the existing node using pointers that
  2117.   work in the same way as fd/bk pointers of small chunks.
  2118.  
  2119.   Each tree contains a power of 2 sized range of chunk sizes (the
  2120.   smallest is 0x100 <= x < 0x180), which is is divided in half at each
  2121.   tree level, with the chunks in the smaller half of the range (0x100
  2122.   <= x < 0x140 for the top nose) in the left subtree and the larger
  2123.   half (0x140 <= x < 0x180) in the right subtree.  This is, of course,
  2124.   done by inspecting individual bits.
  2125.  
  2126.   Using these rules, each node's left subtree contains all smaller
  2127.   sizes than its right subtree.  However, the node at the root of each
  2128.   subtree has no particular ordering relationship to either.  (The
  2129.   dividing line between the subtree sizes is based on trie relation.)
  2130.   If we remove the last chunk of a given size from the interior of the
  2131.   tree, we need to replace it with a leaf node.  The tree ordering
  2132.   rules permit a node to be replaced by any leaf below it.
  2133.  
  2134.   The smallest chunk in a tree (a common operation in a best-fit
  2135.   allocator) can be found by walking a path to the leftmost leaf in
  2136.   the tree.  Unlike a usual binary tree, where we follow left child
  2137.   pointers until we reach a null, here we follow the right child
  2138.   pointer any time the left one is null, until we reach a leaf with
  2139.   both child pointers null. The smallest chunk in the tree will be
  2140.   somewhere along that path.
  2141.  
  2142.   The worst case number of steps to add, find, or remove a node is
  2143.   bounded by the number of bits differentiating chunks within
  2144.   bins. Under current bin calculations, this ranges from 6 up to 21
  2145.   (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
  2146.   is of course much better.
  2147. */
  2148.  
  2149. struct malloc_tree_chunk {
  2150.   /* The first four fields must be compatible with malloc_chunk */
  2151.   size_t                    prev_foot;
  2152.   size_t                    head;
  2153.   struct malloc_tree_chunk* fd;
  2154.   struct malloc_tree_chunk* bk;
  2155.  
  2156.   struct malloc_tree_chunk* child[2];
  2157.   struct malloc_tree_chunk* parent;
  2158.   bindex_t                  index;
  2159. };
  2160.  
  2161. typedef struct malloc_tree_chunk  tchunk;
  2162. typedef struct malloc_tree_chunk* tchunkptr;
  2163. typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
  2164.  
  2165. /* A little helper macro for trees */
  2166. #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
  2167.  
  2168. /* ----------------------------- Segments -------------------------------- */
  2169.  
  2170. /*
  2171.   Each malloc space may include non-contiguous segments, held in a
  2172.   list headed by an embedded malloc_segment record representing the
  2173.   top-most space. Segments also include flags holding properties of
  2174.   the space. Large chunks that are directly allocated by mmap are not
  2175.   included in this list. They are instead independently created and
  2176.   destroyed without otherwise keeping track of them.
  2177.  
  2178.   Segment management mainly comes into play for spaces allocated by
  2179.   MMAP.  Any call to MMAP might or might not return memory that is
  2180.   adjacent to an existing segment.  MORECORE normally contiguously
  2181.   extends the current space, so this space is almost always adjacent,
  2182.   which is simpler and faster to deal with. (This is why MORECORE is
  2183.   used preferentially to MMAP when both are available -- see
  2184.   sys_alloc.)  When allocating using MMAP, we don't use any of the
  2185.   hinting mechanisms (inconsistently) supported in various
  2186.   implementations of unix mmap, or distinguish reserving from
  2187.   committing memory. Instead, we just ask for space, and exploit
  2188.   contiguity when we get it.  It is probably possible to do
  2189.   better than this on some systems, but no general scheme seems
  2190.   to be significantly better.
  2191.  
  2192.   Management entails a simpler variant of the consolidation scheme
  2193.   used for chunks to reduce fragmentation -- new adjacent memory is
  2194.   normally prepended or appended to an existing segment. However,
  2195.   there are limitations compared to chunk consolidation that mostly
  2196.   reflect the fact that segment processing is relatively infrequent
  2197.   (occurring only when getting memory from system) and that we
  2198.   don't expect to have huge numbers of segments:
  2199.  
  2200.   * Segments are not indexed, so traversal requires linear scans.  (It
  2201.     would be possible to index these, but is not worth the extra
  2202.     overhead and complexity for most programs on most platforms.)
  2203.   * New segments are only appended to old ones when holding top-most
  2204.     memory; if they cannot be prepended to others, they are held in
  2205.     different segments.
  2206.  
  2207.   Except for the top-most segment of an mstate, each segment record
  2208.   is kept at the tail of its segment. Segments are added by pushing
  2209.   segment records onto the list headed by &mstate.seg for the
  2210.   containing mstate.
  2211.  
  2212.   Segment flags control allocation/merge/deallocation policies:
  2213.   * If EXTERN_BIT set, then we did not allocate this segment,
  2214.     and so should not try to deallocate or merge with others.
  2215.     (This currently holds only for the initial segment passed
  2216.     into create_mspace_with_base.)
  2217.   * If IS_MMAPPED_BIT set, the segment may be merged with
  2218.     other surrounding mmapped segments and trimmed/de-allocated
  2219.     using munmap.
  2220.   * If neither bit is set, then the segment was obtained using
  2221.     MORECORE so can be merged with surrounding MORECORE'd segments
  2222.     and deallocated/trimmed using MORECORE with negative arguments.
  2223. */
  2224.  
  2225. struct malloc_segment {
  2226.   char*        base;             /* base address */
  2227.   size_t       size;             /* allocated size */
  2228.   struct malloc_segment* next;   /* ptr to next segment */
  2229.   flag_t       sflags;           /* mmap and extern flag */
  2230. };
  2231.  
  2232. #define is_mmapped_segment(S)  ((S)->sflags & IS_MMAPPED_BIT)
  2233. #define is_extern_segment(S)   ((S)->sflags & EXTERN_BIT)
  2234.  
  2235. typedef struct malloc_segment  msegment;
  2236. typedef struct malloc_segment* msegmentptr;
  2237.  
  2238. /* ---------------------------- malloc_state ----------------------------- */
  2239.  
  2240. /*
  2241.    A malloc_state holds all of the bookkeeping for a space.
  2242.    The main fields are:
  2243.  
  2244.   Top
  2245.     The topmost chunk of the currently active segment. Its size is
  2246.     cached in topsize.  The actual size of topmost space is
  2247.     topsize+TOP_FOOT_SIZE, which includes space reserved for adding
  2248.     fenceposts and segment records if necessary when getting more
  2249.     space from the system.  The size at which to autotrim top is
  2250.     cached from mparams in trim_check, except that it is disabled if
  2251.     an autotrim fails.
  2252.  
  2253.   Designated victim (dv)
  2254.     This is the preferred chunk for servicing small requests that
  2255.     don't have exact fits.  It is normally the chunk split off most
  2256.     recently to service another small request.  Its size is cached in
  2257.     dvsize. The link fields of this chunk are not maintained since it
  2258.     is not kept in a bin.
  2259.  
  2260.   SmallBins
  2261.     An array of bin headers for free chunks.  These bins hold chunks
  2262.     with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
  2263.     chunks of all the same size, spaced 8 bytes apart.  To simplify
  2264.     use in double-linked lists, each bin header acts as a malloc_chunk
  2265.     pointing to the real first node, if it exists (else pointing to
  2266.     itself).  This avoids special-casing for headers.  But to avoid
  2267.     waste, we allocate only the fd/bk pointers of bins, and then use
  2268.     repositioning tricks to treat these as the fields of a chunk.
  2269.  
  2270.   TreeBins
  2271.     Treebins are pointers to the roots of trees holding a range of
  2272.     sizes. There are 2 equally spaced treebins for each power of two
  2273.     from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
  2274.     larger.
  2275.  
  2276.   Bin maps
  2277.     There is one bit map for small bins ("smallmap") and one for
  2278.     treebins ("treemap).  Each bin sets its bit when non-empty, and
  2279.     clears the bit when empty.  Bit operations are then used to avoid
  2280.     bin-by-bin searching -- nearly all "search" is done without ever
  2281.     looking at bins that won't be selected.  The bit maps
  2282.     conservatively use 32 bits per map word, even if on 64bit system.
  2283.     For a good description of some of the bit-based techniques used
  2284.     here, see Henry S. Warren Jr's book "Hacker's Delight" (and
  2285.     supplement at http://hackersdelight.org/). Many of these are
  2286.     intended to reduce the branchiness of paths through malloc etc, as
  2287.     well as to reduce the number of memory locations read or written.
  2288.  
  2289.   Segments
  2290.     A list of segments headed by an embedded malloc_segment record
  2291.     representing the initial space.
  2292.  
  2293.   Address check support
  2294.     The least_addr field is the least address ever obtained from
  2295.     MORECORE or MMAP. Attempted frees and reallocs of any address less
  2296.     than this are trapped (unless INSECURE is defined).
  2297.  
  2298.   Magic tag
  2299.     A cross-check field that should always hold same value as mparams.magic.
  2300.  
  2301.   Flags
  2302.     Bits recording whether to use MMAP, locks, or contiguous MORECORE
  2303.  
  2304.   Statistics
  2305.     Each space keeps track of current and maximum system memory
  2306.     obtained via MORECORE or MMAP.
  2307.  
  2308.   Trim support
  2309.     Fields holding the amount of unused topmost memory that should trigger
  2310.     timming, and a counter to force periodic scanning to release unused
  2311.     non-topmost segments.
  2312.  
  2313.   Locking
  2314.     If USE_LOCKS is defined, the "mutex" lock is acquired and released
  2315.     around every public call using this mspace.
  2316.  
  2317.   Extension support
  2318.     A void* pointer and a size_t field that can be used to help implement
  2319.     extensions to this malloc.
  2320. */
  2321.  
  2322. /* Bin types, widths and sizes */
  2323. #define NSMALLBINS        (32U)
  2324. #define NTREEBINS         (32U)
  2325. #define SMALLBIN_SHIFT    (3U)
  2326. #define SMALLBIN_WIDTH    (SIZE_T_ONE << SMALLBIN_SHIFT)
  2327. #define TREEBIN_SHIFT     (8U)
  2328. #define MIN_LARGE_SIZE    (SIZE_T_ONE << TREEBIN_SHIFT)
  2329. #define MAX_SMALL_SIZE    (MIN_LARGE_SIZE - SIZE_T_ONE)
  2330. #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
  2331.  
  2332. struct malloc_state {
  2333.   binmap_t   smallmap;
  2334.   binmap_t   treemap;
  2335.   size_t     dvsize;
  2336.   size_t     topsize;
  2337.   char*      least_addr;
  2338.   mchunkptr  dv;
  2339.   mchunkptr  top;
  2340.   size_t     trim_check;
  2341.   size_t     release_checks;
  2342.   size_t     magic;
  2343.   mchunkptr  smallbins[(NSMALLBINS+1)*2];
  2344.   tbinptr    treebins[NTREEBINS];
  2345.   size_t     footprint;
  2346.   size_t     max_footprint;
  2347.   flag_t     mflags;
  2348. #if USE_LOCKS
  2349.   MLOCK_T    mutex;     /* locate lock among fields that rarely change */
  2350. #endif /* USE_LOCKS */
  2351.   msegment   seg;
  2352.   void*      extp;      /* Unused but available for extensions */
  2353.   size_t     exts;
  2354. };
  2355.  
  2356. typedef struct malloc_state*    mstate;
  2357.  
  2358. /* ------------- Global malloc_state and malloc_params ------------------- */
  2359.  
  2360. /*
  2361.   malloc_params holds global properties, including those that can be
  2362.   dynamically set using mallopt. There is a single instance, mparams,
  2363.   initialized in init_mparams.
  2364. */
  2365.  
  2366. struct malloc_params {
  2367.   size_t magic;
  2368.   size_t page_size;
  2369.   size_t granularity;
  2370.   size_t mmap_threshold;
  2371.   size_t trim_threshold;
  2372.   flag_t default_mflags;
  2373. };
  2374.  
  2375. static struct malloc_params mparams;
  2376.  
  2377. #if !ONLY_MSPACES
  2378.  
  2379. /* The global malloc_state used for all non-"mspace" calls */
  2380. static struct malloc_state _gm_;
  2381. #define gm                 (&_gm_)
  2382. #define is_global(M)       ((M) == &_gm_)
  2383.  
  2384. #endif /* !ONLY_MSPACES */
  2385.  
  2386. #define is_initialized(M)  ((M)->top != 0)
  2387.  
  2388. /* -------------------------- system alloc setup ------------------------- */
  2389.  
  2390. /* Operations on mflags */
  2391.  
  2392. #define use_lock(M)           ((M)->mflags &   USE_LOCK_BIT)
  2393. #define enable_lock(M)        ((M)->mflags |=  USE_LOCK_BIT)
  2394. #define disable_lock(M)       ((M)->mflags &= ~USE_LOCK_BIT)
  2395.  
  2396. #define use_mmap(M)           ((M)->mflags &   USE_MMAP_BIT)
  2397. #define enable_mmap(M)        ((M)->mflags |=  USE_MMAP_BIT)
  2398. #define disable_mmap(M)       ((M)->mflags &= ~USE_MMAP_BIT)
  2399.  
  2400. #define use_noncontiguous(M)  ((M)->mflags &   USE_NONCONTIGUOUS_BIT)
  2401. #define disable_contiguous(M) ((M)->mflags |=  USE_NONCONTIGUOUS_BIT)
  2402.  
  2403. #define set_lock(M,L)\
  2404.  ((M)->mflags = (L)?\
  2405.   ((M)->mflags | USE_LOCK_BIT) :\
  2406.   ((M)->mflags & ~USE_LOCK_BIT))
  2407.  
  2408. /* page-align a size */
  2409. #define page_align(S)\
  2410.  (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE))
  2411.  
  2412. /* granularity-align a size */
  2413. #define granularity_align(S)\
  2414.   (((S) + (mparams.granularity - SIZE_T_ONE))\
  2415.    & ~(mparams.granularity - SIZE_T_ONE))
  2416.  
  2417.  
  2418. /* For mmap, use granularity alignment on windows, else page-align */
  2419. #ifdef WIN32
  2420. #define mmap_align(S) granularity_align(S)
  2421. #else
  2422. #define mmap_align(S) page_align(S)
  2423. #endif
  2424.  
  2425. #define is_page_aligned(S)\
  2426.    (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
  2427. #define is_granularity_aligned(S)\
  2428.    (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
  2429.  
  2430. /*  True if segment S holds address A */
  2431. #define segment_holds(S, A)\
  2432.   ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
  2433.  
  2434. /* Return segment holding given address */
  2435. static msegmentptr segment_holding(mstate m, char* addr) {
  2436.   msegmentptr sp = &m->seg;
  2437.   for (;;) {
  2438.     if (addr >= sp->base && addr < sp->base + sp->size)
  2439.       return sp;
  2440.     if ((sp = sp->next) == 0)
  2441.       return 0;
  2442.   }
  2443. }
  2444.  
  2445. /* Return true if segment contains a segment link */
  2446. static int has_segment_link(mstate m, msegmentptr ss) {
  2447.   msegmentptr sp = &m->seg;
  2448.   for (;;) {
  2449.     if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
  2450.       return 1;
  2451.     if ((sp = sp->next) == 0)
  2452.       return 0;
  2453.   }
  2454. }
  2455.  
  2456. #ifndef MORECORE_CANNOT_TRIM
  2457. #define should_trim(M,s)  ((s) > (M)->trim_check)
  2458. #else  /* MORECORE_CANNOT_TRIM */
  2459. #define should_trim(M,s)  (0)
  2460. #endif /* MORECORE_CANNOT_TRIM */
  2461.  
  2462. /*
  2463.   TOP_FOOT_SIZE is padding at the end of a segment, including space
  2464.   that may be needed to place segment records and fenceposts when new
  2465.   noncontiguous segments are added.
  2466. */
  2467. #define TOP_FOOT_SIZE\
  2468.   (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
  2469.  
  2470.  
  2471. /* -------------------------------  Hooks -------------------------------- */
  2472.  
  2473. /*
  2474.   PREACTION should be defined to return 0 on success, and nonzero on
  2475.   failure. If you are not using locking, you can redefine these to do
  2476.   anything you like.
  2477. */
  2478.  
  2479. #if USE_LOCKS
  2480.  
  2481. /* Ensure locks are initialized */
  2482. #define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams())
  2483.  
  2484. #define PREACTION(M)  ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
  2485. #define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
  2486. #else /* USE_LOCKS */
  2487.  
  2488. #ifndef PREACTION
  2489. #define PREACTION(M) (0)
  2490. #endif  /* PREACTION */
  2491.  
  2492. #ifndef POSTACTION
  2493. #define POSTACTION(M)
  2494. #endif  /* POSTACTION */
  2495.  
  2496. #endif /* USE_LOCKS */
  2497.  
  2498. /*
  2499.   CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
  2500.   USAGE_ERROR_ACTION is triggered on detected bad frees and
  2501.   reallocs. The argument p is an address that might have triggered the
  2502.   fault. It is ignored by the two predefined actions, but might be
  2503.   useful in custom actions that try to help diagnose errors.
  2504. */
  2505.  
  2506. #if PROCEED_ON_ERROR
  2507.  
  2508. /* A count of the number of corruption errors causing resets */
  2509. int malloc_corruption_error_count;
  2510.  
  2511. /* default corruption action */
  2512. static void reset_on_error(mstate m);
  2513.  
