Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- # B) MULTIPLE REGRESSION
- """
- import pandas as pd
- import numpy as np
- import matplotlib.pyplot as plt
- import seaborn as sns
- data = pd.read_csv('BostonHousing.csv')
- data.head()
- #data=pd.read_csv('BostonHousing.csv')
- # X= pd.DataFrame(data.iloc[:,:-1])
- # y= pd.DataFrame(data.iloc[:,-1])
- X = data.iloc[:, :-1].values
- y = data.iloc[:, -1].values
- print(X)
- print(y)
- sns.heatmap(data.corr())
- from sklearn.model_selection import train_test_split
- X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.3, random_state=50)
- from sklearn.linear_model import LinearRegression
- lr = LinearRegression()
- lr.fit(X_train,y_train)
- y_pred = lr.predict(X_test)
- print(y_pred)
- from sklearn.metrics import r2_score
- r2_score(y_test,y_pred)
- plt.scatter(y_test,y_pred)
- plt.xlabel('actual')
- plt.ylabel('predicted')
- plt.title('actual vs predicted')
- plt.show()
- pred_y_dataset = pd.DataFrame({'Actual':y_test,'Predicted':y_pred,'Difference': y_test-y_pred})
- pred_y_dataset[0:10]
- y_pred=lr.predict(X_test)
- y_pred=pd.DataFrame(y_pred,columns=['Predicted value'])
- y_pred
- y_test
- #coeff_df=pd.concat([w,v],axis=1,join='inner')
- #coeff_df
- from sklearn import metrics
- print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
- print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
- print('Resultant Mean Square Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
Advertisement
Add Comment
Please, Sign In to add comment