Advertisement
Guest User

Untitled

a guest
Feb 22nd, 2025
115
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 12.59 KB | None | 0 0
  1. <think>
  2. To solve the equation
  3. $$
  4. \sin(x)^{11} + \cos(x)^{11} = 1,
  5. $$
  6. we need to find values of $x$ such that the given equality holds. Recall that the sine and cosine functions have well-known properties such that:
  7. $$
  8. \sin^2(x) + \cos^2(x) = 1.
  9. This implies that both $\sin(x)$$ and $\cos(x)$ must be in the interval $[-1, 1]$.
  10.  
  11. However, because the question uses only the 11th power here (which is an odd integer), any negative values for $\sin(x)$ or $\cos(x)$ would keep the sign of the original functions (i.e., $\sin(x)^{11}$ will keep the sign of $\sin(x)$ if $\sin(x) < 0$, similarly for $\cos(x)^{11}$ if $\cos(x) < 0$). Furthermore, if $|\sin(x)| < 1$, then it follows that $|\sin(x)|^{11} < \sin^2(x)$ because $|\sin(x)|^{11} < \sin^2(x)$ for $|\sin(x)| < 1$. Similarly, if $|\cos(x)| < 1$, then $|\cos(x)|^{11} < \cos^2(x)$ for $|\cos(x)| < 1$.
  12.  
  13. To make a more rigorous reasoning, let us define two new variables $s = |\sin(x)|$ and $c = |\cos(x)|$, such that $0 \leq s, c \leq 1$ where $s^2 + c^2 = 1$. Our goal is to solve for $s^{11} + c^{11} \leq s^2 + c^2 = 1$, where equality only holds if $s^{11} = s^2$ and $c^{11} = c^2$ simultaneously (since $s^{11} + c^{11} \leq s^2 + c^{2}$ whenever $s, c \leq 1$).
  14.  
  15. The only cases where $s^{11} = s^2$ are when $s = 0, 1,$ or (since $0 \leq s \leq 1$), the same applies for $c^{11} = c^2$ when $c = 0, 1$. However, since $s^2 + c^2 = 1$, it follows that if $s^2 = 1$ (i.e., $s = 1$, given that $s \geq 0$), $c$ must be $0$, and vice versa.
  16.  
  17. Another important part is to make a direct comparison for a general $s$ and $c$ such that $s, c \in [0,1]$.
  18.  
  19. For $0 \leq a < 1$, of any $k > l \geq 1$, it holds that $a^k < a^l$. Thus, for $s, c \in [0,1]$, and $s^2 + c^2 = 1$:
  20. $$
  21. \sin(x)^{11} + \cos(x)^{11} \leq |\sin(x)|^{11} + |\cos(x)|^{11}.
  22. $$
  23. However $|\sin(x)|^{11} \leq \sin^2(x)$ if $|\sin(x)| \leq 1$, which is always true unless $|\sin(x)| = 1$ where $|\sin(x)|^{11} = \sin^2(x) = 1$, or $|\sin(x)| = 0$ where $0^{11} = 0^2 = 0$.
  24.  
  25. Similarly, for $|\cos(x)|^{11} \leq \cos^2(x)$, which holds true when $0 < |\cos(x)| < 1$, and equality holds when $|\cos(x)| = 1$ or $0$.
  26.  
  27. Let us analyze what happens for $s,c \in [0,1]$ where $0 < s,c < 1$:
  28. $$
  29. |\sin(x)|^{11} \leq \sin^2(x) \text{ (since $|\sin x| \leq 1$, thus $|\sin(x)|^{11} \leq |\sin(x)|^2 = \sin^2(x)$)}.
  30. $$
  31. $$
  32. |\cos(x)|^{11} \leq \cos^2(x) \text{ (similarly $|\cos(x)|^{11} \leq \cos^2(x))$}.
  33. $$
  34. This implies:
  35. $$
  36. |\sin(x)^{11} + \cos(x)^{11}| \leq |\sin(x)|^{11}+|\cos(x)|^{11}.
  37. $$
  38. However, by the triangle inequality:
  39. $$
  40. |\sin(x)^{11} + \cos(x)^{11}| \leq |\sin(x)|^{11} + | \cos( x )|^{11} \leq \sin^2(x) + \cos^2(x) = 1.
  41. $$
  42. The only way that $\sin(x)^{11} + \cos(x)^{11}$ could be equal to $1$ is if $|\sin(x)|^{11} + |\cos(x)|^{11} = 1$, which only happens when $|\sin(x)|^{11} = |\sin(x)|^2$ and $|\cos(x)|^{11} = |\cos(x)|^2$. Taking into account that $|\sin(x)|^{11} + |\cos(x)|^{11} \leq |\sin(x)|^2 + |\cos(x)|^2$, the only cases where $t^{11} = t^2$ (for $0 \leq t \leq 1$) are when $t \in \{0, 1\}$.
  43.  
  44. Thus, solutions where $|\sin(x)|^{11} + |\cos(x)|^{11} = 1$ rely on one (or both) of $|\sin(x)|$ or $|\cos(x)|$ being $0$ or $1$. Recall that $|\sin(x)|$ and $|\cos(x)|$ should satisfy $s^2 + c^2 = 1$, so $s$ and $c$ cannot both be equal to $1$. Thus, the only valid combinations are:
  45. 1. $|\sin(x)| = 1$ and $|\cos(x)| = 0$, which gives the case where $s=1$, $c=0$ such that $s^{11} + c^{11} = 1$.
  46. 2. $|\sin(x)| = 0$ and $|\cos(x)| = 1$, which gives the case where $s=0$, $c=1$ such that $s^{11} + c^{11} = 1$.
  47.  
  48. To solve $|\sin(x)| = 1$ and $|\cos(x)| = 0$, we need:
  49. $$
  50. \sin(x) = \pm 1 \text{ and } \cos(x) = 0.
  51. $$
  52. This happens when $x = \frac{\pi}{2} + k\pi$ for any integer $k$. However, we need to verify what happens separately when $\sin(x) = \pm 1$:
  53. 1. If $\sin(x) = 1$, $\cos(x) = 0$ such that:
  54. $$
  55. \sin(x)^{11} + \cos(x)^{11} = (1)^{11} + (0)^{11} = 1 + 0 = 1,
  56. $$
  57. so $x = \frac{\pi}{2} + 2k\pi$ works (since $1^{11} + 0^{11} = 1$).
  58. 2. If $\sin(x) = -1$, $\cos(x) = 0$ such that:
  59. $$
  60. \sin(x)^{11} + \cos(x)^{11} = (-1)^{11} + (0)^{11} = -1 + 0 = -1,
  61. $$
  62. so $x = \frac{3\pi}{2} + 2k\pi$ (which corresponds to $x = \frac{\pi}{2} + (2k+1)\pi)$ does not work because it yields $-1$ instead of $1$.
  63.  
  64. Conversely, for $|\sin(x)| = 0$ and $|\cos(x)| = 1$, that is:
  65. $$
  66. \sin(x) = 0 \text{ and } \cos(x) = \pm 1.
  67. $$
  68. This happens for $x = k\pi$ for any integer $k$. However, analyzing separately for the cases $x = 2k\pi$ (which makes $\cos(x) = 1$) and $x = (2k + 1)\pi$ (which makes $\cos(x) = -1$):
  69. 1. If $\sin(x) = 0$, $\cos(x) = 1$ such that:
  70. $$
  71. \sin(x)^{11} + \cos(x)^{11} = (0)^{11} + (1)^{11} = 0 + 1 = 1,
  72. $$
  73. so $x = 2k\pi$ works.
  74. 2. If $\sin(x) = 0$, $\cos(x) = -1$ such that:
  75. $$
  76. \sin(x)^{11} + \cos(x)^{11} = (0)^{11} + (-1)^{11} = 0 - 1 = -1,
  77. $$
  78. so $x = (2k + 1)\pi$ does not work because that yields $0 - 1 = -1$.
  79.  
  80. Thus, what we need is to verify what values make a $\sin(x) = 1,0$ where $\cos(x) = 0,1$, but only such that the sum makes $1$.
  81.  
  82. In order to make a more organized solution, let us consider all the cases explicitly.
  83.  
  84. Case 1: $\sin(x) = 1$ and thus $\cos(x) = 0$.
  85. $$
  86. \sin(x) = 1 \text{ implies }x = \frac{\pi}{2} + 2k\pi.
  87. $$
  88. These values make the equation valid:
  89. $$
  90. \begin{cases}
  91. \sin(x) = 1 : \sin(x) = \sin\left(\frac{\pi}{2} + 2k\pi\right) = 1 \\
  92. \cos(x) = 0 : \cos(x) = \cos\left(\frac{\pi}{2} + 2k\pi\right) = 0.
  93. \end{cases}
  94. $$
  95. Thus:
  96. $$
  97. \sin(x)^{11} + \cos(x)^{11} = 1^{11} + 0^{11} = 1 + 0 = 1.
  98. $$
  99. So $x = \frac{\pi}{2} + 2k\pi$ (where $k$ is any integer) is a set of solutions.
  100.  
  101. Case 2: $\sin(x) = 0$ and thus $\cos(x) = 1$.
  102. $$
  103. \cos(x) = 1 \text{ implies } x = 2k\pi.
  104. $$
  105. These values make:
  106. $$
  107. \begin{cases}
  108. \sin(x) = 0 : \sin(x) = \sin(2k\pi) = 0 \\
  109. \cos(x) = 1 : \cos(x) = \cos(2k\pi) = 1.
  110. \end{cases}
  111. $$
  112. Thus:
  113. $$
  114. \sin(x)^{11} + \cos(x)^{11} = 0^{11} + 1^{11} = 0 + 1 = 1.
  115. $$
  116. So $x = 2k\pi$ is another set of solutions where $k$ is any integer.
  117.  
  118. However, any other scenario where $|\sin(x)|,|\cos(x)| < 1$ makes the inequality strict:
  119. $$
  120. \sin(x)^{11} + \cos(x)^{11} < \sin^2(x) + \cos^2(x) = 1.
  121. $$
  122. Hence the only valid solutions appear to be $x = 2k\pi$ or $x= \frac{\pi}{2} + 2k\pi$.
  123.  
  124. However, this reasoning might need us to make a substitution $\sin(x) = u$, $\cos(x) = v$, such that $u^{11} + v^{11} = 1$ is verified along with the Pythagorean identity $u^2 + v^2 = 1$. Given $u^2 + v^2 = 1$, if we make $u = \sin \theta$ and $v = \cos \theta$, the equation becomes:
  125. $$
  126. \sin^{11}\theta + \cos^{11}\theta = 1,
  127. $$
  128. which is what we need to solve. However, we need to verify once again if $u = \sin \theta$, $v = \cos \theta$ might have any other values such that $u^{11} + v^{11} = 1$ while $u^2 + v^2 = 1$.
  129.  
  130. However, it looks like a well-known inequality for $0 < s,c < 1$ is that:
  131. $$
  132. s^{11} < s^2,
  133. $$$$
  134. c^{11} < c^2.
  135. $$
  136.  
  137. Hence to make a more concrete argument for $0 < s < 1$ where $s = |\sin(x)|$:
  138. $$
  139. \sin^2 (x) > |\sin(x)|^{11} \text{ unless } |\sin(x)| \in \{0, 1\}.
  140. $$
  141. And for $0 < c < 1$ where $c = |\cos(x)|$:
  142. $$
  143. \cos^2(x) > |\cos(x)|^{11} \text{ unless } |\cos(x)| \in \{0, 1\}.
  144. $$
  145. Thus:
  146. $$
  147. \sin(x)^{11} + \cos(x)^{11} \leq |\sin(x)|^{11} + |\cos(x)|^{11} \leq \sin^2(x) + \cos^2(x) = 1,
  148. $$
  149. with equality if and only if one of $s$ and $c$ is $1$ while the other is $0$.
  150.  
  151. Let us solve the elementary trigonometric equations for when one of $\sin(x)$ and $\cos(x)$ is $0$ or $1$ while the other makes its absolute value $0$ or $1$.
  152.  
  153. 1. $\sin(x) = 1 \Rightarrow \sin^2(x) = 1 \Rightarrow \cos^2(x) = 1 - \sin^2(x) = 0 \Rightarrow \cos(x) = 0$ (only valid case here where the sum of the $11$th powers is $1^{11} + 0^{11} = 1$).
  154.  
  155. So $x = \frac{\pi}{2} + 2k\pi$, $k \in \mathbb{Z}$.
  156.  
  157. 2. $\cos(x) = 1 \Rightarrow \cos^2(x) = 1 \Rightarrow \sin^2(x) = 1 - \cos^2(x) = 0 \Rightarrow \sin(x) = 0$ (again, only valid case here where the sum of the $11$th powers is $0^{11} + 1^{11} = 1$).
  158.  
  159. So $x = 2k\pi$, $k \in \mathbb{Z}$.
  160.  
  161. 3. $\sin(x) = -1 \Rightarrow \sin^2(x) = 1 \Rightarrow \cos^2(x) = 0 \Rightarrow \cos(x) = 0$, however:
  162. $$
  163. \sin(x) = -1 \text{ and } \cos(x) = 0 \text{ makes } \sin(x)^{11} + \cos(x)^{11} = (-1)^{11} + 0^{11} = -1,
  164. $$
  165. thus this case does not satisfy the given equation.
  166.  
  167. 4. $\cos(x) = -1 \Rightarrow \cos^2(x) = 1 \Rightarrow \sin^2(x) = 0 \Rightarrow \sin(x) = 0$, however:
  168. $$
  169. \sin(x) = 0 \text{ and } \cos(x) = -1 \text{ makes } \sin(x)^{11} + \cos(x)^{11} = 0^{11} + (-1)^{11} = -1,
  170. $$
  171. thus this case does not satisfy the given equation either.
  172.  
  173. So the only valid combinations where $\sin(x)^{11} + \cos(x)^{11} = 1$ are when $\sin(x)$ and $\cos(x)$ are either $0$ or $1$, such that one is $1$ while the other is $0$, which happens for:
  174. $$
  175. \sin(x) = 1 \text{ and } \cos(x) = 0,
  176. $$
  177. which corresponds to $x = \frac{\pi}{2} + 2k\pi$ for some $k \in \mathbb{Z}$, or:
  178. $$
  179. \sin(x) = 0 \text{ and } \cos(x) = 1,
  180. $$
  181. which corresponds to $x = 2k\pi$ for some $k \in \mathbb{Z}$.
  182.  
  183. Thus, the two families of solutions are:
  184. $$
  185. x = 2k\pi, \text{ where } k \in \mathbb{Z};
  186. $$
  187. $$
  188. x = \frac{\pi}{2} + 2k\pi, \text{ where } k \in \mathbb{Z}.
  189. $$
  190. This means $x = 2k\pi$ or $x = \frac{\pi}{2} + 2k\pi$ for $k \in \mathbb{Z}$ can be combined into a single expression if one wishes, by using the set notation $x \in \{2k\pi : k \in \mathbb{Z}\} \cup \left\{\frac{\pi}{2} + 2k\pi : k \in \mathbb{Z}\right\}$.
  191.  
  192. Another possible way of writing these solutions separately:
  193. $$
  194. x = 0 + 2k\pi \text{ where $k$ is an integer, or } x = \frac{\pi}{2} + 2k\pi \text{ where $k$ is an integer.}
  195. $$
  196.  
  197. To verify the reasoning explicitly:
  198. $$
  199. x = 2k\pi \text{ gives } \sin(x) = 0, \cos(x) = 1, \text{ so, } \sin(x)^{11} + \cos(x)^{11} = (0)^{11} + (1)^{11} = 0 + 1 = 1.
  200. $$
  201. $$
  202. x = \frac{\pi}{2} + 2k\pi \text{ gives } \sin(x) = 1, \cos(x) = 0, \text{ so, } \sin(x)^{11} + \cos(x)^{11} = (1)^{11} + (0)^{11} = 1 + 0 = 1.
  203. $$
  204. These appear to be the only valid cases.
  205.  
  206. However, a bit of a double-check can be done graphically. Plot $y=\sin^{11}(x) + \cos^{11}(x)$ and $y=1$ simultaneously on a graph. We should only see intersections where one of $\sin(x)$ or $\cos(x)$ is close to $1$ (while the other is close to $0$), which reinforces our previous reasoning that the question indeed appears to be solved correctly.
  207.  