  2514. #define CORRUPTION_ERROR_ACTION(m)  reset_on_error(m)
  2515. #define USAGE_ERROR_ACTION(m, p)
  2516.  
  2517. #else /* PROCEED_ON_ERROR */
  2518.  
  2519. #ifndef CORRUPTION_ERROR_ACTION
  2520. #define CORRUPTION_ERROR_ACTION(m) ABORT
  2521. #endif /* CORRUPTION_ERROR_ACTION */
  2522.  
  2523. #ifndef USAGE_ERROR_ACTION
  2524. #define USAGE_ERROR_ACTION(m,p) ABORT
  2525. #endif /* USAGE_ERROR_ACTION */
  2526.  
  2527. #endif /* PROCEED_ON_ERROR */
  2528.  
  2529. /* -------------------------- Debugging setup ---------------------------- */
  2530.  
  2531. #if ! DEBUG
  2532.  
  2533. #define check_free_chunk(M,P)
  2534. #define check_inuse_chunk(M,P)
  2535. #define check_malloced_chunk(M,P,N)
  2536. #define check_mmapped_chunk(M,P)
  2537. #define check_malloc_state(M)
  2538. #define check_top_chunk(M,P)
  2539.  
  2540. #else /* DEBUG */
  2541. #define check_free_chunk(M,P)       do_check_free_chunk(M,P)
  2542. #define check_inuse_chunk(M,P)      do_check_inuse_chunk(M,P)
  2543. #define check_top_chunk(M,P)        do_check_top_chunk(M,P)
  2544. #define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
  2545. #define check_mmapped_chunk(M,P)    do_check_mmapped_chunk(M,P)
  2546. #define check_malloc_state(M)       do_check_malloc_state(M)
  2547.  
  2548. static void   do_check_any_chunk(mstate m, mchunkptr p);
  2549. static void   do_check_top_chunk(mstate m, mchunkptr p);
  2550. static void   do_check_mmapped_chunk(mstate m, mchunkptr p);
  2551. static void   do_check_inuse_chunk(mstate m, mchunkptr p);
  2552. static void   do_check_free_chunk(mstate m, mchunkptr p);
  2553. static void   do_check_malloced_chunk(mstate m, void* mem, size_t s);
  2554. static void   do_check_tree(mstate m, tchunkptr t);
  2555. static void   do_check_treebin(mstate m, bindex_t i);
  2556. static void   do_check_smallbin(mstate m, bindex_t i);
  2557. static void   do_check_malloc_state(mstate m);
  2558. static int    bin_find(mstate m, mchunkptr x);
  2559. static size_t traverse_and_check(mstate m);
  2560. #endif /* DEBUG */
  2561.  
  2562. /* ---------------------------- Indexing Bins ---------------------------- */
  2563.  
  2564. #define is_small(s)         (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
  2565. #define small_index(s)      ((s)  >> SMALLBIN_SHIFT)
  2566. #define small_index2size(i) ((i)  << SMALLBIN_SHIFT)
  2567. #define MIN_SMALL_INDEX     (small_index(MIN_CHUNK_SIZE))
  2568.  
  2569. /* addressing by index. See above about smallbin repositioning */
  2570. #define smallbin_at(M, i)   ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
  2571. #define treebin_at(M,i)     (&((M)->treebins[i]))
  2572.  
  2573. /* assign tree index for size S to variable I */
  2574. #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
  2575. #define compute_tree_index(S, I)\
  2576. {\
  2577.   unsigned int X = S >> TREEBIN_SHIFT;\
  2578.   if (X == 0)\
  2579.     I = 0;\
  2580.   else if (X > 0xFFFF)\
  2581.     I = NTREEBINS-1;\
  2582.   else {\
  2583.     unsigned int K;\
  2584.     __asm__("bsrl\t%1, %0\n\t" : "=r" (K) : "g"  (X));\
  2585.     I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
  2586.   }\
  2587. }
  2588.  
  2589. #elif defined(_MSC_VER) && _MSC_VER>=1300
  2590. #define compute_tree_index(S, I)\
  2591. {\
  2592.   size_t X = S >> TREEBIN_SHIFT;\
  2593.   if (X == 0)\
  2594.     I = 0;\
  2595.   else if (X > 0xFFFF)\
  2596.     I = NTREEBINS-1;\
  2597.   else {\
  2598.     unsigned int K;\
  2599.     _BitScanReverse((DWORD *) &K, X);\
  2600.     I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
  2601.   }\
  2602. }
  2603. #else /* GNUC */
  2604. #define compute_tree_index(S, I)\
  2605. {\
  2606.   size_t X = S >> TREEBIN_SHIFT;\
  2607.   if (X == 0)\
  2608.     I = 0;\
  2609.   else if (X > 0xFFFF)\
  2610.     I = NTREEBINS-1;\
  2611.   else {\
  2612.     unsigned int Y = (unsigned int)X;\
  2613.     unsigned int N = ((Y - 0x100) >> 16) & 8;\
  2614.     unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
  2615.     N += K;\
  2616.     N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
  2617.     K = 14 - N + ((Y <<= K) >> 15);\
  2618.     I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
  2619.   }\
  2620. }
  2621. #endif /* GNUC */
  2622.  
  2623. /* Bit representing maximum resolved size in a treebin at i */
  2624. #define bit_for_tree_index(i) \
  2625.    (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
  2626.  
  2627. /* Shift placing maximum resolved bit in a treebin at i as sign bit */
  2628. #define leftshift_for_tree_index(i) \
  2629.    ((i == NTREEBINS-1)? 0 : \
  2630.     ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
  2631.  
  2632. /* The size of the smallest chunk held in bin with index i */
  2633. #define minsize_for_tree_index(i) \
  2634.    ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) |  \
  2635.    (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
  2636.  
  2637.  
  2638. /* ------------------------ Operations on bin maps ----------------------- */
  2639.  
  2640. /* bit corresponding to given index */
  2641. #define idx2bit(i)              ((binmap_t)(1) << (i))
  2642.  
  2643. /* Mark/Clear bits with given index */
  2644. #define mark_smallmap(M,i)      ((M)->smallmap |=  idx2bit(i))
  2645. #define clear_smallmap(M,i)     ((M)->smallmap &= ~idx2bit(i))
  2646. #define smallmap_is_marked(M,i) ((M)->smallmap &   idx2bit(i))
  2647.  
  2648. #define mark_treemap(M,i)       ((M)->treemap  |=  idx2bit(i))
  2649. #define clear_treemap(M,i)      ((M)->treemap  &= ~idx2bit(i))
  2650. #define treemap_is_marked(M,i)  ((M)->treemap  &   idx2bit(i))
  2651.  
  2652. /* index corresponding to given bit */
  2653.  
  2654. #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
  2655. #define compute_bit2idx(X, I)\
  2656. {\
  2657.   unsigned int J;\
  2658.   __asm__("bsfl\t%1, %0\n\t" : "=r" (J) : "g" (X));\
  2659.   I = (bindex_t)J;\
  2660. }
  2661. #elif defined(_MSC_VER) && _MSC_VER>=1300
  2662. #define compute_bit2idx(X, I)\
  2663. {\
  2664.   unsigned int J;\
  2665.   _BitScanForward((DWORD *) &J, X);\
  2666.   I = (bindex_t)J;\
  2667. }
  2668.  
  2669. #else /* GNUC */
  2670. #if  USE_BUILTIN_FFS
  2671. #define compute_bit2idx(X, I) I = ffs(X)-1
  2672.  
  2673. #else /* USE_BUILTIN_FFS */
  2674. #define compute_bit2idx(X, I)\
  2675. {\
  2676.   unsigned int Y = X - 1;\
  2677.   unsigned int K = Y >> (16-4) & 16;\
  2678.   unsigned int N = K;        Y >>= K;\
  2679.   N += K = Y >> (8-3) &  8;  Y >>= K;\
  2680.   N += K = Y >> (4-2) &  4;  Y >>= K;\
  2681.   N += K = Y >> (2-1) &  2;  Y >>= K;\
  2682.   N += K = Y >> (1-0) &  1;  Y >>= K;\
  2683.   I = (bindex_t)(N + Y);\
  2684. }
  2685. #endif /* USE_BUILTIN_FFS */
  2686. #endif /* GNUC */
  2687.  
  2688. /* isolate the least set bit of a bitmap */
  2689. #define least_bit(x)         ((x) & -(x))
  2690.  
  2691. /* mask with all bits to left of least bit of x on */
  2692. #define left_bits(x)         ((x<<1) | -(x<<1))
  2693.  
  2694. /* mask with all bits to left of or equal to least bit of x on */
  2695. #define same_or_left_bits(x) ((x) | -(x))
  2696.  
  2697.  
  2698. /* ----------------------- Runtime Check Support ------------------------- */
  2699.  
  2700. /*
  2701.   For security, the main invariant is that malloc/free/etc never
  2702.   writes to a static address other than malloc_state, unless static
  2703.   malloc_state itself has been corrupted, which cannot occur via
  2704.   malloc (because of these checks). In essence this means that we
  2705.   believe all pointers, sizes, maps etc held in malloc_state, but
  2706.   check all of those linked or offsetted from other embedded data
  2707.   structures.  These checks are interspersed with main code in a way
  2708.   that tends to minimize their run-time cost.
  2709.  
  2710.   When FOOTERS is defined, in addition to range checking, we also
  2711.   verify footer fields of inuse chunks, which can be used guarantee
  2712.   that the mstate controlling malloc/free is intact.  This is a
  2713.   streamlined version of the approach described by William Robertson
  2714.   et al in "Run-time Detection of Heap-based Overflows" LISA'03
  2715.   http://www.usenix.org/events/lisa03/tech/robertson.html The footer
  2716.   of an inuse chunk holds the xor of its mstate and a random seed,
  2717.   that is checked upon calls to free() and realloc().  This is
  2718.   (probablistically) unguessable from outside the program, but can be
  2719.   computed by any code successfully malloc'ing any chunk, so does not
  2720.   itself provide protection against code that has already broken
  2721.   security through some other means.  Unlike Robertson et al, we
  2722.   always dynamically check addresses of all offset chunks (previous,
  2723.   next, etc). This turns out to be cheaper than relying on hashes.
  2724. */
  2725.  
  2726. #if !INSECURE
  2727. /* Check if address a is at least as high as any from MORECORE or MMAP */
  2728. #define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
  2729. /* Check if address of next chunk n is higher than base chunk p */
  2730. #define ok_next(p, n)    ((char*)(p) < (char*)(n))
  2731. /* Check if p has its cinuse bit on */
  2732. #define ok_cinuse(p)     cinuse(p)
  2733. /* Check if p has its pinuse bit on */
  2734. #define ok_pinuse(p)     pinuse(p)
  2735.  
  2736. #else /* !INSECURE */
  2737. #define ok_address(M, a) (1)
  2738. #define ok_next(b, n)    (1)
  2739. #define ok_cinuse(p)     (1)
  2740. #define ok_pinuse(p)     (1)
  2741. #endif /* !INSECURE */
  2742.  
  2743. #if (FOOTERS && !INSECURE)
  2744. /* Check if (alleged) mstate m has expected magic field */
  2745. #define ok_magic(M)      ((M)->magic == mparams.magic)
  2746. #else  /* (FOOTERS && !INSECURE) */
  2747. #define ok_magic(M)      (1)
  2748. #endif /* (FOOTERS && !INSECURE) */
  2749.  
  2750.  
  2751. /* In gcc, use __builtin_expect to minimize impact of checks */
  2752. #if !INSECURE
  2753. #if defined(__GNUC__) && __GNUC__ >= 3
  2754. #define RTCHECK(e)  __builtin_expect(e, 1)
  2755. #else /* GNUC */
  2756. #define RTCHECK(e)  (e)
  2757. #endif /* GNUC */
  2758. #else /* !INSECURE */
  2759. #define RTCHECK(e)  (1)
  2760. #endif /* !INSECURE */
  2761.  
  2762. /* macros to set up inuse chunks with or without footers */
  2763.  
  2764. #if !FOOTERS
  2765.  
  2766. #define mark_inuse_foot(M,p,s)
  2767.  
  2768. /* Set cinuse bit and pinuse bit of next chunk */
  2769. #define set_inuse(M,p,s)\
  2770.   ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
  2771.   ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
  2772.  
  2773. /* Set cinuse and pinuse of this chunk and pinuse of next chunk */
  2774. #define set_inuse_and_pinuse(M,p,s)\
  2775.   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
  2776.   ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
  2777.  
  2778. /* Set size, cinuse and pinuse bit of this chunk */
  2779. #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
  2780.   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
  2781.  
  2782. #else /* FOOTERS */
  2783.  
  2784. /* Set foot of inuse chunk to be xor of mstate and seed */
  2785. #define mark_inuse_foot(M,p,s)\
  2786.   (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
  2787.  
  2788. #define get_mstate_for(p)\
  2789.   ((mstate)(((mchunkptr)((char*)(p) +\
  2790.     (chunksize(p))))->prev_foot ^ mparams.magic))
  2791.  
  2792. #define set_inuse(M,p,s)\
  2793.   ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
  2794.   (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
  2795.   mark_inuse_foot(M,p,s))
  2796.  
  2797. #define set_inuse_and_pinuse(M,p,s)\
  2798.   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
  2799.   (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
  2800.  mark_inuse_foot(M,p,s))
  2801.  
  2802. #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
  2803.   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
  2804.   mark_inuse_foot(M, p, s))
  2805.  
  2806. #endif /* !FOOTERS */
  2807.  
  2808. /* ---------------------------- setting mparams -------------------------- */
  2809.  
  2810. /* Initialize mparams */
  2811. static int init_mparams(void) {
  2812.   if (mparams.page_size == 0) {
  2813.     size_t s;
  2814.  
  2815.     mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
  2816.     mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
  2817. #if MORECORE_CONTIGUOUS
  2818.     mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
  2819. #else  /* MORECORE_CONTIGUOUS */
  2820.     mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
  2821. #endif /* MORECORE_CONTIGUOUS */
  2822.  
  2823. #if (FOOTERS && !INSECURE)
  2824.     {
  2825. #if USE_DEV_RANDOM
  2826.       int fd;
  2827.       unsigned char buf[sizeof(size_t)];
  2828.       /* Try to use /dev/urandom, else fall back on using time */
  2829.       if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
  2830.           read(fd, buf, sizeof(buf)) == sizeof(buf)) {
  2831.         s = *((size_t *) buf);
  2832.         close(fd);
  2833.       }
  2834.       else
  2835. #endif /* USE_DEV_RANDOM */
  2836.         s = (size_t)(time(0) ^ (size_t)0x55555555U);
  2837.  
  2838.       s |= (size_t)8U;    /* ensure nonzero */
  2839.       s &= ~(size_t)7U;   /* improve chances of fault for bad values */
  2840.  
  2841.     }
  2842. #else /* (FOOTERS && !INSECURE) */
  2843.     s = (size_t)0x58585858U;
  2844. #endif /* (FOOTERS && !INSECURE) */
  2845.     ACQUIRE_MAGIC_INIT_LOCK();
  2846.     if (mparams.magic == 0) {
  2847.       mparams.magic = s;
  2848. #if !ONLY_MSPACES
  2849.       /* Set up lock for main malloc area */
  2850.       INITIAL_LOCK(&gm->mutex);
  2851.       gm->mflags = mparams.default_mflags;
  2852. #endif
  2853.     }
  2854.     RELEASE_MAGIC_INIT_LOCK();
  2855.  
  2856. #ifndef WIN32
  2857.     mparams.page_size = malloc_getpagesize;
  2858.     mparams.granularity = ((DEFAULT_GRANULARITY != 0)?
  2859.                            DEFAULT_GRANULARITY : mparams.page_size);
  2860. #else /* WIN32 */
  2861.     {
  2862.       SYSTEM_INFO system_info;
  2863.       GetSystemInfo(&system_info);
  2864.       mparams.page_size = system_info.dwPageSize;
  2865.       mparams.granularity = system_info.dwAllocationGranularity;
  2866.     }
  2867. #endif /* WIN32 */
  2868.  
  2869.     /* Sanity-check configuration:
  2870.        size_t must be unsigned and as wide as pointer type.
  2871.        ints must be at least 4 bytes.
  2872.        alignment must be at least 8.
  2873.        Alignment, min chunk size, and page size must all be powers of 2.
  2874.     */
  2875.     if ((sizeof(size_t) != sizeof(char*)) ||
  2876.         (MAX_SIZE_T < MIN_CHUNK_SIZE)  ||
  2877.         (sizeof(int) < 4)  ||
  2878.         (MALLOC_ALIGNMENT < (size_t)8U) ||
  2879.         ((MALLOC_ALIGNMENT    & (MALLOC_ALIGNMENT-SIZE_T_ONE))    != 0) ||
  2880.         ((MCHUNK_SIZE         & (MCHUNK_SIZE-SIZE_T_ONE))         != 0) ||
  2881.         ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) ||
  2882.         ((mparams.page_size   & (mparams.page_size-SIZE_T_ONE))   != 0))
  2883.       ABORT;
  2884.   }
  2885.   return 0;
  2886. }
  2887.  
  2888. /* support for mallopt */
  2889. static int change_mparam(int param_number, int value) {
  2890.   size_t val = (size_t)value;
  2891.   init_mparams();
  2892.   switch(param_number) {
  2893.   case M_TRIM_THRESHOLD:
  2894.     mparams.trim_threshold = val;
  2895.     return 1;
  2896.   case M_GRANULARITY:
  2897.     if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
  2898.       mparams.granularity = val;
  2899.       return 1;
  2900.     }
  2901.     else
  2902.       return 0;
  2903.   case M_MMAP_THRESHOLD:
  2904.     mparams.mmap_threshold = val;
  2905.     return 1;
  2906.   default:
  2907.     return 0;
  2908.   }
  2909. }
  2910.  
  2911. #if DEBUG
  2912. /* ------------------------- Debugging Support --------------------------- */
  2913.  
  2914. /* Check properties of any chunk, whether free, inuse, mmapped etc  */
  2915. static void do_check_any_chunk(mstate m, mchunkptr p) {
  2916.   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
  2917.   assert(ok_address(m, p));
  2918. }
  2919.  
  2920. /* Check properties of top chunk */
  2921. static void do_check_top_chunk(mstate m, mchunkptr p) {
  2922.   msegmentptr sp = segment_holding(m, (char*)p);
  2923.   size_t  sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */
  2924.   assert(sp != 0);
  2925.   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
  2926.   assert(ok_address(m, p));
  2927.   assert(sz == m->topsize);
  2928.   assert(sz > 0);
  2929.   assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
  2930.   assert(pinuse(p));
  2931.   assert(!pinuse(chunk_plus_offset(p, sz)));
  2932. }
  2933.  
  2934. /* Check properties of (inuse) mmapped chunks */
  2935. static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
  2936.   size_t  sz = chunksize(p);
  2937.   size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD);
  2938.   assert(is_mmapped(p));
  2939.   assert(use_mmap(m));
  2940.   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
  2941.   assert(ok_address(m, p));
  2942.   assert(!is_small(sz));
  2943.   assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
  2944.   assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
  2945.   assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
  2946. }
  2947.  
  2948. /* Check properties of inuse chunks */
  2949. static void do_check_inuse_chunk(mstate m, mchunkptr p) {
  2950.   do_check_any_chunk(m, p);
  2951.   assert(cinuse(p));
  2952.   assert(next_pinuse(p));
  2953.   /* If not pinuse and not mmapped, previous chunk has OK offset */
  2954.   assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
  2955.   if (is_mmapped(p))
  2956.     do_check_mmapped_chunk(m, p);
  2957. }
  2958.  
  2959. /* Check properties of free chunks */
  2960. static void do_check_free_chunk(mstate m, mchunkptr p) {
  2961.   size_t sz = chunksize(p);
  2962.   mchunkptr next = chunk_plus_offset(p, sz);
  2963.   do_check_any_chunk(m, p);
  2964.   assert(!cinuse(p));
  2965.   assert(!next_pinuse(p));
  2966.   assert (!is_mmapped(p));
  2967.   if (p != m->dv && p != m->top) {
  2968.     if (sz >= MIN_CHUNK_SIZE) {
  2969.       assert((sz & CHUNK_ALIGN_MASK) == 0);
  2970.       assert(is_aligned(chunk2mem(p)));
  2971.       assert(next->prev_foot == sz);
  2972.       assert(pinuse(p));
  2973.       assert (next == m->top || cinuse(next));
  2974.       assert(p->fd->bk == p);
  2975.       assert(p->bk->fd == p);
  2976.     }
  2977.     else  /* markers are always of size SIZE_T_SIZE */
  2978.       assert(sz == SIZE_T_SIZE);
  2979.   }
  2980. }
  2981.  
  2982. /* Check properties of malloced chunks at the point they are malloced */
  2983. static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
  2984.   if (mem != 0) {
  2985.     mchunkptr p = mem2chunk(mem);
  2986.     size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
  2987.     do_check_inuse_chunk(m, p);
  2988.     assert((sz & CHUNK_ALIGN_MASK) == 0);
  2989.     assert(sz >= MIN_CHUNK_SIZE);
  2990.     assert(sz >= s);
  2991.     /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
  2992.     assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
  2993.   }
  2994. }
  2995.  
  2996. /* Check a tree and its subtrees.  */
  2997. static void do_check_tree(mstate m, tchunkptr t) {
  2998.   tchunkptr head = 0;
  2999.   tchunkptr u = t;
  3000.   bindex_t tindex = t->index;
  3001.   size_t tsize = chunksize(t);
  3002.   bindex_t idx;
  3003.   compute_tree_index(tsize, idx);
  3004.   assert(tindex == idx);
  3005.   assert(tsize >= MIN_LARGE_SIZE);
  3006.   assert(tsize >= minsize_for_tree_index(idx));
  3007.   assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
  3008.  
  3009.   do { /* traverse through chain of same-sized nodes */
  3010.     do_check_any_chunk(m, ((mchunkptr)u));
  3011.     assert(u->index == tindex);
  3012.     assert(chunksize(u) == tsize);
  3013.     assert(!cinuse(u));
  3014.     assert(!next_pinuse(u));
  3015.     assert(u->fd->bk == u);
  3016.     assert(u->bk->fd == u);
  3017.     if (u->parent == 0) {
  3018.       assert(u->child[0] == 0);
  3019.       assert(u->child[1] == 0);
  3020.     }
  3021.     else {
  3022.       assert(head == 0); /* only one node on chain has parent */
  3023.       head = u;
  3024.       assert(u->parent != u);
  3025.       assert (u->parent->child[0] == u ||
  3026.               u->parent->child[1] == u ||
  3027.               *((tbinptr*)(u->parent)) == u);
  3028.       if (u->child[0] != 0) {
  3029.         assert(u->child[0]->parent == u);
  3030.         assert(u->child[0] != u);
  3031.         do_check_tree(m, u->child[0]);
  3032.       }
  3033.       if (u->child[1] != 0) {
  3034.         assert(u->child[1]->parent == u);
  3035.         assert(u->child[1] != u);
  3036.         do_check_tree(m, u->child[1]);
  3037.       }
  3038.       if (u->child[0] != 0 && u->child[1] != 0) {
  3039.         assert(chunksize(u->child[0]) < chunksize(u->child[1]));
  3040.       }
  3041.     }
  3042.     u = u->fd;
  3043.   } while (u != t);
  3044.   assert(head != 0);
  3045. }
  3046.  
  3047. /*  Check all the chunks in a treebin.  */
  3048. static void do_check_treebin(mstate m, bindex_t i) {
  3049.   tbinptr* tb = treebin_at(m, i);
  3050.   tchunkptr t = *tb;
  3051.   int empty = (m->treemap & (1U << i)) == 0;
  3052.   if (t == 0)
  3053.     assert(empty);
  3054.   if (!empty)
  3055.     do_check_tree(m, t);
  3056. }
  3057.  
  3058. /*  Check all the chunks in a smallbin.  */
  3059. static void do_check_smallbin(mstate m, bindex_t i) {
  3060.   sbinptr b = smallbin_at(m, i);
  3061.   mchunkptr p = b->bk;
  3062.   unsigned int empty = (m->smallmap & (1U << i)) == 0;
  3063.   if (p == b)
  3064.     assert(empty);
  3065.   if (!empty) {
  3066.     for (; p != b; p = p->bk) {
  3067.       size_t size = chunksize(p);
  3068.       mchunkptr q;
  3069.       /* each chunk claims to be free */
  3070.       do_check_free_chunk(m, p);
  3071.       /* chunk belongs in bin */
  3072.       assert(small_index(size) == i);
  3073.       assert(p->bk == b || chunksize(p->bk) == chunksize(p));
  3074.       /* chunk is followed by an inuse chunk */
  3075.       q = next_chunk(p);
  3076.       if (q->head != FENCEPOST_HEAD)
  3077.         do_check_inuse_chunk(m, q);
  3078.     }
  3079.   }
  3080. }
  3081.  
  3082. /* Find x in a bin. Used in other check functions. */
  3083. static int bin_find(mstate m, mchunkptr x) {
  3084.   size_t size = chunksize(x);
  3085.   if (is_small(size)) {
  3086.     bindex_t sidx = small_index(size);
  3087.     sbinptr b = smallbin_at(m, sidx);
  3088.     if (smallmap_is_marked(m, sidx)) {
  3089.       mchunkptr p = b;
  3090.       do {
  3091.         if (p == x)
  3092.           return 1;
  3093.       } while ((p = p->fd) != b);
  3094.     }
  3095.   }
  3096.   else {
  3097.     bindex_t tidx;
  3098.     compute_tree_index(size, tidx);
  3099.     if (treemap_is_marked(m, tidx)) {
  3100.       tchunkptr t = *treebin_at(m, tidx);
  3101.       size_t sizebits = size << leftshift_for_tree_index(tidx);
  3102.       while (t != 0 && chunksize(t) != size) {
  3103.         t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
  3104.         sizebits <<= 1;
  3105.       }
  3106.       if (t != 0) {
  3107.         tchunkptr u = t;
  3108.         do {
  3109.           if (u == (tchunkptr)x)
  3110.             return 1;
  3111.         } while ((u = u->fd) != t);
  3112.       }
  3113.     }
  3114.   }
  3115.   return 0;
  3116. }
  3117.  
  3118. /* Traverse each chunk and check it; return total */
  3119. static size_t traverse_and_check(mstate m) {
  3120.   size_t sum = 0;
  3121.   if (is_initialized(m)) {
  3122.     msegmentptr s = &m->seg;
  3123.     sum += m->topsize + TOP_FOOT_SIZE;
  3124.     while (s != 0) {
  3125.       mchunkptr q = align_as_chunk(s->base);
  3126.       mchunkptr lastq = 0;
  3127.       assert(pinuse(q));
  3128.       while (segment_holds(s, q) &&
  3129.              q != m->top && q->head != FENCEPOST_HEAD) {
  3130.         sum += chunksize(q);
  3131.         if (cinuse(q)) {
  3132.           assert(!bin_find(m, q));
  3133.           do_check_inuse_chunk(m, q);
  3134.         }
  3135.         else {
  3136.           assert(q == m->dv || bin_find(m, q));
  3137.           assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */
  3138.           do_check_free_chunk(m, q);
  3139.         }
  3140.         lastq = q;
  3141.         q = next_chunk(q);
  3142.       }
  3143.       s = s->next;
  3144.     }
  3145.   }
  3146.   return sum;
  3147. }
  3148.  
  3149. /* Check all properties of malloc_state. */
  3150. static void do_check_malloc_state(mstate m) {
  3151.   bindex_t i;
  3152.   size_t total;
  3153.   /* check bins */
  3154.   for (i = 0; i < NSMALLBINS; ++i)
  3155.     do_check_smallbin(m, i);
  3156.   for (i = 0; i < NTREEBINS; ++i)
  3157.     do_check_treebin(m, i);
  3158.  
  3159.   if (m->dvsize != 0) { /* check dv chunk */
  3160.     do_check_any_chunk(m, m->dv);
  3161.     assert(m->dvsize == chunksize(m->dv));
  3162.     assert(m->dvsize >= MIN_CHUNK_SIZE);
  3163.     assert(bin_find(m, m->dv) == 0);
  3164.   }
  3165.  
  3166.   if (m->top != 0) {   /* check top chunk */
  3167.     do_check_top_chunk(m, m->top);
  3168.     /*assert(m->topsize == chunksize(m->top)); redundant */
  3169.     assert(m->topsize > 0);
  3170.     assert(bin_find(m, m->top) == 0);
  3171.   }
  3172.  
  3173.   total = traverse_and_check(m);
  3174.   assert(total <= m->footprint);
  3175.   assert(m->footprint <= m->max_footprint);
  3176. }
  3177. #endif /* DEBUG */
  3178.  
  3179. /* ----------------------------- statistics ------------------------------ */
  3180.  
  3181. #if !NO_MALLINFO
  3182. static struct mallinfo internal_mallinfo(mstate m) {
  3183.   struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  3184.   if (!PREACTION(m)) {
  3185.     check_malloc_state(m);
  3186.     if (is_initialized(m)) {
  3187.       size_t nfree = SIZE_T_ONE; /* top always free */
  3188.       size_t mfree = m->topsize + TOP_FOOT_SIZE;
  3189.       size_t sum = mfree;
  3190.       msegmentptr s = &m->seg;
  3191.       while (s != 0) {
  3192.         mchunkptr q = align_as_chunk(s->base);
  3193.         while (segment_holds(s, q) &&
  3194.                q != m->top && q->head != FENCEPOST_HEAD) {
  3195.           size_t sz = chunksize(q);
  3196.           sum += sz;
  3197.           if (!cinuse(q)) {
  3198.             mfree += sz;
  3199.             ++nfree;
  3200.           }
  3201.           q = next_chunk(q);
  3202.         }
  3203.         s = s->next;
  3204.       }
  3205.  
  3206.       nm.arena    = sum;
  3207.       nm.ordblks  = nfree;
  3208.       nm.hblkhd   = m->footprint - sum;
  3209.       nm.usmblks  = m->max_footprint;
  3210.       nm.uordblks = m->footprint - mfree;
  3211.       nm.fordblks = mfree;
  3212.       nm.keepcost = m->topsize;
  3213.     }
  3214.  
  3215.     POSTACTION(m);
  3216.   }
  3217.   return nm;
  3218. }
  3219. #endif /* !NO_MALLINFO */
  3220.  
  3221. static void internal_malloc_stats(mstate m) {
  3222.   if (!PREACTION(m)) {
  3223.     size_t maxfp = 0;
  3224.     size_t fp = 0;
  3225.     size_t used = 0;
  3226.     check_malloc_state(m);
  3227.     if (is_initialized(m)) {
  3228.       msegmentptr s = &m->seg;
  3229.       maxfp = m->max_footprint;
  3230.       fp = m->footprint;
  3231.       used = fp - (m->topsize + TOP_FOOT_SIZE);
  3232.  
  3233.       while (s != 0) {
  3234.         mchunkptr q = align_as_chunk(s->base);
  3235.         while (segment_holds(s, q) &&
  3236.                q != m->top && q->head != FENCEPOST_HEAD) {
  3237.           if (!cinuse(q))
  3238.             used -= chunksize(q);
  3239.           q = next_chunk(q);
  3240.         }
  3241.         s = s->next;
  3242.       }
  3243.     }
  3244.  
  3245.     fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
  3246.     fprintf(stderr, "system bytes     = %10lu\n", (unsigned long)(fp));
  3247.     fprintf(stderr, "in use bytes     = %10lu\n", (unsigned long)(used));
  3248.  
  3249.     POSTACTION(m);
  3250.   }
  3251. }
  3252.  
  3253. /* ----------------------- Operations on smallbins ----------------------- */
  3254.  
  3255. /*
  3256.   Various forms of linking and unlinking are defined as macros.  Even
  3257.   the ones for trees, which are very long but have very short typical
  3258.   paths.  This is ugly but reduces reliance on inlining support of
  3259.   compilers.
  3260. */
  3261.  
  3262. /* Link a free chunk into a smallbin  */
  3263. #define insert_small_chunk(M, P, S) {\
  3264.   bindex_t I  = small_index(S);\
  3265.   mchunkptr B = smallbin_at(M, I);\
  3266.   mchunkptr F = B;\
  3267.   assert(S >= MIN_CHUNK_SIZE);\
  3268.   if (!smallmap_is_marked(M, I))\
  3269.     mark_smallmap(M, I);\
  3270.   else if (RTCHECK(ok_address(M, B->fd)))\
  3271.     F = B->fd;\
  3272.   else {\
  3273.     CORRUPTION_ERROR_ACTION(M);\
  3274.   }\
  3275.   B->fd = P;\
  3276.   F->bk = P;\
  3277.   P->fd = F;\
  3278.   P->bk = B;\
  3279. }
  3280.  
  3281. /* Unlink a chunk from a smallbin  */
  3282. #define unlink_small_chunk(M, P, S) {\
  3283.   mchunkptr F = P->fd;\
  3284.   mchunkptr B = P->bk;\
  3285.   bindex_t I = small_index(S);\
  3286.   assert(P != B);\
  3287.   assert(P != F);\
  3288.   assert(chunksize(P) == small_index2size(I));\
  3289.   if (F == B)\
  3290.     clear_smallmap(M, I);\
  3291.   else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
  3292.                    (B == smallbin_at(M,I) || ok_address(M, B)))) {\
  3293.     F->bk = B;\
  3294.     B->fd = F;\
  3295.   }\
  3296.   else {\
  3297.     CORRUPTION_ERROR_ACTION(M);\
  3298.   }\
  3299. }
  3300.  
  3301. /* Unlink the first chunk from a smallbin */
  3302. #define unlink_first_small_chunk(M, B, P, I) {\
  3303.   mchunkptr F = P->fd;\
  3304.   assert(P != B);\
  3305.   assert(P != F);\
  3306.   assert(chunksize(P) == small_index2size(I));\
  3307.   if (B == F)\
  3308.     clear_smallmap(M, I);\
  3309.   else if (RTCHECK(ok_address(M, F))) {\
  3310.     B->fd = F;\
  3311.     F->bk = B;\
  3312.   }\
  3313.   else {\
  3314.     CORRUPTION_ERROR_ACTION(M);\
  3315.   }\
  3316. }
  3317.  
  3318. /* Replace dv node, binning the old one */
  3319. /* Used only when dvsize known to be small */
  3320. #define replace_dv(M, P, S) {\
  3321.   size_t DVS = M->dvsize;\
  3322.   if (DVS != 0) {\
  3323.     mchunkptr DV = M->dv;\
  3324.     assert(is_small(DVS));\
  3325.     insert_small_chunk(M, DV, DVS);\
  3326.   }\
  3327.   M->dvsize = S;\
  3328.   M->dv = P;\
  3329. }
  3330.  
  3331. /* ------------------------- Operations on trees ------------------------- */
  3332.  
  3333. /* Insert chunk into tree */
  3334. #define insert_large_chunk(M, X, S) {\
  3335.   tbinptr* H;\
  3336.   bindex_t I;\
  3337.   compute_tree_index(S, I);\
  3338.   H = treebin_at(M, I);\
  3339.   X->index = I;\
  3340.   X->child[0] = X->child[1] = 0;\
  3341.   if (!treemap_is_marked(M, I)) {\
  3342.     mark_treemap(M, I);\
  3343.     *H = X;\
  3344.     X->parent = (tchunkptr)H;\
  3345.     X->fd = X->bk = X;\
  3346.   }\
  3347.   else {\
  3348.     tchunkptr T = *H;\
  3349.     size_t K = S << leftshift_for_tree_index(I);\
  3350.     for (;;) {\
  3351.       if (chunksize(T) != S) {\
  3352.         tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
  3353.         K <<= 1;\
  3354.         if (*C != 0)\
  3355.           T = *C;\
  3356.         else if (RTCHECK(ok_address(M, C))) {\
  3357.           *C = X;\
  3358.           X->parent = T;\
  3359.           X->fd = X->bk = X;\
  3360.           break;\
  3361.         }\
  3362.         else {\
  3363.           CORRUPTION_ERROR_ACTION(M);\
  3364.           break;\
  3365.         }\
  3366.       }\
  3367.       else {\
  3368.         tchunkptr F = T->fd;\
  3369.         if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
  3370.           T->fd = F->bk = X;\
  3371.           X->fd = F;\
  3372.           X->bk = T;\
  3373.           X->parent = 0;\
  3374.           break;\
  3375.         }\
  3376.         else {\
  3377.           CORRUPTION_ERROR_ACTION(M);\
  3378.           break;\
  3379.         }\
  3380.       }\
  3381.     }\
  3382.   }\
  3383. }
  3384.  
  3385. /*
  3386.   Unlink steps:
  3387.  
  3388.   1. If x is a chained node, unlink it from its same-sized fd/bk links
  3389.      and choose its bk node as its replacement.
  3390.   2. If x was the last node of its size, but not a leaf node, it must
  3391.      be replaced with a leaf node (not merely one with an open left or
  3392.      right), to make sure that lefts and rights of descendents
  3393.      correspond properly to bit masks.  We use the rightmost descendent
  3394.      of x.  We could use any other leaf, but this is easy to locate and
  3395.      tends to counteract removal of leftmosts elsewhere, and so keeps
  3396.      paths shorter than minimally guaranteed.  This doesn't loop much
  3397.      because on average a node in a tree is near the bottom.
  3398.   3. If x is the base of a chain (i.e., has parent links) relink
  3399.      x's parent and children to x's replacement (or null if none).
  3400. */
  3401.  
  3402. #define unlink_large_chunk(M, X) {\
  3403.   tchunkptr XP = X->parent;\
  3404.   tchunkptr R;\
  3405.   if (X->bk != X) {\
  3406.     tchunkptr F = X->fd;\
  3407.     R = X->bk;\
  3408.     if (RTCHECK(ok_address(M, F))) {\
  3409.       F->bk = R;\
  3410.       R->fd = F;\
  3411.     }\
  3412.     else {\
  3413.       CORRUPTION_ERROR_ACTION(M);\
  3414.     }\
  3415.   }\
  3416.   else {\
  3417.     tchunkptr* RP;\
  3418.     if (((R = *(RP = &(X->child[1]))) != 0) ||\
  3419.         ((R = *(RP = &(X->child[0]))) != 0)) {\
  3420.       tchunkptr* CP;\
  3421.       while ((*(CP = &(R->child[1])) != 0) ||\
  3422.              (*(CP = &(R->child[0])) != 0)) {\
  3423.         R = *(RP = CP);\
  3424.       }\
  3425.       if (RTCHECK(ok_address(M, RP)))\
  3426.         *RP = 0;\
  3427.       else {\
  3428.         CORRUPTION_ERROR_ACTION(M);\
  3429.       }\
  3430.     }\
  3431.   }\
  3432.   if (XP != 0) {\
  3433.     tbinptr* H = treebin_at(M, X->index);\
  3434.     if (X == *H) {\
  3435.       if ((*H = R) == 0) \
  3436.         clear_treemap(M, X->index);\
  3437.     }\
  3438.     else if (RTCHECK(ok_address(M, XP))) {\
  3439.       if (XP->child[0] == X) \
  3440.         XP->child[0] = R;\
  3441.       else \
  3442.         XP->child[1] = R;\
  3443.     }\
  3444.     else\
  3445.       CORRUPTION_ERROR_ACTION(M);\
  3446.     if (R != 0) {\
  3447.       if (RTCHECK(ok_address(M, R))) {\
  3448.         tchunkptr C0, C1;\
  3449.         R->parent = XP;\
  3450.         if ((C0 = X->child[0]) != 0) {\
  3451.           if (RTCHECK(ok_address(M, C0))) {\
  3452.             R->child[0] = C0;\
  3453.             C0->parent = R;\
  3454.           }\
  3455.           else\
  3456.             CORRUPTION_ERROR_ACTION(M);\
  3457.         }\
  3458.         if ((C1 = X->child[1]) != 0) {\
  3459.           if (RTCHECK(ok_address(M, C1))) {\
  3460.             R->child[1] = C1;\
  3461.             C1->parent = R;\
  3462.           }\
  3463.           else\
  3464.             CORRUPTION_ERROR_ACTION(M);\
  3465.         }\
  3466.       }\
  3467.       else\
  3468.         CORRUPTION_ERROR_ACTION(M);\
  3469.     }\
  3470.   }\
  3471. }
  3472.  
  3473. /* Relays to large vs small bin operations */
  3474.  
  3475. #define insert_chunk(M, P, S)\
  3476.   if (is_small(S)) insert_small_chunk(M, P, S)\
  3477.   else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
  3478.  
  3479. #define unlink_chunk(M, P, S)\
  3480.   if (is_small(S)) unlink_small_chunk(M, P, S)\
  3481.   else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
  3482.  
  3483.  
  3484. /* Relays to internal calls to malloc/free from realloc, memalign etc */
  3485.  
  3486. #if ONLY_MSPACES
  3487. #define internal_malloc(m, b) mspace_malloc(m, b)
  3488. #define internal_free(m, mem) mspace_free(m,mem);
  3489. #else /* ONLY_MSPACES */
  3490. #if MSPACES
  3491. #define internal_malloc(m, b)\
  3492.    (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
  3493. #define internal_free(m, mem)\
  3494.    if (m == gm) dlfree(mem); else mspace_free(m,mem);
  3495. #else /* MSPACES */
  3496. #define internal_malloc(m, b) dlmalloc(b)
  3497. #define internal_free(m, mem) dlfree(mem)
  3498. #endif /* MSPACES */
  3499. #endif /* ONLY_MSPACES */
  3500.  
  3501. /* -----------------------  Direct-mmapping chunks ----------------------- */
  3502.  
  3503. /*
  3504.   Directly mmapped chunks are set up with an offset to the start of
  3505.   the mmapped region stored in the prev_foot field of the chunk. This
  3506.   allows reconstruction of the required argument to MUNMAP when freed,
  3507.   and also allows adjustment of the returned chunk to meet alignment
  3508.   requirements (especially in memalign).  There is also enough space
  3509.   allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain
  3510.   the PINUSE bit so frees can be checked.
  3511. */
  3512.  
  3513. /* Malloc using mmap */
  3514. static void* mmap_alloc(mstate m, size_t nb) {
  3515.   size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
  3516.   if (mmsize > nb) {     /* Check for wrap around 0 */
  3517.     char* mm = (char*)(DIRECT_MMAP(mmsize));
  3518.     if (mm != CMFAIL) {
  3519.       size_t offset = align_offset(chunk2mem(mm));
  3520.       size_t psize = mmsize - offset - MMAP_FOOT_PAD;
  3521.       mchunkptr p = (mchunkptr)(mm + offset);
  3522.       p->prev_foot = offset | IS_MMAPPED_BIT;
  3523.       (p)->head = (psize|CINUSE_BIT);
  3524.       mark_inuse_foot(m, p, psize);
  3525.       chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
  3526.       chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
  3527.  
  3528.       if (mm < m->least_addr)
  3529.         m->least_addr = mm;
  3530.       if ((m->footprint += mmsize) > m->max_footprint)
  3531.         m->max_footprint = m->footprint;
  3532.       assert(is_aligned(chunk2mem(p)));
  3533.       check_mmapped_chunk(m, p);
  3534.       return chunk2mem(p);
  3535.     }
  3536.   }
  3537.   return 0;
  3538. }
  3539.  
  3540. /* Realloc using mmap */
  3541. static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
  3542.   size_t oldsize = chunksize(oldp);
  3543.   if (is_small(nb)) /* Can't shrink mmap regions below small size */
  3544.     return 0;
  3545.   /* Keep old chunk if big enough but not too big */
  3546.   if (oldsize >= nb + SIZE_T_SIZE &&
  3547.       (oldsize - nb) <= (mparams.granularity << 1))
  3548.     return oldp;
  3549.   else {
  3550.     size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
  3551.     size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
  3552.     size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
  3553.     char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
  3554.                                   oldmmsize, newmmsize, 1);
  3555.     if (cp != CMFAIL) {
  3556.       mchunkptr newp = (mchunkptr)(cp + offset);
  3557.       size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
  3558.       newp->head = (psize|CINUSE_BIT);
  3559.       mark_inuse_foot(m, newp, psize);
  3560.       chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
  3561.       chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
  3562.  
  3563.       if (cp < m->least_addr)
  3564.         m->least_addr = cp;
  3565.       if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
  3566.         m->max_footprint = m->footprint;
  3567.       check_mmapped_chunk(m, newp);
  3568.       return newp;
  3569.     }
  3570.   }
  3571.   return 0;
  3572. }
  3573.  
  3574. /* -------------------------- mspace management -------------------------- */
  3575.  
  3576. /* Initialize top chunk and its size */
  3577. static void init_top(mstate m, mchunkptr p, size_t psize) {
  3578.   /* Ensure alignment */
  3579.   size_t offset = align_offset(chunk2mem(p));
  3580.   p = (mchunkptr)((char*)p + offset);
  3581.   psize -= offset;
  3582.  
  3583.   m->top = p;
  3584.   m->topsize = psize;
  3585.   p->head = psize | PINUSE_BIT;
  3586.   /* set size of fake trailing chunk holding overhead space only once */
  3587.   chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
  3588.   m->trim_check = mparams.trim_threshold; /* reset on each update */
  3589. }
  3590.  
  3591. /* Initialize bins for a new mstate that is otherwise zeroed out */
  3592. static void init_bins(mstate m) {
  3593.   /* Establish circular links for smallbins */
  3594.   bindex_t i;
  3595.   for (i = 0; i < NSMALLBINS; ++i) {
  3596.     sbinptr bin = smallbin_at(m,i);
  3597.     bin->fd = bin->bk = bin;
  3598.   }
  3599. }
  3600.  
  3601. #if PROCEED_ON_ERROR
  3602.  
  3603. /* default corruption action */
  3604. static void reset_on_error(mstate m) {
  3605.   int i;
  3606.   ++malloc_corruption_error_count;
  3607.   /* Reinitialize fields to forget about all memory */
  3608.   m->smallbins = m->treebins = 0;
  3609.   m->dvsize = m->topsize = 0;
  3610.   m->seg.base = 0;
  3611.   m->seg.size = 0;
  3612.   m->seg.next = 0;
  3613.   m->top = m->dv = 0;
  3614.   for (i = 0; i < NTREEBINS; ++i)
  3615.     *treebin_at(m, i) = 0;
  3616.   init_bins(m);
  3617. }
  3618. #endif /* PROCEED_ON_ERROR */
  3619.  
  3620. /* Allocate chunk and prepend remainder with chunk in successor base. */
  3621. static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
  3622.                            size_t nb) {
  3623.   mchunkptr p = align_as_chunk(newbase);
  3624.   mchunkptr oldfirst = align_as_chunk(oldbase);
  3625.   size_t psize = (char*)oldfirst - (char*)p;
  3626.   mchunkptr q = chunk_plus_offset(p, nb);
  3627.   size_t qsize = psize - nb;
  3628.   set_size_and_pinuse_of_inuse_chunk(m, p, nb);
  3629.  
  3630.   assert((char*)oldfirst > (char*)q);
  3631.   assert(pinuse(oldfirst));
  3632.   assert(qsize >= MIN_CHUNK_SIZE);
  3633.  
  3634.   /* consolidate remainder with first chunk of old base */
  3635.   if (oldfirst == m->top) {
  3636.     size_t tsize = m->topsize += qsize;
  3637.     m->top = q;
  3638.     q->head = tsize | PINUSE_BIT;
  3639.     check_top_chunk(m, q);
  3640.   }
  3641.   else if (oldfirst == m->dv) {
  3642.     size_t dsize = m->dvsize += qsize;
  3643.     m->dv = q;
  3644.     set_size_and_pinuse_of_free_chunk(q, dsize);
  3645.   }
  3646.   else {
  3647.     if (!cinuse(oldfirst)) {
  3648.       size_t nsize = chunksize(oldfirst);
  3649.       unlink_chunk(m, oldfirst, nsize);
  3650.       oldfirst = chunk_plus_offset(oldfirst, nsize);
  3651.       qsize += nsize;
  3652.     }
  3653.     set_free_with_pinuse(q, qsize, oldfirst);
  3654.     insert_chunk(m, q, qsize);
  3655.     check_free_chunk(m, q);
  3656.   }
  3657.  
  3658.   check_malloced_chunk(m, chunk2mem(p), nb);
  3659.   return chunk2mem(p);
  3660. }
  3661.  
  3662. /* Add a segment to hold a new noncontiguous region */
  3663. static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
  3664.   /* Determine locations and sizes of segment, fenceposts, old top */
  3665.   char* old_top = (char*)m->top;
  3666.   msegmentptr oldsp = segment_holding(m, old_top);
  3667.   char* old_end = oldsp->base + oldsp->size;
  3668.   size_t ssize = pad_request(sizeof(struct malloc_segment));
  3669.   char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
  3670.   size_t offset = align_offset(chunk2mem(rawsp));
  3671.   char* asp = rawsp + offset;
  3672.   char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
  3673.   mchunkptr sp = (mchunkptr)csp;
  3674.   msegmentptr ss = (msegmentptr)(chunk2mem(sp));
  3675.   mchunkptr tnext = chunk_plus_offset(sp, ssize);
  3676.   mchunkptr p = tnext;
  3677.   int nfences = 0;
  3678.  
  3679.   /* reset top to new space */
  3680.   init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
  3681.  
  3682.   /* Set up segment record */
  3683.   assert(is_aligned(ss));
  3684.   set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
  3685.   *ss = m->seg; /* Push current record */
  3686.   m->seg.base = tbase;
  3687.   m->seg.size = tsize;
  3688.   m->seg.sflags = mmapped;
  3689.   m->seg.next = ss;
  3690.  
  3691.   /* Insert trailing fenceposts */
  3692.   for (;;) {
  3693.     mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
  3694.     p->head = FENCEPOST_HEAD;
  3695.     ++nfences;
  3696.     if ((char*)(&(nextp->head)) < old_end)
  3697.       p = nextp;
  3698.     else
  3699.       break;
  3700.   }
  3701.   assert(nfences >= 2);
  3702.  
  3703.   /* Insert the rest of old top into a bin as an ordinary free chunk */
  3704.   if (csp != old_top) {
  3705.     mchunkptr q = (mchunkptr)old_top;
  3706.     size_t psize = csp - old_top;
  3707.     mchunkptr tn = chunk_plus_offset(q, psize);
  3708.     set_free_with_pinuse(q, psize, tn);
  3709.     insert_chunk(m, q, psize);
  3710.   }
  3711.  
  3712.   check_top_chunk(m, m->top);
  3713. }
  3714.  
  3715. /* -------------------------- System allocation -------------------------- */
  3716.  
  3717. /* Get memory from system using MORECORE or MMAP */
  3718. static void* sys_alloc(mstate m, size_t nb) {
  3719.   char* tbase = CMFAIL;
  3720.   size_t tsize = 0;
  3721.   flag_t mmap_flag = 0;
  3722.  
  3723.   init_mparams();
  3724.  
  3725.   /* Directly map large chunks */
  3726.   if (use_mmap(m) && nb >= mparams.mmap_threshold) {
  3727.     void* mem = mmap_alloc(m, nb);
  3728.     if (mem != 0)
  3729.       return mem;
  3730.   }
  3731.  
  3732.   /*
  3733.     Try getting memory in any of three ways (in most-preferred to
  3734.     least-preferred order):
  3735.     1. A call to MORECORE that can normally contiguously extend memory.
  3736.        (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
  3737.        or main space is mmapped or a previous contiguous call failed)
  3738.     2. A call to MMAP new space (disabled if not HAVE_MMAP).
  3739.        Note that under the default settings, if MORECORE is unable to
  3740.        fulfill a request, and HAVE_MMAP is true, then mmap is
  3741.        used as a noncontiguous system allocator. This is a useful backup
  3742.        strategy for systems with holes in address spaces -- in this case
  3743.        sbrk cannot contiguously expand the heap, but mmap may be able to
  3744.        find space.
  3745.     3. A call to MORECORE that cannot usually contiguously extend memory.
  3746.        (disabled if not HAVE_MORECORE)
  3747.   */
  3748.  
  3749.   if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
  3750.     char* br = CMFAIL;
  3751.     msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
  3752.     size_t asize = 0;
  3753.     ACQUIRE_MORECORE_LOCK();
  3754.  
  3755.     if (ss == 0) {  /* First time through or recovery */
  3756.       char* base = (char*)CALL_MORECORE(0);
  3757.       if (base != CMFAIL) {
  3758.         asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
  3759.         /* Adjust to end on a page boundary */
  3760.         if (!is_page_aligned(base))
  3761.           asize += (page_align((size_t)base) - (size_t)base);
  3762.         /* Can't call MORECORE if size is negative when treated as signed */
  3763.         if (asize < HALF_MAX_SIZE_T &&
  3764.             (br = (char*)(CALL_MORECORE(asize))) == base) {
  3765.           tbase = base;
  3766.           tsize = asize;
  3767.         }
  3768.       }
  3769.     }
  3770.     else {
  3771.       /* Subtract out existing available top space from MORECORE request. */
  3772.       asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE);
  3773.       /* Use mem here only if it did continuously extend old space */
  3774.       if (asize < HALF_MAX_SIZE_T &&
  3775.           (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
  3776.         tbase = br;
  3777.         tsize = asize;
  3778.       }
  3779.     }
  3780.  
  3781.     if (tbase == CMFAIL) {    /* Cope with partial failure */
  3782.       if (br != CMFAIL) {    /* Try to use/extend the space we did get */
  3783.         if (asize < HALF_MAX_SIZE_T &&
  3784.             asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) {
  3785.           size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize);
  3786.           if (esize < HALF_MAX_SIZE_T) {
  3787.             char* end = (char*)CALL_MORECORE(esize);
  3788.             if (end != CMFAIL)
  3789.               asize += esize;
  3790.             else {            /* Can't use; try to release */
  3791.               (void) CALL_MORECORE(-asize);
  3792.               br = CMFAIL;
  3793.             }
  3794.           }
  3795.         }
  3796.       }
  3797.       if (br != CMFAIL) {    /* Use the space we did get */
  3798.         tbase = br;
  3799.         tsize = asize;
  3800.       }
  3801.       else
  3802.         disable_contiguous(m); /* Don't try contiguous path in the future */
  3803.     }
  3804.  
  3805.     RELEASE_MORECORE_LOCK();
  3806.   }
  3807.  
  3808.   if (HAVE_MMAP && tbase == CMFAIL) {  /* Try MMAP */
  3809.     size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
  3810.     size_t rsize = granularity_align(req);
  3811.     if (rsize > nb) { /* Fail if wraps around zero */
  3812.       char* mp = (char*)(CALL_MMAP(rsize));
  3813.       if (mp != CMFAIL) {
  3814.         tbase = mp;
  3815.         tsize = rsize;
  3816.         mmap_flag = IS_MMAPPED_BIT;
  3817.       }
  3818.     }
  3819.   }
  3820.  
  3821.   if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
  3822.     size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
  3823.     if (asize < HALF_MAX_SIZE_T) {
  3824.       char* br = CMFAIL;
  3825.       char* end = CMFAIL;
  3826.       ACQUIRE_MORECORE_LOCK();
  3827.       br = (char*)(CALL_MORECORE(asize));
  3828.       end = (char*)(CALL_MORECORE(0));
  3829.       RELEASE_MORECORE_LOCK();
  3830.       if (br != CMFAIL && end != CMFAIL && br < end) {
  3831.         size_t ssize = end - br;
  3832.         if (ssize > nb + TOP_FOOT_SIZE) {
  3833.           tbase = br;
  3834.           tsize = ssize;
  3835.         }
  3836.       }
  3837.     }
  3838.   }
  3839.  
  3840.   if (tbase != CMFAIL) {
  3841.  
  3842.     if ((m->footprint += tsize) > m->max_footprint)
  3843.       m->max_footprint = m->footprint;
  3844.  
  3845.     if (!is_initialized(m)) { /* first-time initialization */
  3846.       m->seg.base = m->least_addr = tbase;
  3847.       m->seg.size = tsize;
  3848.       m->seg.sflags = mmap_flag;
  3849.       m->magic = mparams.magic;
  3850.       m->release_checks = MAX_RELEASE_CHECK_RATE;
  3851.       init_bins(m);
  3852. #if !ONLY_MSPACES
  3853.       if (is_global(m))
  3854.         init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
  3855.       else
  3856. #endif
  3857.       {
  3858.         /* Offset top by embedded malloc_state */
  3859.         mchunkptr mn = next_chunk(mem2chunk(m));
  3860.         init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
  3861.       }
  3862.     }
  3863.  
  3864.     else {
  3865.       /* Try to merge with an existing segment */
  3866.       msegmentptr sp = &m->seg;
  3867.       /* Only consider most recent segment if traversal suppressed */
  3868.       while (sp != 0 && tbase != sp->base + sp->size)
  3869.         sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
  3870.       if (sp != 0 &&
  3871.           !is_extern_segment(sp) &&
  3872.           (sp->sflags & IS_MMAPPED_BIT) == mmap_flag &&
  3873.           segment_holds(sp, m->top)) { /* append */
  3874.         sp->size += tsize;
  3875.         init_top(m, m->top, m->topsize + tsize);
  3876.       }
  3877.       else {
  3878.         if (tbase < m->least_addr)
  3879.           m->least_addr = tbase;
  3880.         sp = &m->seg;
  3881.         while (sp != 0 && sp->base != tbase + tsize)
  3882.           sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
  3883.         if (sp != 0 &&
  3884.             !is_extern_segment(sp) &&
  3885.             (sp->sflags & IS_MMAPPED_BIT) == mmap_flag) {
  3886.           char* oldbase = sp->base;
  3887.           sp->base = tbase;
  3888.           sp->size += tsize;
  3889.           return prepend_alloc(m, tbase, oldbase, nb);
  3890.         }
  3891.         else
  3892.           add_segment(m, tbase, tsize, mmap_flag);
  3893.       }
  3894.     }
  3895.  
  3896.     if (nb < m->topsize) { /* Allocate from new or extended top space */
  3897.       size_t rsize = m->topsize -= nb;
  3898.       mchunkptr p = m->top;
  3899.       mchunkptr r = m->top = chunk_plus_offset(p, nb);
  3900.       r->head = rsize | PINUSE_BIT;
  3901.       set_size_and_pinuse_of_inuse_chunk(m, p, nb);
  3902.       check_top_chunk(m, m->top);
  3903.       check_malloced_chunk(m, chunk2mem(p), nb);
  3904.       return chunk2mem(p);
  3905.     }
  3906.   }
  3907.  
  3908.   MALLOC_FAILURE_ACTION;
  3909.   return 0;
  3910. }
  3911.  
  3912. /* -----------------------  system deallocation -------------------------- */
  3913.  
  3914. /* Unmap and unlink any mmapped segments that don't contain used chunks */
  3915. static size_t release_unused_segments(mstate m) {
  3916.   size_t released = 0;
  3917.   int nsegs = 0;
  3918.   msegmentptr pred = &m->seg;
  3919.   msegmentptr sp = pred->next;
  3920.   while (sp != 0) {
  3921.     char* base = sp->base;
  3922.     size_t size = sp->size;
  3923.     msegmentptr next = sp->next;
  3924.     ++nsegs;
  3925.     if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
  3926.       mchunkptr p = align_as_chunk(base);
  3927.       size_t psize = chunksize(p);
  3928.       /* Can unmap if first chunk holds entire segment and not pinned */
  3929.       if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
  3930.         tchunkptr tp = (tchunkptr)p;
  3931.         assert(segment_holds(sp, (char*)sp));
  3932.         if (p == m->dv) {
  3933.           m->dv = 0;
  3934.           m->dvsize = 0;
  3935.         }
  3936.         else {
  3937.           unlink_large_chunk(m, tp);
  3938.         }
  3939.         if (CALL_MUNMAP(base, size) == 0) {
  3940.           released += size;
  3941.           m->footprint -= size;
  3942.           /* unlink obsoleted record */
  3943.           sp = pred;
  3944.           sp->next = next;
  3945.         }
  3946.         else { /* back out if cannot unmap */
  3947.           insert_large_chunk(m, tp, psize);
  3948.         }
  3949.       }
  3950.     }
  3951.     if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */
  3952.       break;
  3953.     pred = sp;
  3954.     sp = next;
  3955.   }
  3956.   /* Reset check counter */
  3957.   m->release_checks = ((nsegs > MAX_RELEASE_CHECK_RATE)?
  3958.                        nsegs : MAX_RELEASE_CHECK_RATE);
  3959.   return released;
  3960. }
  3961.  
  3962. static int sys_trim(mstate m, size_t pad) {
  3963.   size_t released = 0;
  3964.   if (pad < MAX_REQUEST && is_initialized(m)) {
  3965.     pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
  3966.  
  3967.     if (m->topsize > pad) {
  3968.       /* Shrink top space in granularity-size units, keeping at least one */
  3969.       size_t unit = mparams.granularity;
  3970.       size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
  3971.                       SIZE_T_ONE) * unit;
  3972.       msegmentptr sp = segment_holding(m, (char*)m->top);
  3973.  
  3974.       if (!is_extern_segment(sp)) {
  3975.         if (is_mmapped_segment(sp)) {
  3976.           if (HAVE_MMAP &&
  3977.               sp->size >= extra &&
  3978.               !has_segment_link(m, sp)) { /* can't shrink if pinned */
  3979.             size_t newsize = sp->size - extra;
  3980.             /* Prefer mremap, fall back to munmap */
  3981.             if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
  3982.                 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
  3983.               released = extra;
  3984.             }
  3985.           }
  3986.         }
  3987.         else if (HAVE_MORECORE) {
  3988.           if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
  3989.             extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
  3990.           ACQUIRE_MORECORE_LOCK();
  3991.           {
  3992.             /* Make sure end of memory is where we last set it. */
  3993.             char* old_br = (char*)(CALL_MORECORE(0));
  3994.             if (old_br == sp->base + sp->size) {
  3995.               char* rel_br = (char*)(CALL_MORECORE(-extra));
  3996.               char* new_br = (char*)(CALL_MORECORE(0));
  3997.               if (rel_br != CMFAIL && new_br < old_br)
  3998.                 released = old_br - new_br;
  3999.             }
  4000.           }
  4001.           RELEASE_MORECORE_LOCK();
  4002.         }
  4003.       }
  4004.  
  4005.       if (released != 0) {
  4006.         sp->size -= released;
  4007.         m->footprint -= released;
  4008.         init_top(m, m->top, m->topsize - released);
  4009.         check_top_chunk(m, m->top);
  4010.       }
  4011.     }
  4012.  
  4013.     /* Unmap any unused mmapped segments */
  4014.     if (HAVE_MMAP)
  4015.       released += release_unused_segments(m);
  4016.  
  4017.     /* On failure, disable autotrim to avoid repeated failed future calls */
  4018.     if (released == 0 && m->topsize > m->trim_check)
  4019.       m->trim_check = MAX_SIZE_T;
  4020.   }
  4021.  
  4022.   return (released != 0)? 1 : 0;
  4023. }
  4024.  
  4025. /* ---------------------------- malloc support --------------------------- */
  4026.  
  4027. /* allocate a large request from the best fitting chunk in a treebin */
  4028. static void* tmalloc_large(mstate m, size_t nb) {
  4029.   tchunkptr v = 0;
  4030.   size_t rsize = -nb; /* Unsigned negation */
  4031.   tchunkptr t;
  4032.   bindex_t idx;
  4033.   compute_tree_index(nb, idx);
  4034.  
  4035.   if ((t = *treebin_at(m, idx)) != 0) {
  4036.     /* Traverse tree for this bin looking for node with size == nb */
  4037.     size_t sizebits = nb << leftshift_for_tree_index(idx);
  4038.     tchunkptr rst = 0;  /* The deepest untaken right subtree */
  4039.     for (;;) {
  4040.       tchunkptr rt;
  4041.       size_t trem = chunksize(t) - nb;
  4042.       if (trem < rsize) {
  4043.         v = t;
  4044.         if ((rsize = trem) == 0)
  4045.           break;
  4046.       }
  4047.       rt = t->child[1];
  4048.       t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
  4049.       if (rt != 0 && rt != t)
  4050.         rst = rt;
  4051.       if (t == 0) {
  4052.         t = rst; /* set t to least subtree holding sizes > nb */
  4053.         break;
  4054.       }
  4055.       sizebits <<= 1;
  4056.     }
  4057.   }
  4058.  
  4059.   if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
  4060.     binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
  4061.     if (leftbits != 0) {
  4062.       bindex_t i;
  4063.       binmap_t leastbit = least_bit(leftbits);
  4064.       compute_bit2idx(leastbit, i);
  4065.       t = *treebin_at(m, i);
  4066.     }
  4067.   }
  4068.  
  4069.   while (t != 0) { /* find smallest of tree or subtree */
  4070.     size_t trem = chunksize(t) - nb;
  4071.     if (trem < rsize) {
  4072.       rsize = trem;
  4073.       v = t;
  4074.     }
  4075.     t = leftmost_child(t);
  4076.   }
  4077.  
  4078.   /*  If dv is a better fit, return 0 so malloc will use it */
  4079.   if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
  4080.     if (RTCHECK(ok_address(m, v))) { /* split */
  4081.       mchunkptr r = chunk_plus_offset(v, nb);
  4082.       assert(chunksize(v) == rsize + nb);
  4083.       if (RTCHECK(ok_next(v, r))) {
  4084.         unlink_large_chunk(m, v);
  4085.         if (rsize < MIN_CHUNK_SIZE)
  4086.           set_inuse_and_pinuse(m, v, (rsize + nb));
  4087.         else {
  4088.           set_size_and_pinuse_of_inuse_chunk(m, v, nb);
  4089.           set_size_and_pinuse_of_free_chunk(r, rsize);
  4090.           insert_chunk(m, r, rsize);
  4091.         }
  4092.         return chunk2mem(v);
  4093.       }
  4094.     }
  4095.     CORRUPTION_ERROR_ACTION(m);
  4096.   }
  4097.   return 0;
  4098. }
  4099.  
  4100. /* allocate a small request from the best fitting chunk in a treebin */
  4101. static void* tmalloc_small(mstate m, size_t nb) {
  4102.   tchunkptr t, v;
  4103.   size_t rsize;
  4104.   bindex_t i;
  4105.   binmap_t leastbit = least_bit(m->treemap);
  4106.   compute_bit2idx(leastbit, i);
  4107.  
  4108.   v = t = *treebin_at(m, i);
  4109.   rsize = chunksize(t) - nb;
  4110.  
  4111.   while ((t = leftmost_child(t)) != 0) {
  4112.     size_t trem = chunksize(t) - nb;
  4113.     if (trem < rsize) {
  4114.       rsize = trem;
  4115.       v = t;
  4116.     }
  4117.   }
  4118.  
  4119.   if (RTCHECK(ok_address(m, v))) {
  4120.     mchunkptr r = chunk_plus_offset(v, nb);
  4121.     assert(chunksize(v) == rsize + nb);
  4122.     if (RTCHECK(ok_next(v, r))) {
  4123.       unlink_large_chunk(m, v);
  4124.       if (rsize < MIN_CHUNK_SIZE)
  4125.         set_inuse_and_pinuse(m, v, (rsize + nb));
  4126.       else {
  4127.         set_size_and_pinuse_of_inuse_chunk(m, v, nb);
  4128.         set_size_and_pinuse_of_free_chunk(r, rsize);
  4129.         replace_dv(m, r, rsize);
  4130.       }
  4131.       return chunk2mem(v);
  4132.     }
  4133.   }
  4134.  
  4135.   CORRUPTION_ERROR_ACTION(m);
  4136.   return 0;
  4137. }
  4138.  
  4139. /* --------------------------- realloc support --------------------------- */
  4140.  
  4141. static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
  4142.   if (bytes >= MAX_REQUEST) {
  4143.     MALLOC_FAILURE_ACTION;
  4144.     return 0;
  4145.   }
  4146.   if (!PREACTION(m)) {
  4147.     mchunkptr oldp = mem2chunk(oldmem);
  4148.     size_t oldsize = chunksize(oldp);
  4149.     mchunkptr next = chunk_plus_offset(oldp, oldsize);
  4150.     mchunkptr newp = 0;
  4151.     void* extra = 0;
  4152.  
  4153.     /* Try to either shrink or extend into top. Else malloc-copy-free */
  4154.  
  4155.     if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
  4156.                 ok_next(oldp, next) && ok_pinuse(next))) {
  4157.       size_t nb = request2size(bytes);
  4158.       if (is_mmapped(oldp))
  4159.         newp = mmap_resize(m, oldp, nb);
  4160.       else if (oldsize >= nb) { /* already big enough */
  4161.         size_t rsize = oldsize - nb;
  4162.         newp = oldp;
  4163.         if (rsize >= MIN_CHUNK_SIZE) {
  4164.           mchunkptr remainder = chunk_plus_offset(newp, nb);
  4165.           set_inuse(m, newp, nb);
  4166.           set_inuse(m, remainder, rsize);
  4167.           extra = chunk2mem(remainder);
  4168.         }
  4169.       }
  4170.       else if (next == m->top && oldsize + m->topsize > nb) {
  4171.         /* Expand into top */
  4172.         size_t newsize = oldsize + m->topsize;
  4173.         size_t newtopsize = newsize - nb;
  4174.         mchunkptr newtop = chunk_plus_offset(oldp, nb);
  4175.         set_inuse(m, oldp, nb);
  4176.         newtop->head = newtopsize |PINUSE_BIT;
  4177.         m->top = newtop;
  4178.         m->topsize = newtopsize;
  4179.         newp = oldp;
  4180.       }
  4181.     }
  4182.     else {
  4183.       USAGE_ERROR_ACTION(m, oldmem);
  4184.       POSTACTION(m);
  4185.       return 0;
  4186.     }
  4187.  
  4188.     POSTACTION(m);
  4189.  
  4190.     if (newp != 0) {
  4191.       if (extra != 0) {
  4192.         internal_free(m, extra);
  4193.       }
  4194.       check_inuse_chunk(m, newp);
  4195.       return chunk2mem(newp);
  4196.     }
  4197.     else {
  4198.       void* newmem = internal_malloc(m, bytes);
  4199.       if (newmem != 0) {
  4200.         size_t oc = oldsize - overhead_for(oldp);
  4201.         memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
  4202.         internal_free(m, oldmem);
  4203.       }
  4204.       return newmem;
  4205.     }
  4206.   }
  4207.   return 0;
  4208. }
  4209.  
  4210. /* --------------------------- memalign support -------------------------- */
  4211.  
  4212. static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
  4213.   if (alignment <= MALLOC_ALIGNMENT)    /* Can just use malloc */
  4214.     return internal_malloc(m, bytes);
  4215.   if (alignment <  MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
  4216.     alignment = MIN_CHUNK_SIZE;
  4217.   if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
  4218.     size_t a = MALLOC_ALIGNMENT << 1;
  4219.     while (a < alignment) a <<= 1;
  4220.     alignment = a;
  4221.   }
  4222.  
  4223.   if (bytes >= MAX_REQUEST - alignment) {
  4224.     if (m != 0)  { /* Test isn't needed but avoids compiler warning */
  4225.       MALLOC_FAILURE_ACTION;
  4226.     }
  4227.   }
  4228.   else {
  4229.     size_t nb = request2size(bytes);
  4230.     size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
  4231.     char* mem = (char*)internal_malloc(m, req);
  4232.     if (mem != 0) {
  4233.       void* leader = 0;
  4234.       void* trailer = 0;
  4235.       mchunkptr p = mem2chunk(mem);
  4236.  
  4237.       if (PREACTION(m)) return 0;
  4238.       if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
  4239.         /*
  4240.           Find an aligned spot inside chunk.  Since we need to give
  4241.           back leading space in a chunk of at least MIN_CHUNK_SIZE, if
  4242.           the first calculation places us at a spot with less than
  4243.           MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
  4244.           We've allocated enough total room so that this is always
  4245.           possible.
  4246.         */
  4247.         char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
  4248.                                                        alignment -
  4249.                                                        SIZE_T_ONE)) &
  4250.                                              -alignment));
  4251.         char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
  4252.           br : br+alignment;
  4253.         mchunkptr newp = (mchunkptr)pos;
  4254.         size_t leadsize = pos - (char*)(p);
  4255.         size_t newsize = chunksize(p) - leadsize;
  4256.  
  4257.         if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
  4258.           newp->prev_foot = p->prev_foot + leadsize;
  4259.           newp->head = (newsize|CINUSE_BIT);
  4260.         }
  4261.         else { /* Otherwise, give back leader, use the rest */
  4262.           set_inuse(m, newp, newsize);
  4263.           set_inuse(m, p, leadsize);
  4264.           leader = chunk2mem(p);
  4265.         }
  4266.         p = newp;
  4267.       }
  4268.  
  4269.       /* Give back spare room at the end */
  4270.       if (!is_mmapped(p)) {
  4271.         size_t size = chunksize(p);
  4272.         if (size > nb + MIN_CHUNK_SIZE) {
  4273.           size_t remainder_size = size - nb;
  4274.           mchunkptr remainder = chunk_plus_offset(p, nb);
  4275.           set_inuse(m, p, nb);
  4276.           set_inuse(m, remainder, remainder_size);
  4277.           trailer = chunk2mem(remainder);
  4278.         }
  4279.       }
  4280.  
  4281.       assert (chunksize(p) >= nb);
  4282.       assert((((size_t)(chunk2mem(p))) % alignment) == 0);
  4283.       check_inuse_chunk(m, p);
  4284.       POSTACTION(m);
  4285.       if (leader != 0) {
  4286.         internal_free(m, leader);
  4287.       }
  4288.       if (trailer != 0) {
  4289.         internal_free(m, trailer);
  4290.       }
  4291.       return chunk2mem(p);
  4292.     }
  4293.   }
  4294.   return 0;
  4295. }
  4296.  
  4297. /* ------------------------ comalloc/coalloc support --------------------- */
  4298.  
  4299. static void** ialloc(mstate m,
  4300.                      size_t n_elements,
  4301.                      size_t* sizes,
  4302.                      int opts,
  4303.                      void* chunks[]) {
  4304.   /*
  4305.     This provides common support for independent_X routines, handling
  4306.     all of the combinations that can result.
  4307.  
  4308.     The opts arg has:
  4309.     bit 0 set if all elements are same size (using sizes[0])
  4310.     bit 1 set if elements should be zeroed
  4311.   */
  4312.  
  4313.   size_t    element_size;   /* chunksize of each element, if all same */
  4314.   size_t    contents_size;  /* total size of elements */
  4315.   size_t    array_size;     /* request size of pointer array */
  4316.   void*     mem;            /* malloced aggregate space */
  4317.   mchunkptr p;              /* corresponding chunk */
  4318.   size_t    remainder_size; /* remaining bytes while splitting */
  4319.   void**    marray;         /* either "chunks" or malloced ptr array */
  4320.   mchunkptr array_chunk;    /* chunk for malloced ptr array */
  4321.   flag_t    was_enabled;    /* to disable mmap */
  4322.   size_t    size;
  4323.   size_t    i;
  4324.  
  4325.   /* compute array length, if needed */
  4326.   if (chunks != 0) {
  4327.     if (n_elements == 0)
  4328.       return chunks; /* nothing to do */
  4329.     marray = chunks;
  4330.     array_size = 0;
  4331.   }
  4332.   else {
  4333.     /* if empty req, must still return chunk representing empty array */
  4334.     if (n_elements == 0)
  4335.       return (void**)internal_malloc(m, 0);
  4336.     marray = 0;
  4337.     array_size = request2size(n_elements * (sizeof(void*)));
  4338.   }
  4339.  
  4340.   /* compute total element size */
  4341.   if (opts & 0x1) { /* all-same-size */
  4342.     element_size = request2size(*sizes);
  4343.     contents_size = n_elements * element_size;
  4344.   }
  4345.   else { /* add up all the sizes */
  4346.     element_size = 0;
  4347.     contents_size = 0;
  4348.     for (i = 0; i != n_elements; ++i)
  4349.       contents_size += request2size(sizes[i]);
  4350.   }
  4351.  
  4352.   size = contents_size + array_size;
  4353.  
  4354.   /*
  4355.      Allocate the aggregate chunk.  First disable direct-mmapping so
  4356.      malloc won't use it, since we would not be able to later
  4357.      free/realloc space internal to a segregated mmap region.
  4358.   */
  4359.   was_enabled = use_mmap(m);
  4360.   disable_mmap(m);
  4361.   mem = internal_malloc(m, size - CHUNK_OVERHEAD);
  4362.   if (was_enabled)
  4363.     enable_mmap(m);
  4364.   if (mem == 0)
  4365.     return 0;
  4366.  
  4367.   if (PREACTION(m)) return 0;
  4368.   p = mem2chunk(mem);
  4369.   remainder_size = chunksize(p);
  4370.  
  4371.   assert(!is_mmapped(p));
  4372.  
  4373.   if (opts & 0x2) {       /* optionally clear the elements */
  4374.     memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
  4375.   }
  4376.  
  4377.   /* If not provided, allocate the pointer array as final part of chunk */
  4378.   if (marray == 0) {
  4379.     size_t  array_chunk_size;
  4380.     array_chunk = chunk_plus_offset(p, contents_size);
  4381.     array_chunk_size = remainder_size - contents_size;
  4382.     marray = (void**) (chunk2mem(array_chunk));
  4383.     set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
  4384.     remainder_size = contents_size;
  4385.   }
  4386.  
  4387.   /* split out elements */
  4388.   for (i = 0; ; ++i) {
  4389.     marray[i] = chunk2mem(p);
  4390.     if (i != n_elements-1) {
  4391.       if (element_size != 0)
  4392.         size = element_size;
  4393.       else
  4394.         size = request2size(sizes[i]);
  4395.       remainder_size -= size;
  4396.       set_size_and_pinuse_of_inuse_chunk(m, p, size);
  4397.       p = chunk_plus_offset(p, size);
  4398.     }
  4399.     else { /* the final element absorbs any overallocation slop */
  4400.       set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
  4401.       break;
  4402.     }
  4403.   }
  4404.  
  4405. #if DEBUG
  4406.   if (marray != chunks) {
  4407.     /* final element must have exactly exhausted chunk */
  4408.     if (element_size != 0) {
  4409.       assert(remainder_size == element_size);
  4410.     }
  4411.     else {
  4412.       assert(remainder_size == request2size(sizes[i]));
  4413.     }
  4414.     check_inuse_chunk(m, mem2chunk(marray));
  4415.   }
  4416.   for (i = 0; i != n_elements; ++i)
  4417.     check_inuse_chunk(m, mem2chunk(marray[i]));
  4418.  
  4419. #endif /* DEBUG */
  4420.  
  4421.   POSTACTION(m);
  4422.   return marray;
  4423. }
  4424.  
  4425.  
  4426. /* -------------------------- public routines ---------------------------- */
  4427.  
  4428. #if !ONLY_MSPACES
  4429.  
  4430. void* dlmalloc(size_t bytes) {
  4431.   /*
  4432.      Basic algorithm:
  4433.      If a small request (< 256 bytes minus per-chunk overhead):
  4434.        1. If one exists, use a remainderless chunk in associated smallbin.
  4435.           (Remainderless means that there are too few excess bytes to
  4436.           represent as a chunk.)
  4437.        2. If it is big enough, use the dv chunk, which is normally the
  4438.           chunk adjacent to the one used for the most recent small request.
  4439.        3. If one exists, split the smallest available chunk in a bin,
  4440.           saving remainder in dv.
  4441.        4. If it is big enough, use the top chunk.
  4442.        5. If available, get memory from system and use it
  4443.      Otherwise, for a large request:
  4444.        1. Find the smallest available binned chunk that fits, and use it
  4445.           if it is better fitting than dv chunk, splitting if necessary.
  4446.        2. If better fitting than any binned chunk, use the dv chunk.
  4447.        3. If it is big enough, use the top chunk.
  4448.        4. If request size >= mmap threshold, try to directly mmap this chunk.
  4449.        5. If available, get memory from system and use it
  4450.  
  4451.      The ugly goto's here ensure that postaction occurs along all paths.
  4452.   */
  4453.  
  4454.   if (!PREACTION(gm)) {
  4455.     void* mem;
  4456.     size_t nb;
  4457.     if (bytes <= MAX_SMALL_REQUEST) {
  4458.       bindex_t idx;
  4459.       binmap_t smallbits;
  4460.       nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
  4461.       idx = small_index(nb);
  4462.       smallbits = gm->smallmap >> idx;
  4463.  
  4464.       if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
  4465.         mchunkptr b, p;
  4466.         idx += ~smallbits & 1;       /* Uses next bin if idx empty */
  4467.         b = smallbin_at(gm, idx);
  4468.         p = b->fd;
  4469.         assert(chunksize(p) == small_index2size(idx));
  4470.         unlink_first_small_chunk(gm, b, p, idx);
  4471.         set_inuse_and_pinuse(gm, p, small_index2size(idx));
  4472.         mem = chunk2mem(p);
  4473.         check_malloced_chunk(gm, mem, nb);
  4474.         goto postaction;
  4475.       }
  4476.  
  4477.       else if (nb > gm->dvsize) {
  4478.         if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
  4479.           mchunkptr b, p, r;
  4480.           size_t rsize;
  4481.           bindex_t i;
  4482.           binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
  4483.           binmap_t leastbit = least_bit(leftbits);
  4484.           compute_bit2idx(leastbit, i);
  4485.           b = smallbin_at(gm, i);
  4486.           p = b->fd;
  4487.           assert(chunksize(p) == small_index2size(i));
  4488.           unlink_first_small_chunk(gm, b, p, i);
  4489.           rsize = small_index2size(i) - nb;
  4490.           /* Fit here cannot be remainderless if 4byte sizes */
  4491.           if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
  4492.             set_inuse_and_pinuse(gm, p, small_index2size(i));
  4493.           else {
  4494.             set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
  4495.             r = chunk_plus_offset(p, nb);
  4496.             set_size_and_pinuse_of_free_chunk(r, rsize);
  4497.             replace_dv(gm, r, rsize);
  4498.           }
  4499.           mem = chunk2mem(p);
  4500.           check_malloced_chunk(gm, mem, nb);
  4501.           goto postaction;
  4502.         }
  4503.  
  4504.         else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
  4505.           check_malloced_chunk(gm, mem, nb);
  4506.           goto postaction;
  4507.         }
  4508.       }
  4509.     }
  4510.     else if (bytes >= MAX_REQUEST)
  4511.       nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
  4512.     else {
  4513.       nb = pad_request(bytes);
  4514.       if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
  4515.         check_malloced_chunk(gm, mem, nb);
  4516.         goto postaction;
  4517.       }
  4518.     }
  4519.  
  4520.     if (nb <= gm->dvsize) {
  4521.       size_t rsize = gm->dvsize - nb;
  4522.       mchunkptr p = gm->dv;
  4523.       if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
  4524.         mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
  4525.         gm->dvsize = rsize;
  4526.         set_size_and_pinuse_of_free_chunk(r, rsize);
  4527.         set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
  4528.       }
  4529.       else { /* exhaust dv */
  4530.         size_t dvs = gm->dvsize;
  4531.         gm->dvsize = 0;
  4532.         gm->dv = 0;
  4533.         set_inuse_and_pinuse(gm, p, dvs);
  4534.       }
  4535.       mem = chunk2mem(p);
  4536.       check_malloced_chunk(gm, mem, nb);
  4537.       goto postaction;
  4538.     }
  4539.  
  4540.     else if (nb < gm->topsize) { /* Split top */
  4541.       size_t rsize = gm->topsize -= nb;
  4542.       mchunkptr p = gm->top;
  4543.       mchunkptr r = gm->top = chunk_plus_offset(p, nb);
  4544.       r->head = rsize | PINUSE_BIT;
  4545.       set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
  4546.       mem = chunk2mem(p);
  4547.       check_top_chunk(gm, gm->top);
  4548.       check_malloced_chunk(gm, mem, nb);
  4549.       goto postaction;
  4550.     }
  4551.  
  4552.     mem = sys_alloc(gm, nb);
  4553.  
  4554.   postaction:
  4555.     POSTACTION(gm);
  4556.     return mem;
  4557.   }
  4558.  
  4559.   return 0;
  4560. }
  4561.  
  4562. void dlfree(void* mem) {
  4563.   /*
  4564.      Consolidate freed chunks with preceeding or succeeding bordering
  4565.      free chunks, if they exist, and then place in a bin.  Intermixed
  4566.      with special cases for top, dv, mmapped chunks, and usage errors.
  4567.   */
  4568.  
  4569.   if (mem != 0) {
  4570.     mchunkptr p  = mem2chunk(mem);
  4571. #if FOOTERS
  4572.     mstate fm = get_mstate_for(p);
  4573.     if (!ok_magic(fm)) {
  4574.       USAGE_ERROR_ACTION(fm, p);
  4575.       return;
  4576.     }
  4577. #else /* FOOTERS */
  4578. #define fm gm
  4579. #endif /* FOOTERS */
  4580.     if (!PREACTION(fm)) {
  4581.       check_inuse_chunk(fm, p);
  4582.       if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
  4583.         size_t psize = chunksize(p);
  4584.         mchunkptr next = chunk_plus_offset(p, psize);
  4585.         if (!pinuse(p)) {
  4586.           size_t prevsize = p->prev_foot;
  4587.           if ((prevsize & IS_MMAPPED_BIT) != 0) {
  4588.             prevsize &= ~IS_MMAPPED_BIT;
  4589.             psize += prevsize + MMAP_FOOT_PAD;
  4590.             if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
  4591.               fm->footprint -= psize;
  4592.             goto postaction;
  4593.           }
  4594.           else {
  4595.             mchunkptr prev = chunk_minus_offset(p, prevsize);
  4596.             psize += prevsize;
  4597.             p = prev;
  4598.             if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
  4599.               if (p != fm->dv) {
  4600.                 unlink_chunk(fm, p, prevsize);
  4601.               }
  4602.               else if ((next->head & INUSE_BITS) == INUSE_BITS) {
  4603.                 fm->dvsize = psize;
  4604.                 set_free_with_pinuse(p, psize, next);
  4605.                 goto postaction;
  4606.               }
  4607.             }
  4608.             else
  4609.               goto erroraction;
  4610.           }
  4611.         }
  4612.  
  4613.         if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
  4614.           if (!cinuse(next)) {  /* consolidate forward */
  4615.             if (next == fm->top) {
  4616.               size_t tsize = fm->topsize += psize;
  4617.               fm->top = p;
  4618.               p->head = tsize | PINUSE_BIT;
  4619.               if (p == fm->dv) {
  4620.                 fm->dv = 0;
  4621.                 fm->dvsize = 0;
  4622.               }
  4623.               if (should_trim(fm, tsize))
  4624.                 sys_trim(fm, 0);
  4625.               goto postaction;
  4626.             }
  4627.             else if (next == fm->dv) {
  4628.               size_t dsize = fm->dvsize += psize;
  4629.               fm->dv = p;
  4630.               set_size_and_pinuse_of_free_chunk(p, dsize);
  4631.               goto postaction;
  4632.             }
  4633.             else {
  4634.               size_t nsize = chunksize(next);
  4635.               psize += nsize;
  4636.               unlink_chunk(fm, next, nsize);
  4637.               set_size_and_pinuse_of_free_chunk(p, psize);
  4638.               if (p == fm->dv) {
  4639.                 fm->dvsize = psize;
  4640.                 goto postaction;
  4641.               }
  4642.             }
  4643.           }
  4644.           else
  4645.             set_free_with_pinuse(p, psize, next);
  4646.  
  4647.           if (is_small(psize)) {
  4648.             insert_small_chunk(fm, p, psize);
  4649.             check_free_chunk(fm, p);
  4650.           }
  4651.           else {
  4652.             tchunkptr tp = (tchunkptr)p;
  4653.             insert_large_chunk(fm, tp, psize);
  4654.             check_free_chunk(fm, p);
  4655.             if (--fm->release_checks == 0)
  4656.               release_unused_segments(fm);
  4657.           }
  4658.           goto postaction;
  4659.         }
  4660.       }
  4661.     erroraction:
  4662.       USAGE_ERROR_ACTION(fm, p);
  4663.     postaction:
  4664.       POSTACTION(fm);
  4665.     }
  4666.   }
  4667. #if !FOOTERS
  4668. #undef fm
  4669. #endif /* FOOTERS */
  4670. }
  4671.  
  4672. void* dlcalloc(size_t n_elements, size_t elem_size) {
  4673.   void* mem;
  4674.   size_t req = 0;
  4675.   if (n_elements != 0) {
  4676.     req = n_elements * elem_size;
  4677.     if (((n_elements | elem_size) & ~(size_t)0xffff) &&
  4678.         (req / n_elements != elem_size))
  4679.       req = MAX_SIZE_T; /* force downstream failure on overflow */
  4680.   }
  4681.   mem = dlmalloc(req);
  4682.   if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
  4683.     memset(mem, 0, req);
  4684.   return mem;
  4685. }
  4686.  
  4687. void* dlrealloc(void* oldmem, size_t bytes) {
  4688.   if (oldmem == 0)
  4689.     return dlmalloc(bytes);
  4690. #ifdef REALLOC_ZERO_BYTES_FREES
  4691.   if (bytes == 0) {
  4692.     dlfree(oldmem);
  4693.     return 0;
  4694.   }
  4695. #endif /* REALLOC_ZERO_BYTES_FREES */
  4696.   else {
  4697. #if ! FOOTERS
  4698.     mstate m = gm;
  4699. #else /* FOOTERS */
  4700.     mstate m = get_mstate_for(mem2chunk(oldmem));
  4701.     if (!ok_magic(m)) {
  4702.       USAGE_ERROR_ACTION(m, oldmem);
  4703.       return 0;
  4704.     }
  4705. #endif /* FOOTERS */
  4706.     return internal_realloc(m, oldmem, bytes);
  4707.   }
  4708. }
  4709.  
  4710. void* dlmemalign(size_t alignment, size_t bytes) {
  4711.   return internal_memalign(gm, alignment, bytes);
  4712. }
  4713.  
  4714. void** dlindependent_calloc(size_t n_elements, size_t elem_size,
  4715.                                  void* chunks[]) {
  4716.   size_t sz = elem_size; /* serves as 1-element array */
  4717.   return ialloc(gm, n_elements, &sz, 3, chunks);
  4718. }
  4719.  
  4720. void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
  4721.                                    void* chunks[]) {
  4722.   return ialloc(gm, n_elements, sizes, 0, chunks);
  4723. }
  4724.  
  4725. void* dlvalloc(size_t bytes) {
  4726.   size_t pagesz;
  4727.   init_mparams();
  4728.   pagesz = mparams.page_size;
  4729.   return dlmemalign(pagesz, bytes);
  4730. }
  4731.  
  4732. void* dlpvalloc(size_t bytes) {
  4733.   size_t pagesz;
  4734.   init_mparams();
  4735.   pagesz = mparams.page_size;
  4736.   return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
  4737. }
  4738.  
  4739. int dlmalloc_trim(size_t pad) {
  4740.   int result = 0;
  4741.   if (!PREACTION(gm)) {
  4742.     result = sys_trim(gm, pad);
  4743.     POSTACTION(gm);
  4744.   }
  4745.   return result;
  4746. }
  4747.  
  4748. size_t dlmalloc_footprint(void) {
  4749.   return gm->footprint;
  4750. }
  4751.  
  4752. size_t dlmalloc_max_footprint(void) {
  4753.   return gm->max_footprint;
  4754. }
  4755.  
  4756. #if !NO_MALLINFO
  4757. struct mallinfo dlmallinfo(void) {
  4758.   return internal_mallinfo(gm);
  4759. }
  4760. #endif /* NO_MALLINFO */
  4761.  
  4762. void dlmalloc_stats() {
  4763.   internal_malloc_stats(gm);
  4764. }
  4765.  
  4766. size_t dlmalloc_usable_size(void* mem) {
  4767.   if (mem != 0) {
  4768.     mchunkptr p = mem2chunk(mem);
  4769.     if (cinuse(p))
  4770.       return chunksize(p) - overhead_for(p);
  4771.   }
  4772.   return 0;
  4773. }
  4774.  
  4775. int dlmallopt(int param_number, int value) {
  4776.   return change_mparam(param_number, value);
  4777. }
  4778.  
  4779. #endif /* !ONLY_MSPACES */
  4780.  
  4781. /* ----------------------------- user mspaces ---------------------------- */
  4782.  
  4783. #if MSPACES
  4784.  
  4785. static mstate init_user_mstate(char* tbase, size_t tsize) {
  4786.   size_t msize = pad_request(sizeof(struct malloc_state));
  4787.   mchunkptr mn;
  4788.   mchunkptr msp = align_as_chunk(tbase);
  4789.   mstate m = (mstate)(chunk2mem(msp));
  4790.   memset(m, 0, msize);
  4791.   INITIAL_LOCK(&m->mutex);
  4792.   msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
  4793.   m->seg.base = m->least_addr = tbase;
  4794.   m->seg.size = m->footprint = m->max_footprint = tsize;
  4795.   m->magic = mparams.magic;
  4796.   m->release_checks = MAX_RELEASE_CHECK_RATE;
  4797.   m->mflags = mparams.default_mflags;
  4798.   m->extp = 0;
  4799.   m->exts = 0;
  4800.   disable_contiguous(m);
  4801.   init_bins(m);
  4802.   mn = next_chunk(mem2chunk(m));
  4803.   init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
  4804.   check_top_chunk(m, m->top);
  4805.   return m;
  4806. }
  4807.  
  4808. mspace create_mspace(size_t capacity, int locked) {
  4809.   mstate m = 0;
  4810.   size_t msize = pad_request(sizeof(struct malloc_state));
  4811.   init_mparams(); /* Ensure pagesize etc initialized */
  4812.  
  4813.   if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
  4814.     size_t rs = ((capacity == 0)? mparams.granularity :
  4815.                  (capacity + TOP_FOOT_SIZE + msize));
  4816.     size_t tsize = granularity_align(rs);
  4817.     char* tbase = (char*)(CALL_MMAP(tsize));
  4818.     if (tbase != CMFAIL) {
  4819.       m = init_user_mstate(tbase, tsize);
  4820.       m->seg.sflags = IS_MMAPPED_BIT;
  4821.       set_lock(m, locked);
  4822.     }
  4823.   }
  4824.   return (mspace)m;
  4825. }
  4826.  
  4827. mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
  4828.   mstate m = 0;
  4829.   size_t msize = pad_request(sizeof(struct malloc_state));
  4830.   init_mparams(); /* Ensure pagesize etc initialized */
  4831.  
  4832.   if (capacity > msize + TOP_FOOT_SIZE &&
  4833.       capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
  4834.     m = init_user_mstate((char*)base, capacity);
  4835.     m->seg.sflags = EXTERN_BIT;
  4836.     set_lock(m, locked);
  4837.   }
  4838.   return (mspace)m;
  4839. }
  4840.  
  4841. size_t destroy_mspace(mspace msp) {
  4842.   size_t freed = 0;
  4843.   mstate ms = (mstate)msp;
  4844.   if (ok_magic(ms)) {
  4845.     msegmentptr sp = &ms->seg;
  4846.     while (sp != 0) {
  4847.       char* base = sp->base;
  4848.       size_t size = sp->size;
  4849.       flag_t flag = sp->sflags;
  4850.       sp = sp->next;
  4851.       if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) &&
  4852.           CALL_MUNMAP(base, size) == 0)
  4853.         freed += size;
  4854.     }
  4855.   }
  4856.   else {
  4857.     USAGE_ERROR_ACTION(ms,ms);
  4858.   }
  4859.   return freed;
  4860. }
  4861.  
  4862. /*
  4863.   mspace versions of routines are near-clones of the global
  4864.   versions. This is not so nice but better than the alternatives.
  4865. */
  4866.  
  4867.  
  4868. void* mspace_malloc(mspace msp, size_t bytes) {
  4869.   mstate ms = (mstate)msp;
  4870.   if (!ok_magic(ms)) {
  4871.     USAGE_ERROR_ACTION(ms,ms);
  4872.     return 0;
  4873.   }
  4874.   if (!PREACTION(ms)) {
  4875.     void* mem;
  4876.     size_t nb;
  4877.     if (bytes <= MAX_SMALL_REQUEST) {
  4878.       bindex_t idx;
  4879.       binmap_t smallbits;
  4880.       nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
  4881.       idx = small_index(nb);
  4882.       smallbits = ms->smallmap >> idx;
  4883.  
  4884.       if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
  4885.         mchunkptr b, p;
  4886.         idx += ~smallbits & 1;       /* Uses next bin if idx empty */
  4887.         b = smallbin_at(ms, idx);
  4888.         p = b->fd;
  4889.         assert(chunksize(p) == small_index2size(idx));
  4890.         unlink_first_small_chunk(ms, b, p, idx);
  4891.         set_inuse_and_pinuse(ms, p, small_index2size(idx));
  4892.         mem = chunk2mem(p);
  4893.         check_malloced_chunk(ms, mem, nb);
  4894.         goto postaction;
  4895.       }
  4896.  
  4897.       else if (nb > ms->dvsize) {
  4898.         if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
  4899.           mchunkptr b, p, r;
  4900.           size_t rsize;
  4901.           bindex_t i;
  4902.           binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
  4903.           binmap_t leastbit = least_bit(leftbits);
  4904.           compute_bit2idx(leastbit, i);
  4905.           b = smallbin_at(ms, i);
  4906.           p = b->fd;
  4907.           assert(chunksize(p) == small_index2size(i));
  4908.           unlink_first_small_chunk(ms, b, p, i);
  4909.           rsize = small_index2size(i) - nb;
  4910.           /* Fit here cannot be remainderless if 4byte sizes */
  4911.           if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
  4912.             set_inuse_and_pinuse(ms, p, small_index2size(i));
  4913.           else {
  4914.             set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
  4915.             r = chunk_plus_offset(p, nb);
  4916.             set_size_and_pinuse_of_free_chunk(r, rsize);
  4917.             replace_dv(ms, r, rsize);
  4918.           }
  4919.           mem = chunk2mem(p);
  4920.           check_malloced_chunk(ms, mem, nb);
  4921.           goto postaction;
  4922.         }
  4923.  
  4924.         else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
  4925.           check_malloced_chunk(ms, mem, nb);
  4926.           goto postaction;
  4927.         }
  4928.       }
  4929.     }
  4930.     else if (bytes >= MAX_REQUEST)
  4931.       nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
  4932.     else {
  4933.       nb = pad_request(bytes);
  4934.       if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
  4935.         check_malloced_chunk(ms, mem, nb);
  4936.         goto postaction;
  4937.       }
  4938.     }
  4939.  
  4940.     if (nb <= ms->dvsize) {
  4941.       size_t rsize = ms->dvsize - nb;
  4942.       mchunkptr p = ms->dv;
  4943.       if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
  4944.         mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
  4945.         ms->dvsize = rsize;
  4946.         set_size_and_pinuse_of_free_chunk(r, rsize);
  4947.         set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
  4948.       }
  4949.       else { /* exhaust dv */
  4950.         size_t dvs = ms->dvsize;
  4951.         ms->dvsize = 0;
  4952.         ms->dv = 0;
  4953.         set_inuse_and_pinuse(ms, p, dvs);
  4954.       }
  4955.       mem = chunk2mem(p);
  4956.       check_malloced_chunk(ms, mem, nb);
  4957.       goto postaction;
  4958.     }
  4959.  
  4960.     else if (nb < ms->topsize) { /* Split top */
  4961.       size_t rsize = ms->topsize -= nb;
  4962.       mchunkptr p = ms->top;
  4963.       mchunkptr r = ms->top = chunk_plus_offset(p, nb);
  4964.       r->head = rsize | PINUSE_BIT;
  4965.       set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
  4966.       mem = chunk2mem(p);
  4967.       check_top_chunk(ms, ms->top);
  4968.       check_malloced_chunk(ms, mem, nb);
  4969.       goto postaction;
  4970.     }
  4971.  
  4972.     mem = sys_alloc(ms, nb);
  4973.  
  4974.   postaction:
  4975.     POSTACTION(ms);
  4976.     return mem;
  4977.   }
  4978.  
  4979.   return 0;
  4980. }
  4981.  
  4982. void mspace_free(mspace msp, void* mem) {
  4983.   if (mem != 0) {
  4984.     mchunkptr p  = mem2chunk(mem);
  4985. #if FOOTERS
  4986.     mstate fm = get_mstate_for(p);
  4987. #else /* FOOTERS */
  4988.     mstate fm = (mstate)msp;
  4989. #endif /* FOOTERS */
  4990.     if (!ok_magic(fm)) {
  4991.       USAGE_ERROR_ACTION(fm, p);
  4992.       return;
  4993.     }
  4994.     if (!PREACTION(fm)) {
  4995.       check_inuse_chunk(fm, p);
  4996.       if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
  4997.         size_t psize = chunksize(p);
  4998.         mchunkptr next = chunk_plus_offset(p, psize);
  4999.         if (!pinuse(p)) {
  5000.           size_t prevsize = p->prev_foot;
  5001.           if ((prevsize & IS_MMAPPED_BIT) != 0) {
  5002.             prevsize &= ~IS_MMAPPED_BIT;
  5003.             psize += prevsize + MMAP_FOOT_PAD;
  5004.             if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
  5005.               fm->footprint -= psize;
  5006.             goto postaction;
  5007.           }
  5008.           else {
  5009.             mchunkptr prev = chunk_minus_offset(p, prevsize);
  5010.             psize += prevsize;
  5011.             p = prev;
  5012.             if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
  5013.               if (p != fm->dv) {
  5014.                 unlink_chunk(fm, p, prevsize);
  5015.               }
  5016.               else if ((next->head & INUSE_BITS) == INUSE_BITS) {
  5017.                 fm->dvsize = psize;
  5018.                 set_free_with_pinuse(p, psize, next);
  5019.                 goto postaction;
  5020.               }
  5021.             }
  5022.             else
  5023.               goto erroraction;
  5024.           }
  5025.         }
  5026.  
  5027.         if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
  5028.           if (!cinuse(next)) {  /* consolidate forward */
  5029.             if (next == fm->top) {
  5030.               size_t tsize = fm->topsize += psize;
  5031.               fm->top = p;
  5032.               p->head = tsize | PINUSE_BIT;
  5033.               if (p == fm->dv) {
  5034.                 fm->dv = 0;
  5035.                 fm->dvsize = 0;
  5036.               }
  5037.               if (should_trim(fm, tsize))
  5038.                 sys_trim(fm, 0);
  5039.               goto postaction;
  5040.             }
  5041.             else if (next == fm->dv) {
  5042.               size_t dsize = fm->dvsize += psize;
  5043.               fm->dv = p;
  5044.               set_size_and_pinuse_of_free_chunk(p, dsize);
  5045.               goto postaction;
  5046.             }
  5047.             else {
  5048.               size_t nsize = chunksize(next);
  5049.               psize += nsize;
  5050.               unlink_chunk(fm, next, nsize);
  5051.               set_size_and_pinuse_of_free_chunk(p, psize);
  5052.               if (p == fm->dv) {
  5053.                 fm->dvsize = psize;
  5054.                 goto postaction;
  5055.               }
  5056.             }
  5057.           }
  5058.           else
  5059.             set_free_with_pinuse(p, psize, next);
  5060.  
  5061.           if (is_small(psize)) {
  5062.             insert_small_chunk(fm, p, psize);
  5063.             check_free_chunk(fm, p);
  5064.           }
  5065.           else {
  5066.             tchunkptr tp = (tchunkptr)p;
  5067.             insert_large_chunk(fm, tp, psize);
  5068.             check_free_chunk(fm, p);
  5069.             if (--fm->release_checks == 0)
  5070.               release_unused_segments(fm);
  5071.           }
  5072.           goto postaction;
  5073.         }
  5074.       }
  5075.     erroraction:
  5076.       USAGE_ERROR_ACTION(fm, p);
  5077.     postaction:
  5078.       POSTACTION(fm);
  5079.     }
  5080.   }
  5081. }
  5082.  
  5083. void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
  5084.   void* mem;
  5085.   size_t req = 0;
  5086.   mstate ms = (mstate)msp;
  5087.   if (!ok_magic(ms)) {
  5088.     USAGE_ERROR_ACTION(ms,ms);
  5089.     return 0;
  5090.   }
  5091.   if (n_elements != 0) {
  5092.     req = n_elements * elem_size;
  5093.     if (((n_elements | elem_size) & ~(size_t)0xffff) &&
  5094.         (req / n_elements != elem_size))
  5095.       req = MAX_SIZE_T; /* force downstream failure on overflow */
  5096.   }
  5097.   mem = internal_malloc(ms, req);
  5098.   if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
  5099.     memset(mem, 0, req);
  5100.   return mem;
  5101. }
  5102.  
  5103. void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
  5104.   if (oldmem == 0)
  5105.     return mspace_malloc(msp, bytes);
  5106. #ifdef REALLOC_ZERO_BYTES_FREES
  5107.   if (bytes == 0) {
  5108.     mspace_free(msp, oldmem);
  5109.     return 0;
  5110.   }
  5111. #endif /* REALLOC_ZERO_BYTES_FREES */
  5112.   else {
  5113. #if FOOTERS
  5114.     mchunkptr p  = mem2chunk(oldmem);
  5115.     mstate ms = get_mstate_for(p);
  5116. #else /* FOOTERS */
  5117.     mstate ms = (mstate)msp;
  5118. #endif /* FOOTERS */
  5119.     if (!ok_magic(ms)) {
  5120.       USAGE_ERROR_ACTION(ms,ms);
  5121.       return 0;
  5122.     }
  5123.     return internal_realloc(ms, oldmem, bytes);
  5124.   }
  5125. }
  5126.  
  5127. void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
  5128.   mstate ms = (mstate)msp;
  5129.   if (!ok_magic(ms)) {
  5130.     USAGE_ERROR_ACTION(ms,ms);
  5131.     return 0;
  5132.   }
  5133.   return internal_memalign(ms, alignment, bytes);
  5134. }
  5135.  
  5136. void** mspace_independent_calloc(mspace msp, size_t n_elements,
  5137.                                  size_t elem_size, void* chunks[]) {
  5138.   size_t sz = elem_size; /* serves as 1-element array */
  5139.   mstate ms = (mstate)msp;
  5140.   if (!ok_magic(ms)) {
  5141.     USAGE_ERROR_ACTION(ms,ms);
  5142.     return 0;
  5143.   }
  5144.   return ialloc(ms, n_elements, &sz, 3, chunks);
  5145. }
  5146.  
  5147. void** mspace_independent_comalloc(mspace msp, size_t n_elements,
  5148.                                    size_t sizes[], void* chunks[]) {
  5149.   mstate ms = (mstate)msp;
  5150.   if (!ok_magic(ms)) {
  5151.     USAGE_ERROR_ACTION(ms,ms);
  5152.     return 0;
  5153.   }
  5154.   return ialloc(ms, n_elements, sizes, 0, chunks);
  5155. }
  5156.  
  5157. int mspace_trim(mspace msp, size_t pad) {
  5158.   int result = 0;
  5159.   mstate ms = (mstate)msp;
  5160.   if (ok_magic(ms)) {
  5161.     if (!PREACTION(ms)) {
  5162.       result = sys_trim(ms, pad);
  5163.       POSTACTION(ms);
  5164.     }
  5165.   }
  5166.   else {
  5167.     USAGE_ERROR_ACTION(ms,ms);
  5168.   }
  5169.   return result;
  5170. }
  5171.  
  5172. void mspace_malloc_stats(mspace msp) {
  5173.   mstate ms = (mstate)msp;
  5174.   if (ok_magic(ms)) {
  5175.     internal_malloc_stats(ms);
  5176.   }
  5177.   else {
  5178.     USAGE_ERROR_ACTION(ms,ms);
  5179.   }
  5180. }
  5181.  
  5182. size_t mspace_footprint(mspace msp) {
  5183.   size_t result = 0;
  5184.   mstate ms = (mstate)msp;
  5185.   if (ok_magic(ms)) {
  5186.     result = ms->footprint;
  5187.   }
  5188.   else {
  5189.     USAGE_ERROR_ACTION(ms,ms);
  5190.   }
  5191.   return result;
  5192. }
  5193.  
  5194.  
  5195. size_t mspace_max_footprint(mspace msp) {
  5196.   size_t result = 0;
  5197.   mstate ms = (mstate)msp;
  5198.   if (ok_magic(ms)) {
  5199.     result = ms->max_footprint;
  5200.   }
  5201.   else {
  5202.     USAGE_ERROR_ACTION(ms,ms);
  5203.   }
  5204.   return result;
  5205. }
  5206.  
  5207.  
  5208. #if !NO_MALLINFO
  5209. struct mallinfo mspace_mallinfo(mspace msp) {
  5210.   mstate ms = (mstate)msp;
  5211.   if (!ok_magic(ms)) {
  5212.     USAGE_ERROR_ACTION(ms,ms);
  5213.   }
  5214.   return internal_mallinfo(ms);
  5215. }
  5216. #endif /* NO_MALLINFO */
  5217.  
  5218. size_t mspace_usable_size(void* mem) {
  5219.   if (mem != 0) {
  5220.     mchunkptr p = mem2chunk(mem);
  5221.     if (cinuse(p))
  5222.       return chunksize(p) - overhead_for(p);
  5223.   }
  5224.   return 0;
  5225. }
  5226.  
  5227. int mspace_mallopt(int param_number, int value) {
  5228.   return change_mparam(param_number, value);
  5229. }
  5230.  
  5231. #endif /* MSPACES */
  5232.  
  5233. /* -------------------- Alternative MORECORE functions ------------------- */
  5234.  
  5235. /*
  5236.   Guidelines for creating a custom version of MORECORE:
  5237.  
  5238.   * For best performance, MORECORE should allocate in multiples of pagesize.
  5239.   * MORECORE may allocate more memory than requested. (Or even less,
  5240.       but this will usually result in a malloc failure.)
  5241.   * MORECORE must not allocate memory when given argument zero, but
  5242.       instead return one past the end address of memory from previous
  5243.       nonzero call.
  5244.   * For best performance, consecutive calls to MORECORE with positive
  5245.       arguments should return increasing addresses, indicating that
  5246.       space has been contiguously extended.
  5247.   * Even though consecutive calls to MORECORE need not return contiguous
  5248.       addresses, it must be OK for malloc'ed chunks to span multiple
  5249.       regions in those cases where they do happen to be contiguous.
  5250.   * MORECORE need not handle negative arguments -- it may instead
  5251.       just return MFAIL when given negative arguments.
  5252.       Negative arguments are always multiples of pagesize. MORECORE
  5253.       must not misinterpret negative args as large positive unsigned
  5254.       args. You can suppress all such calls from even occurring by defining
  5255.       MORECORE_CANNOT_TRIM,
  5256.  
  5257.   As an example alternative MORECORE, here is a custom allocator
  5258.   kindly contributed for pre-OSX macOS.  It uses virtually but not
  5259.   necessarily physically contiguous non-paged memory (locked in,
  5260.   present and won't get swapped out).  You can use it by uncommenting
  5261.   this section, adding some #includes, and setting up the appropriate
  5262.   defines above:
  5263.  
  5264.       #define MORECORE osMoreCore
  5265.  
  5266.   There is also a shutdown routine that should somehow be called for
  5267.   cleanup upon program exit.
  5268.  
  5269.   #define MAX_POOL_ENTRIES 100
  5270.   #define MINIMUM_MORECORE_SIZE  (64 * 1024U)
  5271.   static int next_os_pool;
  5272.   void *our_os_pools[MAX_POOL_ENTRIES];
  5273.  
  5274.   void *osMoreCore(int size)
  5275.   {
  5276.     void *ptr = 0;
  5277.     static void *sbrk_top = 0;
  5278.  
  5279.     if (size > 0)
  5280.     {
  5281.       if (size < MINIMUM_MORECORE_SIZE)
  5282.          size = MINIMUM_MORECORE_SIZE;
  5283.       if (CurrentExecutionLevel() == kTaskLevel)
  5284.          ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
  5285.       if (ptr == 0)
  5286.       {
  5287.         return (void *) MFAIL;
  5288.       }
  5289.       // save ptrs so they can be freed during cleanup
  5290.       our_os_pools[next_os_pool] = ptr;
  5291.       next_os_pool++;
  5292.       ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
  5293.       sbrk_top = (char *) ptr + size;
  5294.       return ptr;
  5295.     }
  5296.     else if (size < 0)
  5297.     {
  5298.       // we don't currently support shrink behavior
  5299.       return (void *) MFAIL;
  5300.     }
  5301.     else
  5302.     {
  5303.       return sbrk_top;
  5304.     }
  5305.   }
  5306.  
  5307.   // cleanup any allocated memory pools
  5308.   // called as last thing before shutting down driver
  5309.  
  5310.   void osCleanupMem(void)
  5311.   {
  5312.     void **ptr;
  5313.  
  5314.     for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
  5315.       if (*ptr)
  5316.       {
  5317.          PoolDeallocate(*ptr);
  5318.          *ptr = 0;
  5319.       }
  5320.   }
  5321.  
  5322. */
  5323.  
  5324.  
  5325. /* -----------------------------------------------------------------------
  5326. History:
  5327.     V2.8.4 (not yet released)
  5328.       * Fix bad error check in mspace_footprint
  5329.       * Adaptations for ptmalloc, courtesy of Wolfram Gloger.
  5330.       * Reentrant spin locks, courtesy of Earl Chew and others
  5331.       * Win32 improvements, courtesy of Niall Douglas and Earl Chew
  5332.       * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options
  5333.       * Various small adjustments to reduce warnings on some compilers
  5334.       * Extension hook in malloc_state
  5335.  
  5336.     V2.8.3 Thu Sep 22 11:16:32 2005  Doug Lea  (dl at gee)
  5337.       * Add max_footprint functions
  5338.       * Ensure all appropriate literals are size_t
  5339.       * Fix conditional compilation problem for some #define settings
  5340.       * Avoid concatenating segments with the one provided
  5341.         in create_mspace_with_base
  5342.       * Rename some variables to avoid compiler shadowing warnings
  5343.       * Use explicit lock initialization.
  5344.       * Better handling of sbrk interference.
  5345.       * Simplify and fix segment insertion, trimming and mspace_destroy
  5346.       * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
  5347.       * Thanks especially to Dennis Flanagan for help on these.
  5348.  
  5349.     V2.8.2 Sun Jun 12 16:01:10 2005  Doug Lea  (dl at gee)
  5350.       * Fix memalign brace error.
  5351.  
  5352.     V2.8.1 Wed Jun  8 16:11:46 2005  Doug Lea  (dl at gee)
  5353.       * Fix improper #endif nesting in C++
  5354.       * Add explicit casts needed for C++
  5355.  
  5356.     V2.8.0 Mon May 30 14:09:02 2005  Doug Lea  (dl at gee)
  5357.       * Use trees for large bins
  5358.       * Support mspaces
  5359.       * Use segments to unify sbrk-based and mmap-based system allocation,
  5360.         removing need for emulation on most platforms without sbrk.
  5361.       * Default safety checks
  5362.       * Optional footer checks. Thanks to William Robertson for the idea.
  5363.       * Internal code refactoring
  5364.       * Incorporate suggestions and platform-specific changes.
  5365.         Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
  5366.         Aaron Bachmann,  Emery Berger, and others.
  5367.       * Speed up non-fastbin processing enough to remove fastbins.
  5368.       * Remove useless cfree() to avoid conflicts with other apps.
  5369.       * Remove internal memcpy, memset. Compilers handle builtins better.
  5370.       * Remove some options that no one ever used and rename others.
  5371.  
  5372.     V2.7.2 Sat Aug 17 09:07:30 2002  Doug Lea  (dl at gee)
  5373.       * Fix malloc_state bitmap array misdeclaration
  5374.  
  5375.     V2.7.1 Thu Jul 25 10:58:03 2002  Doug Lea  (dl at gee)
  5376.       * Allow tuning of FIRST_SORTED_BIN_SIZE
  5377.       * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
  5378.       * Better detection and support for non-contiguousness of MORECORE.
  5379.         Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
  5380.       * Bypass most of malloc if no frees. Thanks To Emery Berger.
  5381.       * Fix freeing of old top non-contiguous chunk im sysmalloc.
  5382.       * Raised default trim and map thresholds to 256K.
  5383.       * Fix mmap-related #defines. Thanks to Lubos Lunak.
  5384.       * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
  5385.       * Branch-free bin calculation
  5386.       * Default trim and mmap thresholds now 256K.
  5387.  
  5388.     V2.7.0 Sun Mar 11 14:14:06 2001  Doug Lea  (dl at gee)
  5389.       * Introduce independent_comalloc and independent_calloc.
  5390.         Thanks to Michael Pachos for motivation and help.
  5391.       * Make optional .h file available
  5392.       * Allow > 2GB requests on 32bit systems.
  5393.       * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
  5394.         Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
  5395.         and Anonymous.
  5396.       * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
  5397.         helping test this.)
  5398.       * memalign: check alignment arg
  5399.       * realloc: don't try to shift chunks backwards, since this
  5400.         leads to  more fragmentation in some programs and doesn't
  5401.         seem to help in any others.
  5402.       * Collect all cases in malloc requiring system memory into sysmalloc
  5403.       * Use mmap as backup to sbrk
  5404.       * Place all internal state in malloc_state
  5405.       * Introduce fastbins (although similar to 2.5.1)
  5406.       * Many minor tunings and cosmetic improvements
  5407.       * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
  5408.       * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
  5409.         Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
  5410.       * Include errno.h to support default failure action.
  5411.  
  5412.     V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
  5413.       * return null for negative arguments
  5414.       * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
  5415.          * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
  5416.           (e.g. WIN32 platforms)
  5417.          * Cleanup header file inclusion for WIN32 platforms
  5418.          * Cleanup code to avoid Microsoft Visual C++ compiler complaints
  5419.          * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
  5420.            memory allocation routines
  5421.          * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
  5422.          * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
  5423.            usage of 'assert' in non-WIN32 code
  5424.          * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
  5425.            avoid infinite loop
  5426.       * Always call 'fREe()' rather than 'free()'
  5427.  
  5428.     V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
  5429.       * Fixed ordering problem with boundary-stamping
  5430.  
  5431.     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
  5432.       * Added pvalloc, as recommended by H.J. Liu
  5433.       * Added 64bit pointer support mainly from Wolfram Gloger
  5434.       * Added anonymously donated WIN32 sbrk emulation
  5435.       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
  5436.       * malloc_extend_top: fix mask error that caused wastage after
  5437.         foreign sbrks
  5438.       * Add linux mremap support code from HJ Liu
  5439.  
  5440.     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
  5441.       * Integrated most documentation with the code.
  5442.       * Add support for mmap, with help from
  5443.         Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
  5444.       * Use last_remainder in more cases.
  5445.       * Pack bins using idea from  colin@nyx10.cs.du.edu
  5446.       * Use ordered bins instead of best-fit threshhold
  5447.       * Eliminate block-local decls to simplify tracing and debugging.
  5448.       * Support another case of realloc via move into top
  5449.       * Fix error occuring when initial sbrk_base not word-aligned.
  5450.       * Rely on page size for units instead of SBRK_UNIT to
  5451.         avoid surprises about sbrk alignment conventions.
  5452.       * Add mallinfo, mallopt. Thanks to Raymond Nijssen
  5453.         (raymond@es.ele.tue.nl) for the suggestion.
  5454.       * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
  5455.       * More precautions for cases where other routines call sbrk,
  5456.         courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
  5457.       * Added macros etc., allowing use in linux libc from
  5458.         H.J. Lu (hjl@gnu.ai.mit.edu)
  5459.       * Inverted this history list
  5460.  
  5461.     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
  5462.       * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
  5463.       * Removed all preallocation code since under current scheme
  5464.         the work required to undo bad preallocations exceeds
  5465.         the work saved in good cases for most test programs.
  5466.       * No longer use return list or unconsolidated bins since
  5467.         no scheme using them consistently outperforms those that don't
  5468.         given above changes.
  5469.       * Use best fit for very large chunks to prevent some worst-cases.
  5470.       * Added some support for debugging
  5471.  
  5472.     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
  5473.       * Removed footers when chunks are in use. Thanks to
  5474.         Paul Wilson (wilson@cs.texas.edu) for the suggestion.
  5475.  
  5476.     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
  5477.       * Added malloc_trim, with help from Wolfram Gloger
  5478.         (wmglo@Dent.MED.Uni-Muenchen.DE).
  5479.  
  5480.     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
  5481.  
  5482.     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
  5483.       * realloc: try to expand in both directions
  5484.       * malloc: swap order of clean-bin strategy;
  5485.       * realloc: only conditionally expand backwards
  5486.       * Try not to scavenge used bins
  5487.       * Use bin counts as a guide to preallocation
  5488.       * Occasionally bin return list chunks in first scan
  5489.       * Add a few optimizations from colin@nyx10.cs.du.edu
  5490.  
  5491.     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
  5492.       * faster bin computation & slightly different binning
  5493.       * merged all consolidations to one part of malloc proper
  5494.          (eliminating old malloc_find_space & malloc_clean_bin)
  5495.       * Scan 2 returns chunks (not just 1)
  5496.       * Propagate failure in realloc if malloc returns 0
  5497.       * Add stuff to allow compilation on non-ANSI compilers
  5498.           from kpv@research.att.com
  5499.  
  5500.     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
  5501.       * removed potential for odd address access in prev_chunk
  5502.       * removed dependency on getpagesize.h
  5503.       * misc cosmetics and a bit more internal documentation
  5504.       * anticosmetics: mangled names in macros to evade debugger strangeness
  5505.       * tested on sparc, hp-700, dec-mips, rs6000
  5506.           with gcc & native cc (hp, dec only) allowing
  5507.           Detlefs & Zorn comparison study (in SIGPLAN Notices.)
  5508.  
  5509.     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
  5510.       * Based loosely on libg++-1.2X malloc. (It retains some of the overall
  5511.          structure of old version,  but most details differ.)
  5512.  
  5513. */
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement