# Schalen SL

Oct 12th, 2018
55
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
1. (* yukterez.net | tinyurl.com/y8v8mgdp *)
2.
3. G=M=c=1; n=5;
4.
5. sol=NDSolve[{
6.
7. r0'[t]==((2G(n-0)M)/(c r0[t])-c),
8. r1'[t]==((2G(n-1)M)/(c r1[t])-c)Sqrt[1-(2G M)/(c^2 r0[t])],
9. r2'[t]==((2G(n-2)M)/(c r2[t])-c)Sqrt[1-(2G M)/(c^2 r0[t])] Sqrt[1-(2G M)/(c^2 r1[t])],
10. r3'[t]==((2G(n-3)M)/(c r3[t])-c)Sqrt[1-(2G M)/(c^2 r0[t])] Sqrt[1-(2G M)/(c^2 r1[t])] Sqrt[1-(2G M)/(c^2 r2[t])],
11. r4'[t]==((2G(n-4)M)/(c r4[t])-c)Sqrt[1-(2G M)/(c^2 r0[t])] Sqrt[1-(2G M)/(c^2 r1[t])] Sqrt[1-(2G M)/(c^2 r2[t])] Sqrt[1-(2G M)/(c^2 r3[t])],
12.
13. r0[0]==24, r1[0]==23, r2[0]==22, r3[0]==21, r4[0]==20
14.
15. }, {r0, r1, r2, r3, r4}, {t, 0, 100}];
16.
17. R0[t_]:=Re[Evaluate[r0[t]/.sol]][[1]];
18. R1[t_]:=Re[Evaluate[r1[t]/.sol]][[1]];
19. R2[t_]:=Re[Evaluate[r2[t]/.sol]][[1]];
20. R3[t_]:=Re[Evaluate[r3[t]/.sol]][[1]];
21. R4[t_]:=Re[Evaluate[r4[t]/.sol]][[1]];
22.
23. plot[t_]:=Graphics[{
24. {Opacity[0.1], Disk[{0, 0}, 2]},
25. {Opacity[0.1], Disk[{0, 0}, 4]},
26. {Opacity[0.1], Disk[{0, 0}, 6]},
27. {Opacity[0.1], Disk[{0, 0}, 8]},
28. {Opacity[0.1], Disk[{0, 0}, 10]},
29. {Purple, Circle[{0, 0}, R0[t]]},
30. {Red, Circle[{0, 0}, R1[t]]},
31. {Orange, Circle[{0, 0}, R2[t]]},
32. {Darker[Darker[Green]], Circle[{0, 0}, R3[t]]},
33. {Blue, Circle[{0, 0}, R4[t]]}},
34. PlotRange->25, Frame->True, ImageSize->440];
35.
36. Do[Print[Rasterize[Grid[{{plot[t]}, {" t"->N[t]}}, Alignment->Left]]],
37. {t, 0, 100, 1/4}]
RAW Paste Data