CJamie

multiplelinearregression

Mar 23rd, 2022
796
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 1.42 KB | None | 0 0
  1.  
  2. # B) MULTIPLE REGRESSION
  3. """
  4.  
  5. import pandas as pd
  6. import numpy as np
  7. import matplotlib.pyplot as plt
  8. import seaborn as sns
  9.  
  10. data = pd.read_csv('BostonHousing.csv')
  11. data.head()
  12.  
  13. #data=pd.read_csv('BostonHousing.csv')
  14. # X= pd.DataFrame(data.iloc[:,:-1])
  15. # y= pd.DataFrame(data.iloc[:,-1])
  16. X = data.iloc[:, :-1].values
  17. y = data.iloc[:, -1].values
  18. print(X)
  19.  
  20. print(y)
  21.  
  22. sns.heatmap(data.corr())
  23.  
  24. from sklearn.model_selection import train_test_split
  25. X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.3, random_state=50)
  26.  
  27. from sklearn.linear_model import LinearRegression
  28. lr = LinearRegression()
  29. lr.fit(X_train,y_train)
  30.  
  31. y_pred = lr.predict(X_test)
  32. print(y_pred)
  33.  
  34. from sklearn.metrics import r2_score
  35. r2_score(y_test,y_pred)
  36.  
  37. plt.scatter(y_test,y_pred)
  38. plt.xlabel('actual')
  39. plt.ylabel('predicted')
  40. plt.title('actual vs predicted')
  41. plt.show()
  42.  
  43. pred_y_dataset = pd.DataFrame({'Actual':y_test,'Predicted':y_pred,'Difference': y_test-y_pred})
  44. pred_y_dataset[0:10]
  45.  
  46. y_pred=lr.predict(X_test)
  47. y_pred=pd.DataFrame(y_pred,columns=['Predicted value'])
  48. y_pred
  49.  
  50. y_test
  51.  
  52. #coeff_df=pd.concat([w,v],axis=1,join='inner')
  53. #coeff_df
  54.  
  55. from sklearn import metrics
  56. print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
  57. print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
  58. print('Resultant Mean Square Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
  59.  
Advertisement
Add Comment
Please, Sign In to add comment