  208. Thus, the only valid solutions are:
  209. $$
  210. \boxed{x = 2k\pi} \text{ where } k \in \mathbb{Z} \text{ or } \boxed{x = \frac{\pi}{2} + 2k\pi}\text{ where } k \in \mathbb{Z}.
  211. $$
  212.  
  213. This means that the only valid solutions are:
  214. $$
  215. x \in \left\{{2k\pi : k \in \mathbb{Z}}\right\} \cup \left\{\frac{\pi}{2} + 2k\pi : k\in\mathbb{Z} \right\}.
  216. $$
  217. Alternatively, this is the same as:
  218. $$
  219. x \in \left\{2k\pi, \frac{\pi}{2} + 2k\pi \text{ where } k\in \mathbb{Z}\right\}.
  220. $$
  221. ### Verification in another compact form
  222. It makes sense to verify this reasoning explicitly within a given period such as $0 \leq x < 2\pi$:
  223. 1. At $x = 0$ (equivalent to $2k\pi$ for $k=0$ in general form):
  224. $$
  225. \sin(0) = 0, \cos(0) = 1,
  226. $$
  227. $$
  228. \sin(0)^{11} + \cos(0)^{11} = 0^{11} + 1^{11} = 0 + 1 = 1.
  229. $$
  230. $x=0$ is a valid solution.
  231. 2. At $x = \frac{\pi}{2}$ (equivalent to $\frac{\pi}{2} + 2k\pi$ for $k=0$ in general form):
  232. $$
  233. \sin\left(\frac{\pi}{2}\right) = 1, \cos\left(\frac{\pi}{2}\right) = 0,
  234. $$
  235. $$
  236. \sin\left(\frac{\pi}{2}\right)^{11} + \cos\left(\frac{\pi}{2}\right)^{11} = 1^{11} + 0^{11} = 1 + 0 =1.
  237. $$
  238. $x = \frac{\pi}{2}$ is a valid solution.
  239. 3. At $x = \pi$ (equivalent to $\pi = (2k+1)\pi$ for $k=0$ in general form):
  240. $$
  241. \sin(\pi) = 0, \cos(\pi) = -1.
  242. $$
  243. $$
  244. \sin(\pi)^{11} + \cos(\pi)^{11] = 0^{11} + (-1)^{11} = 0 - 1=-1.
  245. $$
  246. $x = \pi$ is not a valid solution.
  247. 4. At $x = \frac{3\pi}{2}$:
  248. $$
  249. \sin\left(\frac{3\pi}{2}\right) = -1, \cos\left(\frac{3\pi}{2}\right) = 0.
  250. $$
  251. $$
  252. \sin\left (\frac{3\pi}{2}\right)^{11} + \cos\left(\frac{3\pi}{2}\right)^{11} = (-1)^{11} + 0^{11} = -1 + 0 = -1.
  253. $$
  254. $x = \frac{3\pi}{2}$ is not a valid solution.
  255.  
  256. This reasoning makes us confident that the only values within one round ($0 \leq x < 2\pi$) that make $\sin(x)^{11} + \cos(x)^{11} = 1$ are indeed $x = 0$ (which is equivalent to $x=2k\pi$ for any $k \in \mathbb{Z}$) or $x = \frac{\pi}{2}$ (which is equivalent to $x = \frac{\pi}{2} + 2k\pi$ for any $k \in \mathbb{Z}$).
  257.  
  258. Considering any other values of $x$, such that $\sin(x) \neq 1$ or $0$, or $\cos(x) \neq 1$ or $0$, one has the inequality $|\sin(x)| < 1$ or $|\cos(x)| < 1$, which makes the left-hand side $\sin(x)^{11} + \cos(x)^{11} < 1$.
  259.  
  260. Therefore, the only solutions are thus:
  261. $$
  262. \boxed{x = 2k\pi} \text{ for } k \in \mathbb{Z}, \text{ or } \boxed{x = \frac{\pi}{2} + 2k\pi} \text{ for } k \in \mathbb{Z}.
  263. $$
  264. Verified.
  265. </think>
  266.  
  267. \boxed{x = 2k\pi} \text{ where } k \in \mathbb{Z} \text{ or } x = \frac{\pi}{2} + 2k\pi \text{ where } k \in \mathbb{Z}
  268.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement