Advertisement
Guest User

Ants for yiddish people

a guest
Sep 16th, 2016
4,274
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 252.99 KB | None | 0 0
  1.  
  2. TranslateTurn off instant translation
  3. EnglishSpanishFrenchEnglish - detectedCzechBulgarianYiddishTranslate
  4.  
  5.  
  6. Hide
  7. Wiki Loves Monuments: The world's largest photography competition is now open! Photograph a historic site, learn more about our history, and win prizes.
  8. This is a featured article. Click here for more information. Page semi-protected
  9. Ant
  10. From Wikipedia, the free encyclopedia
  11. For other uses, see Ant (disambiguation).
  12. Ants
  13. Temporal range: 100–0 Ma
  14. PreЄЄOSDCPTJKPgN
  15. Albian – Recent
  16. Fire ants 01.jpg
  17. A group of Fire ants.
  18. Scientific classification e
  19. Kingdom: Animalia
  20. Phylum: Arthropoda
  21. Class: Insecta
  22. Order: Hymenoptera
  23. Superfamily: Vespoidea
  24. Family: Formicidae
  25. Latreille, 1809
  26. Type species
  27. Formica rufa
  28. Linnaeus, 1761
  29. Subfamilies
  30. Agroecomyrmecinae
  31. Amblyoponinae (incl. "Apomyrminae")
  32. Aneuretinae
  33. †Armaniinae
  34. †Brownimeciinae
  35. Dolichoderinae
  36. Dorylinae
  37. Ectatomminae
  38. †Formiciinae
  39. Formicinae
  40. Heteroponerinae
  41. Leptanillinae
  42. Martialinae
  43. Myrmeciinae (incl. "Nothomyrmeciinae")
  44. Myrmicinae
  45. Paraponerinae
  46. Ponerinae
  47. Proceratiinae
  48. Pseudomyrmecinae
  49. †Sphecomyrminae
  50. Cladogram of
  51. subfamilies [show]
  52. Ants are eusocial insects of the family Formicidae and, along with the related wasps and bees, belong to the order Hymenoptera. Ants evolved from wasp-like ancestors in the Cretaceous period, about 99 million years ago and diversified after the rise of flowering plants. More than 12,500 of an estimated total of 22,000 species have been classified.[4][5] They are easily identified by their elbowed antennae and the distinctive node-like structure that forms their slender waists.
  53.  
  54. Ants form colonies that range in size from a few dozen predatory individuals living in small natural cavities to highly organised colonies that may occupy large territories and consist of millions of individuals. Larger colonies consist mostly of sterile, wingless females forming castes of "workers", "soldiers", or other specialised groups. Nearly all ant colonies also have some fertile males called "drones" and one or more fertile females called "queens". The colonies are described as superorganisms because the ants appear to operate as a unified entity, collectively working together to support the colony.[6][7]
  55.  
  56. File:Blackants-bredcrust-tokyo-may2015.webm
  57. (video) Ants gathering food
  58. Ants have colonised almost every landmass on Earth. The only places lacking indigenous ants are Antarctica and a few remote or inhospitable islands. Ants thrive in most ecosystems and may form 15–25% of the terrestrial animal biomass.[8] Their success in so many environments has been attributed to their social organisation and their ability to modify habitats, tap resources, and defend themselves. Their long co-evolution with other species has led to mimetic, commensal, parasitic, and mutualistic relationships.[9]
  59.  
  60. Ant societies have division of labour, communication between individuals, and an ability to solve complex problems.[10] These parallels with human societies have long been an inspiration and subject of study. Many human cultures make use of ants in cuisine, medication, and rituals. Some species are valued in their role as biological pest control agents.[11] Their ability to exploit resources may bring ants into conflict with humans, however, as they can damage crops and invade buildings. Some species, such as the red imported fire ant (Solenopsis invicta), are regarded as invasive species, establishing themselves in areas where they have been introduced accidentally.[12]
  61.  
  62. Contents [hide]
  63. 1 Etymology
  64. 2 Taxonomy and evolution
  65. 3 Distribution and diversity
  66. 4 Morphology
  67. 4.1 Head
  68. 4.2 Legs
  69. 4.3 Wings
  70. 4.4 Metasoma
  71. 4.5 Polymorphism
  72. 5 Life cycle
  73. 5.1 Reproduction
  74. 6 Behaviour and ecology
  75. 6.1 Communication
  76. 6.2 Defence
  77. 6.3 Learning
  78. 6.4 Nest construction
  79. 6.5 Cultivation of food
  80. 6.6 Navigation
  81. 6.7 Locomotion
  82. 6.8 Cooperation and competition
  83. 6.9 Relationships with other organisms
  84. 7 Relationship with humans
  85. 7.1 As food
  86. 7.2 As pests
  87. 7.3 In science and technology
  88. 7.4 In culture
  89. 8 See also
  90. 9 References
  91. 9.1 Cited texts
  92. 10 Further reading
  93. 11 External links
  94. Etymology
  95. The word "ant" is derived from ante, emete of Middle English which are derived from ǣmette of Old English, and is related to the dialectal Dutch emt and the Old High German āmeiza, hence the modern German Ameise. All of these words come from West Germanic *ēmaitijǭ, and the original meaning of the word was "the biter" (from Proto-Germanic *ai-, "off, away" + *mait- "cut").[13][14] The family name Formicidae is derived from the Latin formīca ("ant")[15] from which the words in other Romance languages, such as the Portuguese formiga, Italian formica, Spanish hormiga, Romanian furnică, and French fourmi are derived. It has been hypothesised that a Proto-Indo-European word *morwi- was used, cf. Sanskrit vamrah, Latin formīca, Greek μύρμηξ mýrmēx, Old Church Slavonic mraviji, Old Irish moirb, Old Norse maurr, Dutch mier.[16]
  96.  
  97. Taxonomy and evolution
  98.  
  99. Ants fossilised in Baltic amber
  100. Aculeata
  101.  
  102. Chrysidoidea
  103.  
  104.  
  105.  
  106.  
  107. Vespidae
  108.  
  109.  
  110. Rhopalosomatidae
  111.  
  112.  
  113.  
  114.  
  115.  
  116. Pompilidae
  117.  
  118.  
  119. Tiphiidae
  120.  
  121.  
  122.  
  123.  
  124. Scolioidea
  125.  
  126.  
  127.  
  128. Apoidea
  129.  
  130.  
  131. Formicidae
  132.  
  133.  
  134.  
  135.  
  136.  
  137.  
  138. Phylogenetic position of the Formicidae.[17]
  139. The family Formicidae belongs to the order Hymenoptera, which also includes sawflies, bees, and wasps. Ants evolved from a lineage within the aculeate wasps, and a 2013 study suggests that they are a sister group of the Apoidea.[17] In 1966, E. O. Wilson and his colleagues identified the fossil remains of an ant (Sphecomyrma) that lived in the Cretaceous period. The specimen, trapped in amber dating back to around 92 million years ago, has features found in some wasps, but not found in modern ants.[18] Sphecomyrma possibly was a ground forager, while Haidomyrmex and Haidomyrmodes, related genera in subfamily Sphecomyrminae, are reconstructed as active arboreal predators.[19] Older ants in the genus Sphecomyrmodes have been found in 99 million year-old amber from Myanmar.[20][21] After the rise of flowering plants about 100 million years ago they diversified and assumed ecological dominance around 60 million years ago.[22][23][24][25] Some groups, such as the Leptanillinae and Martialinae, are suggested to have diversified from early primitive ants that were likely to have been predators underneath the surface of the soil.[2][26]
  140.  
  141. During the Cretaceous period, a few species of primitive ants ranged widely on the Laurasian supercontinent (the Northern Hemisphere). They were scarce in comparison to the populations of other insects, representing only about 1% of the entire insect population. Ants became dominant after adaptive radiation at the beginning of the Paleogene period. By the Oligocene and Miocene, ants had come to represent 20–40% of all insects found in major fossil deposits. Of the species that lived in the Eocene epoch, around one in 10 genera survive to the present. Genera surviving today comprise 56% of the genera in Baltic amber fossils (early Oligocene), and 92% of the genera in Dominican amber fossils (apparently early Miocene).[22][27]
  142.  
  143. Termites, although sometimes called 'white ants', are not ants. They belong to the sub-order Isoptera within the order Blattodea. Termites are more closely related to cockroaches and mantids. Termites are eusocial, but differ greatly in the genetics of reproduction. The similarity of their social structure to that of ants is attributed to convergent evolution.[28] Velvet ants look like large ants, but are wingless female wasps.[29][30]
  144.  
  145. Distribution and diversity
  146. Region Number of
  147. species [31]
  148. Neotropics 2162
  149. Nearctic 580
  150. Europe 180
  151. Africa 2500
  152. Asia 2080
  153. Melanesia 275
  154. Australia 985
  155. Polynesia 42
  156. Ants are found on all continents except Antarctica, and only a few large islands, such as Greenland, Iceland, parts of Polynesia and the Hawaiian Islands lack native ant species.[32][33] Ants occupy a wide range of ecological niches and exploit many different food resources as direct or indirect herbivores, predators and scavengers. Most ant species are omnivorous generalists, but a few are specialist feeders. Their ecological dominance is demonstrated by their biomass: ants are estimated to contribute 15–20 % (on average and nearly 25% in the tropics) of terrestrial animal biomass, exceeding that of the vertebrates.[8]
  157.  
  158. Ants range in size from 0.75 to 52 millimetres (0.030–2.0 in),[34][35] the largest species being the fossil Titanomyrma giganteum, the queen of which was 6 centimetres (2.4 in) long with a wingspan of 15 centimetres (5.9 in).[36] Ants vary in colour; most ants are red or black, but a few species are green and some tropical species have a metallic lustre. More than 12,000 species are currently known (with upper estimates of the potential existence of about 22,000) (see the article List of ant genera), with the greatest diversity in the tropics. Taxonomic studies continue to resolve the classification and systematics of ants. Online databases of ant species, including AntBase and the Hymenoptera Name Server, help to keep track of the known and newly described species.[37] The relative ease with which ants may be sampled and studied in ecosystems has made them useful as indicator species in biodiversity studies.[38][39]
  159.  
  160. Morphology
  161. Ants are distinct in their morphology from other insects in having elbowed antennae, metapleural glands, and a strong constriction of their second abdominal segment into a node-like petiole. The head, mesosoma, and metasoma are the three distinct body segments. The petiole forms a narrow waist between their mesosoma (thorax plus the first abdominal segment, which is fused to it) and gaster (abdomen less the abdominal segments in the petiole). The petiole may be formed by one or two nodes (the second alone, or the second and third abdominal segments).[40]
  162.  
  163.  
  164. Bull ant showing the powerful mandibles and the relatively large compound eyes that provide excellent vision
  165. Like other insects, ants have an exoskeleton, an external covering that provides a protective casing around the body and a point of attachment for muscles, in contrast to the internal skeletons of humans and other vertebrates. Insects do not have lungs; oxygen and other gases, such as carbon dioxide, pass through their exoskeleton via tiny valves called spiracles. Insects also lack closed blood vessels; instead, they have a long, thin, perforated tube along the top of the body (called the "dorsal aorta") that functions like a heart, and pumps haemolymph toward the head, thus driving the circulation of the internal fluids. The nervous system consists of a ventral nerve cord that runs the length of the body, with several ganglia and branches along the way reaching into the extremities of the appendages.[41]
  166.  
  167.  
  168. Diagram of a worker ant (Pachycondyla verenae)
  169. Head
  170. An ant's head contains many sensory organs. Like most insects, ants have compound eyes made from numerous tiny lenses attached together. Ant eyes are good for acute movement detection, but do not offer a high resolution image. They also have three small ocelli (simple eyes) on the top of the head that detect light levels and polarization.[42] Compared to vertebrates, most ants have poor-to-mediocre eyesight and a few subterranean species are completely blind. However, some ants, such as Australia's bulldog ant, have excellent vision and are capable of discriminating the distance and size of objects moving nearly a metre away.[43]
  171.  
  172. Two antennae ("feelers") are attached to the head; these organs detect chemicals, air currents, and vibrations; they also are used to transmit and receive signals through touch. The head has two strong jaws, the mandibles, used to carry food, manipulate objects, construct nests, and for defence.[41] In some species, a small pocket (infrabuccal chamber) inside the mouth stores food, so it may be passed to other ants or their larvae.[44]
  173.  
  174. Legs
  175. All six legs are attached to the mesosoma ("thorax") and terminate in a hooked claw.
  176.  
  177. Wings
  178. Only reproductive ants, queens, and males, have wings. Queens shed their wings after the nuptial flight, leaving visible stubs, a distinguishing feature of queens. In a few species, wingless queens (ergatoids) and males occur.[41]
  179.  
  180. Metasoma
  181. The metasoma (the "abdomen") of the ant houses important internal organs, including those of the reproductive, respiratory (tracheae), and excretory systems. Workers of many species have their egg-laying structures modified into stings that are used for subduing prey and defending their nests.[41]
  182.  
  183. Polymorphism
  184.  
  185. Seven Leafcutter ant workers of various castes (left) and two Queens (right)
  186. In the colonies of a few ant species, there are physical castes—workers in distinct size-classes, called minor, median, and major workers. Often, the larger ants have disproportionately larger heads, and correspondingly stronger mandibles. Such individuals are sometimes called "soldier" ants because their stronger mandibles make them more effective in fighting, although they still are workers and their "duties" typically do not vary greatly from the minor or median workers. In a few species, the median workers are absent, creating a sharp divide between the minors and majors.[45] Weaver ants, for example, have a distinct bimodal size distribution.[46][47] Some other species show continuous variation in the size of workers. The smallest and largest workers in Pheidologeton diversus show nearly a 500-fold difference in their dry-weights.[48] Workers cannot mate; however, because of the haplodiploid sex-determination system in ants, workers of a number of species can lay unfertilised eggs that become fully fertile, haploid males. The role of workers may change with their age and in some species, such as honeypot ants, young workers are fed until their gasters are distended, and act as living food storage vessels. These food storage workers are called repletes.[49] For instance, these replete workers develop in the North American honeypot ant Myrmecocystus mexicanus. Usually the largest workers in the colony develop into repletes; and, if repletes are removed from the colony, other workers become repletes, demonstrating the flexibility of this particular polymorphism.[50] This polymorphism in morphology and behaviour of workers initially was thought to be determined by environmental factors such as nutrition and hormones that led to different developmental paths; however, genetic differences between worker castes have been noted in Acromyrmex sp.[51] These polymorphisms are caused by relatively small genetic changes; differences in a single gene of Solenopsis invicta can decide whether the colony will have single or multiple queens.[52] The Australian jack jumper ant (Myrmecia pilosula) has only a single pair of chromosomes (with the males having just one chromosome as they are haploid), the lowest number known for any animal, making it an interesting subject for studies in the genetics and developmental biology of social insects.[53][54]
  187.  
  188. Life cycle
  189.  
  190. Meat eater ant nest during swarming
  191. The life of an ant starts from an egg. If the egg is fertilised, the progeny will be female diploid; if not, it will be male haploid. Ants develop by complete metamorphosis with the larva stages passing through a pupal stage before emerging as an adult. The larva is largely immobile and is fed and cared for by workers. Food is given to the larvae by trophallaxis, a process in which an ant regurgitates liquid food held in its crop. This is also how adults share food, stored in the "social stomach". Larvae, especially in the later stages, may also be provided solid food, such as trophic eggs, pieces of prey, and seeds brought by workers.
  192.  
  193. The larvae grow through a series of four or five moults and enter the pupal stage. The pupa has the appendages free and not fused to the body as in a butterfly pupa.[55] The differentiation into queens and workers (which are both female), and different castes of workers, is influenced in some species by the nutrition the larvae obtain. Genetic influences and the control of gene expression by the developmental environment are complex and the determination of caste continues to be a subject of research.[56] Winged male ants, called drones, emerge from pupae along with the usually winged breeding females. Some species, such as army ants, have wingless queens. Larvae and pupae need to be kept at fairly constant temperatures to ensure proper development, and so often, are moved around among the various brood chambers within the colony.[57]
  194.  
  195. A new worker spends the first few days of its adult life caring for the queen and young. She then graduates to digging and other nest work, and later to defending the nest and foraging. These changes are sometimes fairly sudden, and define what are called temporal castes. An explanation for the sequence is suggested by the high casualties involved in foraging, making it an acceptable risk only for ants who are older and are likely to die soon of natural causes.[58][59]
  196.  
  197. Ant colonies can be long-lived. The queens can live for up to 30 years, and workers live from 1 to 3 years. Males, however, are more transitory, being quite short-lived and surviving for only a few weeks.[60] Ant queens are estimated to live 100 times as long as solitary insects of a similar size.[61]
  198.  
  199. Ants are active all year long in the tropics, but, in cooler regions, they survive the winter in a state of dormancy or inactivity. The forms of inactivity are varied and some temperate species have larvae going into the inactive state, (diapause), while in others, the adults alone pass the winter in a state of reduced activity.[62]
  200.  
  201. Reproduction
  202.  
  203. Ants mating
  204. A wide range of reproductive strategies have been noted in ant species. Females of many species are known to be capable of reproducing asexually through thelytokous parthenogenesis.[63] Secretions from the male accessory glands in some species can plug the female genital opening and prevent females from re-mating.[64] Most ant species have a system in which only the queen and breeding females have the ability to mate. Contrary to popular belief, some ant nests have multiple queens, while others may exist without queens. Workers with the ability to reproduce are called "gamergates" and colonies that lack queens are then called gamergate colonies; colonies with queens are said to be queen-right.[65]
  205.  
  206. Drones can also mate with existing queens by entering a foreign colony. When the drone is initially attacked by the workers, it releases a mating pheromone. If recognized as a mate, it will be carried to the queen to mate.[66] Males may also patrol the nest and fight others by grabbing them with their mandibles, piercing their exoskeleton and then marking them with a pheromone. The marked male is interpreted as an invader by worker ants and is killed.[67]
  207.  
  208.  
  209. Fertilised meat-eater ant queen beginning to dig a new colony
  210. Most ants are univoltine, producing a new generation each year.[68] During the species-specific breeding period, new reproductives, females, and winged males leave the colony in what is called a nuptial flight. The nuptial flight usually takes place in the late spring or early summer when the weather is hot and humid. Heat makes flying easier and freshly fallen rain makes the ground softer for mated queens to dig nests.[69] Males typically take flight before the females. Males then use visual cues to find a common mating ground, for example, a landmark such as a pine tree to which other males in the area converge. Males secrete a mating pheromone that females follow. Males will mount females in the air, but the actual mating process usually takes place on the ground. Females of some species mate with just one male but in others they may mate with as many as ten or more different males, storing the sperm in their spermathecae.[70]
  211.  
  212. Mated females then seek a suitable place to begin a colony. There, they break off their wings and begin to lay and care for eggs. The females can selectively fertilise future eggs with the sperm stored or lay unfertilized haploid eggs to produce workers. The first workers to hatch are weak and smaller than later workers, but they begin to serve the colony immediately. They enlarge the nest, forage for food, and care for the other eggs. Species that have multiple queens may have a queen leaving the nest along with some workers to found a colony at a new site,[70] a process akin to swarming in honeybees.
  213.  
  214. Behaviour and ecology
  215. Communication
  216.  
  217. Two Camponotus sericeus workers communicating through touch and pheromones
  218. Ants communicate with each other using pheromones, sounds, and touch.[71] The use of pheromones as chemical signals is more developed in ants, such as the red harvester ant, than in other hymenopteran groups. Like other insects, ants perceive smells with their long, thin, and mobile antennae. The paired antennae provide information about the direction and intensity of scents. Since most ants live on the ground, they use the soil surface to leave pheromone trails that may be followed by other ants. In species that forage in groups, a forager that finds food marks a trail on the way back to the colony; this trail is followed by other ants, these ants then reinforce the trail when they head back with food to the colony. When the food source is exhausted, no new trails are marked by returning ants and the scent slowly dissipates. This behaviour helps ants deal with changes in their environment. For instance, when an established path to a food source is blocked by an obstacle, the foragers leave the path to explore new routes. If an ant is successful, it leaves a new trail marking the shortest route on its return. Successful trails are followed by more ants, reinforcing better routes and gradually identifying the best path.[72]
  219.  
  220. Ants use pheromones for more than just making trails. A crushed ant emits an alarm pheromone that sends nearby ants into an attack frenzy and attracts more ants from farther away. Several ant species even use "propaganda pheromones" to confuse enemy ants and make them fight among themselves.[73] Pheromones are produced by a wide range of structures including Dufour's glands, poison glands and glands on the hindgut, pygidium, rectum, sternum, and hind tibia.[61] Pheromones also are exchanged, mixed with food, and passed by trophallaxis, transferring information within the colony.[74] This allows other ants to detect what task group (e.g., foraging or nest maintenance) other colony members belong to.[75] In ant species with queen castes, when the dominant queen stops producing a specific pheromone, workers begin to raise new queens in the colony.[76]
  221.  
  222. Some ants produce sounds by stridulation, using the gaster segments and their mandibles. Sounds may be used to communicate with colony members or with other species.[77][78]
  223.  
  224. Defence
  225.  
  226. A Plectroctena sp. attacks another of its kind to protect its territory
  227. See also Insect defences
  228. Ants attack and defend themselves by biting and, in many species, by stinging, often injecting or spraying chemicals, such as formic acid in the case of formicine ants, alkaloids and piperidines in fire ants, and a variety of protein components in other ants. Bullet ants (Paraponera), located in Central and South America, are considered to have the most painful sting of any insect, although it is usually not fatal to humans. This sting is given the highest rating on the Schmidt Sting Pain Index.
  229.  
  230. The sting of jack jumper ants can be fatal,[79] and an antivenom has been developed for it.[80]
  231.  
  232. Fire ants, Solenopsis spp., are unique in having a venom sac containing piperidine alkaloids.[81] Their stings are painful and can be dangerous to hypersensitive people.[82]
  233.  
  234.  
  235. A weaver ant in fighting position, mandibles wide open
  236. Trap-jaw ants of the genus Odontomachus are equipped with mandibles called trap-jaws, which snap shut faster than any other predatory appendages within the animal kingdom.[83] One study of Odontomachus bauri recorded peak speeds of between 126 and 230 km/h (78 and 143 mph), with the jaws closing within 130 microseconds on average. The ants were also observed to use their jaws as a catapult to eject intruders or fling themselves backward to escape a threat.[83] Before striking, the ant opens its mandibles extremely widely and locks them in this position by an internal mechanism. Energy is stored in a thick band of muscle and explosively released when triggered by the stimulation of sensory organs resembling hairs on the inside of the mandibles. The mandibles also permit slow and fine movements for other tasks. Trap-jaws also are seen in the following genera: Anochetus, Orectognathus, and Strumigenys,[83] plus some members of the Dacetini tribe,[84] which are viewed as examples of convergent evolution.
  237.  
  238. A Malaysian species of ant in the Camponotus cylindricus group has enlarged mandibular glands that extend into their gaster. When disturbed, workers rupture the membrane of the gaster, causing a burst of secretions containing acetophenones and other chemicals that immobilise small insect attackers. The worker subsequently dies.[85]
  239.  
  240. Suicidal defences by workers are also noted in a Brazilian ant, Forelius pusillus, where a small group of ants leaves the security of the nest after sealing the entrance from the outside each evening.[86]
  241.  
  242.  
  243. Ant mound holes prevent water from entering the nest during rain.
  244. In addition to defence against predators, ants need to protect their colonies from pathogens. Some worker ants maintain the hygiene of the colony and their activities include undertaking or necrophory, the disposal of dead nest-mates.[87] Oleic acid has been identified as the compound released from dead ants that triggers necrophoric behaviour in Atta mexicana[88] while workers of Linepithema humile react to the absence of characteristic chemicals (dolichodial and iridomyrmecin) present on the cuticle of their living nestmates to trigger similar behaviour.[89]
  245.  
  246. Nests may be protected from physical threats such as flooding and overheating by elaborate nest architecture.[90][91] Workers of Cataulacus muticus, an arboreal species that lives in plant hollows, respond to flooding by drinking water inside the nest, and excreting it outside.[92] Camponotus anderseni, which nests in the cavities of wood in mangrove habitats, deals with submergence under water by switching to anaerobic respiration.[93]
  247.  
  248. Learning
  249. Many animals can learn behaviours by imitation, but ants may be the only group apart from mammals where interactive teaching has been observed. A knowledgeable forager of Temnothorax albipennis will lead a naive nest-mate to newly discovered food by the process of tandem running. The follower obtains knowledge through its leading tutor. The leader is acutely sensitive to the progress of the follower and slows down when the follower lags and speeds up when the follower gets too close.[94]
  250.  
  251. Controlled experiments with colonies of Cerapachys biroi suggest that an individual may choose nest roles based on her previous experience. An entire generation of identical workers was divided into two groups whose outcome in food foraging was controlled. One group was continually rewarded with prey, while it was made certain that the other failed. As a result, members of the successful group intensified their foraging attempts while the unsuccessful group ventured out fewer and fewer times. A month later, the successful foragers continued in their role while the others had moved to specialise in brood care.[95]
  252.  
  253. Nest construction
  254. Main article: Ant colony
  255. File:Ameisen krabbeln.webm
  256.  
  257. Leaf nest of weaver ants, Pamalican, Philippines
  258. Complex nests are built by many ant species, but other species are nomadic and do not build permanent structures. Ants may form subterranean nests or build them on trees. These nests may be found in the ground, under stones or logs, inside logs, hollow stems, or even acorns. The materials used for construction include soil and plant matter,[70] and ants carefully select their nest sites; Temnothorax albipennis will avoid sites with dead ants, as these may indicate the presence of pests or disease. They are quick to abandon established nests at the first sign of threats.[96]
  259.  
  260. The army ants of South America, such as the Eciton burchellii species, and the driver ants of Africa do not build permanent nests, but instead, alternate between nomadism and stages where the workers form a temporary nest (bivouac) from their own bodies, by holding each other together.[97]
  261.  
  262. Weaver ant (Oecophylla spp.) workers build nests in trees by attaching leaves together, first pulling them together with bridges of workers and then inducing their larvae to produce silk as they are moved along the leaf edges. Similar forms of nest construction are seen in some species of Polyrhachis.[98]
  263.  
  264. Formica polyctena, among other ant species, constructs nests that maintain a relatively constant interior temperature that aids in the development of larvae. The ants maintain the nest temperature by choosing the location, nest materials, controlling ventilation and maintaining the heat from solar radiation, worker activity and metabolism, and in some moist nests, microbial activity in the nest materials.[99]
  265.  
  266. Some ant species, such as those that use natural cavities, can be opportunistic and make use of the controlled micro-climate provided inside human dwellings and other artificial structures to house their colonies and nest structures.[100][101]
  267.  
  268. Cultivation of food
  269. Main article: Ant-fungus mutualism
  270.  
  271. Myrmecocystus, honeypot ants, store food to prevent colony famine
  272. Most ants are generalist predators, scavengers, and indirect herbivores,[24] but a few have evolved specialised ways of obtaining nutrition. It is believed that many ant species that engage in indirect herbivory rely on specialized symbiosis with their gut microbes [102] to upgrade the nutritional value of the food they collect [103] and allow them to survive in nitrogen poor regions, such as rainforrest canopies.[104] Leafcutter ants (Atta and Acromyrmex) feed exclusively on a fungus that grows only within their colonies. They continually collect leaves which are taken to the colony, cut into tiny pieces and placed in fungal gardens. Workers specialise in related tasks according to their sizes. The largest ants cut stalks, smaller workers chew the leaves and the smallest tend the fungus. Leafcutter ants are sensitive enough to recognise the reaction of the fungus to different plant material, apparently detecting chemical signals from the fungus. If a particular type of leaf is found to be toxic to the fungus, the colony will no longer collect it. The ants feed on structures produced by the fungi called gongylidia. Symbiotic bacteria on the exterior surface of the ants produce antibiotics that kill bacteria introduced into the nest that may harm the fungi.[105]
  273.  
  274. Navigation
  275.  
  276. An ant trail
  277. Foraging ants travel distances of up to 200 metres (700 ft) from their nest [106] and scent trails allow them to find their way back even in the dark. In hot and arid regions, day-foraging ants face death by desiccation, so the ability to find the shortest route back to the nest reduces that risk. Diurnal desert ants of the genus Cataglyphis such as the Sahara desert ant navigate by keeping track of direction as well as distance travelled. Distances travelled are measured using an internal pedometer that keeps count of the steps taken [107] and also by evaluating the movement of objects in their visual field (optical flow).[108] Directions are measured using the position of the sun.[109] They integrate this information to find the shortest route back to their nest.[110] Like all ants, they can also make use of visual landmarks when available [111] as well as olfactory and tactile cues to navigate.[112][113] Some species of ant are able to use the Earth's magnetic field for navigation.[114] The compound eyes of ants have specialised cells that detect polarised light from the Sun, which is used to determine direction.[115][116] These polarization detectors are sensitive in the ultraviolet region of the light spectrum.[117] In some army ant species, a group of foragers who become separated from the main column may sometimes turn back on themselves and form a circular ant mill. The workers may then run around continuously until they die of exhaustion.[118]
  278.  
  279. Locomotion
  280. The female worker ants do not have wings and reproductive females lose their wings after their mating flights in order to begin their colonies. Therefore, unlike their wasp ancestors, most ants travel by walking. Some species are capable of leaping. For example, Jerdon's jumping ant (Harpegnathos saltator) is able to jump by synchronising the action of its mid and hind pairs of legs.[119] There are several species of gliding ant including Cephalotes atratus; this may be a common trait among most arboreal ants. Ants with this ability are able to control the direction of their descent while falling.[120]
  281.  
  282. Other species of ants can form chains to bridge gaps over water, underground, or through spaces in vegetation. Some species also form floating rafts that help them survive floods.[121] These rafts may also have a role in allowing ants to colonise islands.[122] Polyrhachis sokolova, a species of ant found in Australian mangrove swamps, can swim and live in underwater nests. Since they lack gills, they go to trapped pockets of air in the submerged nests to breathe.[123]
  283.  
  284. Cooperation and competition
  285.  
  286. Meat-eater ants feeding on a cicada, social ants cooperate and collectively gather food
  287. Not all ants have the same kind of societies. The Australian bulldog ants are among the biggest and most basal of ants. Like virtually all ants, they are eusocial, but their social behaviour is poorly developed compared to other species. Each individual hunts alone, using her large eyes instead of chemical senses to find prey.[124]
  288.  
  289. Some species (such as Tetramorium caespitum) attack and take over neighbouring ant colonies. Others are less expansionist, but just as aggressive; they invade colonies to steal eggs or larvae, which they either eat or raise as workers or slaves. Extreme specialists among these slave-raiding ants, such as the Amazon ants, are incapable of feeding themselves and need captured workers to survive.[125] Captured workers of the enslaved species Temnothorax have evolved a counter strategy, destroying just the female pupae of the slave-making Protomognathus americanus, but sparing the males (who don't take part in slave-raiding as adults).[126]
  290.  
  291.  
  292. A worker Harpegnathos saltator (a jumping ant) engaged in battle with a rival colony's queen
  293. Ants identify kin and nestmates through their scent, which comes from hydrocarbon-laced secretions that coat their exoskeletons. If an ant is separated from its original colony, it will eventually lose the colony scent. Any ant that enters a colony without a matching scent will be attacked.[127] Also, the reason why two separate colonies of ants will attack each other even if they are of the same species is because the genes responsible for pheromone production are different between them. The Argentine ant, however, does not have this characteristic, due to lack of genetic diversity, and has become a global pest because of it.
  294.  
  295. Parasitic ant species enter the colonies of host ants and establish themselves as social parasites; species such as Strumigenys xenos are entirely parasitic and do not have workers, but instead, rely on the food gathered by their Strumigenys perplexa hosts.[128][129] This form of parasitism is seen across many ant genera, but the parasitic ant is usually a species that is closely related to its host. A variety of methods are employed to enter the nest of the host ant. A parasitic queen may enter the host nest before the first brood has hatched, establishing herself prior to development of a colony scent. Other species use pheromones to confuse the host ants or to trick them into carrying the parasitic queen into the nest. Some simply fight their way into the nest.[130]
  296.  
  297. A conflict between the sexes of a species is seen in some species of ants with these reproducers apparently competing to produce offspring that are as closely related to them as possible. The most extreme form involves the production of clonal offspring. An extreme of sexual conflict is seen in Wasmannia auropunctata, where the queens produce diploid daughters by thelytokous parthenogenesis and males produce clones by a process whereby a diploid egg loses its maternal contribution to produce haploid males who are clones of the father.[131]
  298.  
  299. Relationships with other organisms
  300.  
  301. The spider Myrmarachne plataleoides (female shown) mimics weaver ants to avoid predators.
  302. Ants form symbiotic associations with a range of species, including other ant species, other insects, plants, and fungi. They also are preyed on by many animals and even certain fungi. Some arthropod species spend part of their lives within ant nests, either preying on ants, their larvae, and eggs, consuming the food stores of the ants, or avoiding predators. These inquilines may bear a close resemblance to ants. The nature of this ant mimicry (myrmecomorphy) varies, with some cases involving Batesian mimicry, where the mimic reduces the risk of predation. Others show Wasmannian mimicry, a form of mimicry seen only in inquilines.[132][133]
  303.  
  304.  
  305. An ant collects honeydew from an aphid
  306. Aphids and other hemipteran insects secrete a sweet liquid called honeydew, when they feed on plant sap. The sugars in honeydew are a high-energy food source, which many ant species collect.[134] In some cases, the aphids secrete the honeydew in response to ants tapping them with their antennae. The ants in turn keep predators away from the aphids and will move them from one feeding location to another. When migrating to a new area, many colonies will take the aphids with them, to ensure a continued supply of honeydew. Ants also tend mealybugs to harvest their honeydew. Mealybugs may become a serious pest of pineapples if ants are present to protect mealybugs from their natural enemies.[135]
  307.  
  308. Myrmecophilous (ant-loving) caterpillars of the butterfly family Lycaenidae (e.g., blues, coppers, or hairstreaks) are herded by the ants, led to feeding areas in the daytime, and brought inside the ants' nest at night. The caterpillars have a gland which secretes honeydew when the ants massage them. Some caterpillars produce vibrations and sounds that are perceived by the ants.[136] Other caterpillars have evolved from ant-loving to ant-eating: these myrmecophagous caterpillars secrete a pheromone that makes the ants act as if the caterpillar is one of their own larvae. The caterpillar is then taken into the ant nest where it feeds on the ant larvae.[137] Fungus-growing ants that make up the tribe Attini, including leafcutter ants, cultivate certain species of fungus in the Leucoagaricus or Leucocoprinus genera of the Agaricaceae family. In this ant-fungus mutualism, both species depend on each other for survival. The ant Allomerus decemarticulatus has evolved a three-way association with the host plant, Hirtella physophora (Chrysobalanaceae), and a sticky fungus which is used to trap their insect prey.[138]
  309.  
  310.  
  311. Ants may obtain nectar from flowers such as the dandelion but are only rarely known to pollinate flowers.
  312. Lemon ants make devil's gardens by killing surrounding plants with their stings and leaving a pure patch of lemon ant trees, (Duroia hirsuta). This modification of the forest provides the ants with more nesting sites inside the stems of the Duroia trees.[139] Although some ants obtain nectar from flowers, pollination by ants is somewhat rare.[140] Some plants have special nectar exuding structures, extrafloral nectaries, that provide food for ants, which in turn protect the plant from more damaging herbivorous insects.[141] Species such as the bullhorn acacia (Acacia cornigera) in Central America have hollow thorns that house colonies of stinging ants (Pseudomyrmex ferruginea) who defend the tree against insects, browsing mammals, and epiphytic vines. Isotopic labelling studies suggest that plants also obtain nitrogen from the ants.[142] In return, the ants obtain food from protein- and lipid-rich Beltian bodies. Another example of this type of ectosymbiosis comes from the Macaranga tree, which has stems adapted to house colonies of Crematogaster ants.
  313.  
  314. Many tropical tree species have seeds that are dispersed by ants.[143] Seed dispersal by ants or myrmecochory is widespread and new estimates suggest that nearly 9% of all plant species may have such ant associations.[144][145] Some plants in fire-prone grassland systems are particularly dependent on ants for their survival and dispersal as the seeds are transported to safety below the ground. Many ant-dispersed seeds have special external structures, elaiosomes, that are sought after by ants as food.[146]
  315.  
  316. A convergence, possibly a form of mimicry, is seen in the eggs of stick insects. They have an edible elaiosome-like structure and are taken into the ant nest where the young hatch.[147]
  317.  
  318.  
  319. A meat ant tending a common leafhopper nymph
  320. Most ants are predatory and some prey on and obtain food from other social insects including other ants. Some species specialise in preying on termites (Megaponera and Termitopone) while a few Cerapachyinae prey on other ants.[106] Some termites, including Nasutitermes corniger, form associations with certain ant species to keep away predatory ant species.[148] The tropical wasp Mischocyttarus drewseni coats the pedicel of its nest with an ant-repellent chemical.[149] It is suggested that many tropical wasps may build their nests in trees and cover them to protect themselves from ants. Other wasps such as A. multipicta defend against ants by blasting them off the nest with bursts of wing buzzing.[150] Stingless bees (Trigona and Melipona) use chemical defences against ants.[106] Certain species of ants have the power to drive certain wasps, such as Polybia occidentalis to extinction if they attack more than once and the wasps cannot keep up with rebuilding their nest.
  321.  
  322. Flies in the Old World genus Bengalia (Calliphoridae) prey on ants and are kleptoparasites, snatching prey or brood from the mandibles of adult ants.[151] Wingless and legless females of the Malaysian phorid fly (Vestigipoda myrmolarvoidea) live in the nests of ants of the genus Aenictus and are cared for by the ants.[151]
  323.  
  324. Fungi in the genera Cordyceps and Ophiocordyceps infect ants. Ants react to their infection by climbing up plants and sinking their mandibles into plant tissue. The fungus kills the ants, grows on their remains, and produces a fruiting body. It appears that the fungus alters the behaviour of the ant to help disperse its spores [152] in a microhabitat that best suits the fungus.[153] Strepsipteran parasites also manipulate their ant host to climb grass stems, to help the parasite find mates.[154]
  325.  
  326. A nematode (Myrmeconema neotropicum) that infects canopy ants (Cephalotes atratus) causes the black-coloured gasters of workers to turn red. The parasite also alters the behaviour of the ant, causing them to carry their gasters high. The conspicuous red gasters are mistaken by birds for ripe fruits, such as Hyeronima alchorneoides, and eaten. The droppings of the bird are collected by other ants and fed to their young, leading to further spread of the nematode.[155]
  327.  
  328.  
  329. Spiders sometimes feed on ants
  330. South American poison dart frogs in the genus Dendrobates feed mainly on ants, and the toxins in their skin may come from the ants.[156]
  331.  
  332. Army ants forage in a wide roving column, attacking any animals in that path that are unable to escape. In Central and South America, Eciton burchellii is the swarming ant most commonly attended by "ant-following" birds such as antbirds and woodcreepers.[157][158] This behaviour was once considered mutualistic, but later studies found the birds to be parasitic. Direct kleptoparasitism (birds stealing food from the ants' grasp) is rare and has been noted in Inca doves which pick seeds at nest entrances as they are being transported by species of Pogonomyrmex.[159] Birds that follow ants eat many prey insects and thus decrease the foraging success of ants.[160] Birds indulge in a peculiar behaviour called anting that, as yet, is not fully understood. Here birds rest on ant nests, or pick and drop ants onto their wings and feathers; this may be a means to remove ectoparasites from the birds.
  333.  
  334. Anteaters, aardvarks, pangolins, echidnas and numbats have special adaptations for living on a diet of ants. These adaptations include long, sticky tongues to capture ants and strong claws to break into ant nests. Brown bears (Ursus arctos) have been found to feed on ants. About 12%, 16%, and 4% of their faecal volume in spring, summer, and autumn, respectively, is composed of ants.[161]
  335.  
  336. Relationship with humans
  337.  
  338. Weaver ants are used as a biological control for citrus cultivation in southern China
  339. Ants perform many ecological roles that are beneficial to humans, including the suppression of pest populations and aeration of the soil. The use of weaver ants in citrus cultivation in southern China is considered one of the oldest known applications of biological control.[11] On the other hand, ants may become nuisances when they invade buildings, or cause economic losses.
  340.  
  341. In some parts of the world (mainly Africa and South America), large ants, especially army ants, are used as surgical sutures. The wound is pressed together and ants are applied along it. The ant seizes the edges of the wound in its mandibles and locks in place. The body is then cut off and the head and mandibles remain in place to close the wound.[162][163][164] The large heads of the soldiers of the leafcutting ant Atta cephalotes are also used by native surgeons in closing wounds.[165]
  342.  
  343. Some ants have toxic venom and are of medical importance. The species include Paraponera clavata (tocandira) and Dinoponera spp. (false tocandiras) of South America [166] and the Myrmecia ants of Australia.[167]
  344.  
  345. In South Africa, ants are used to help harvest rooibos (Aspalathus linearis), which are small seeds used to make a herbal tea. The plant disperses its seeds widely, making manual collection difficult. Black ants collect and store these and other seeds in their nest, where humans can gather them en masse. Up to half a pound (200 g) of seeds may be collected from one ant-heap.[168][169]
  346.  
  347. Although most ants survive attempts by humans to eradicate them, a few are highly endangered. These tend to be island species that have evolved specialized traits and risk being displaced by introduced ant species. Examples include the critically endangered Sri Lankan relict ant (Aneuretus simoni) and Adetomyrma venatrix of Madagascar.[170]
  348.  
  349. It has been estimated by E.O. Wilson that the total number of individual ants alive in the world at any one time is between one and ten quadrillion (short scale) (i.e. between 1015 and 1016). According to this estimate, the total biomass of all the ants in the world is approximately equal to the total biomass of the entire human race.[171] Also, according to this estimate, there are approximately 1 million ants for every human on Earth.[172]
  350.  
  351. As food
  352. See also: Entomophagy
  353.  
  354. Roasted ants in Colombia
  355.  
  356. Ant larvae for sale in Isaan, Thailand
  357. Ants and their larvae are eaten in different parts of the world. The eggs of two species of ants are used in Mexican escamoles. They are considered a form of insect caviar and can sell for as much as US$40 per pound ($90/kg) because they are seasonal and hard to find. In the Colombian department of Santander, hormigas culonas (roughly interpreted as "large-bottomed ants") Atta laevigata are toasted alive and eaten.[173]
  358.  
  359. In areas of India, and throughout Burma and Thailand, a paste of the green weaver ant (Oecophylla smaragdina) is served as a condiment with curry.[174] Weaver ant eggs and larvae, as well as the ants, may be used in a Thai salad, yam (Thai: ยำ), in a dish called yam khai mot daeng (Thai: ยำไข่มดแดง) or red ant egg salad, a dish that comes from the Issan or north-eastern region of Thailand. Saville-Kent, in the Naturalist in Australia wrote "Beauty, in the case of the green ant, is more than skin-deep. Their attractive, almost sweetmeat-like translucency possibly invited the first essays at their consumption by the human species". Mashed up in water, after the manner of lemon squash, "these ants form a pleasant acid drink which is held in high favor by the natives of North Queensland, and is even appreciated by many European palates".[175]
  360.  
  361. In his First Summer in the Sierra, John Muir notes that the Digger Indians of California ate the tickling, acid gasters of the large jet-black carpenter ants. The Mexican Indians eat the replete workers, or living honey-pots, of the honey ant (Myrmecocystus).[175]
  362.  
  363. As pests
  364. See also: Ants of medical importance
  365.  
  366. The tiny pharaoh ant is a major pest in hospitals and office blocks; it can make nests between sheets of paper
  367. Some ant species are considered as pests, primarily those that occur in human habitations, where their presence is often problematic. For example, the presence of ants would be undesirable in sterile places such as hospitals or kitchens. Some species or genera commonly categorized as pests include the Argentine ant, pavement ant, yellow crazy ant, banded sugar ant, Pharaoh ant, carpenter ants, odorous house ant, red imported fire ant, and European fire ant. Some ants will raid stored food, others may damage indoor structures, some can damage agricultural crops directly (or by aiding sucking pests), and some will sting or bite.[12] The adaptive nature of ant colonies make it nearly impossible to eliminate entire colonies and most pest management practices aim to control local populations and tend to be temporary solutions. Ant populations are managed by a combination of approaches that make use of chemical, biological and physical methods. Chemical methods include the use of insecticidal bait which is gathered by ants as food and brought back to the nest where the poison is inadvertently spread to other colony members through trophallaxis. Management is based on the species and techniques can vary according to the location and circumstance.[12]
  368.  
  369. In science and technology
  370.  
  371. Camponotus nearcticus workers travelling between two formicaria through connector tubing
  372. See also: Myrmecology, Biomimetics, and Ant colony optimization algorithms
  373. Observed by humans since the dawn of history, the behaviour of ants has been documented and the subject of early writings and fables passed from one century to another. Those using scientific methods, myrmecologists, study ants in the laboratory and in their natural conditions. Their complex and variable social structures have made ants ideal model organisms. Ultraviolet vision was first discovered in ants by Sir John Lubbock in 1881.[176] Studies on ants have tested hypotheses in ecology and sociobiology, and have been particularly important in examining the predictions of theories of kin selection and evolutionarily stable strategies.[177] Ant colonies may be studied by rearing or temporarily maintaining them in formicaria, specially constructed glass framed enclosures.[178] Individuals may be tracked for study by marking them with dots of colours.[179]
  374.  
  375. The successful techniques used by ant colonies have been studied in computer science and robotics to produce distributed and fault-tolerant systems for solving problems, for example Ant colony optimization and Ant robotics. This area of biomimetics has led to studies of ant locomotion, search engines that make use of "foraging trails", fault-tolerant storage, and networking algorithms.[10]
  376.  
  377. In culture
  378.  
  379. Aesop's ants: picture by Milo Winter, 1888–1956
  380. Anthropomorphised ants have often been used in fables and children's stories to represent industriousness and cooperative effort. They also are mentioned in religious texts.[180][181] In the Book of Proverbs in the Bible, ants are held up as a good example for humans for their hard work and cooperation. Aesop did the same in his fable The Ant and the Grasshopper. In the Quran, Sulayman is said to have heard and understood an ant warning other ants to return home to avoid being accidentally crushed by Sulayman and his marching army.[Quran 27:18][182] In parts of Africa, ants are considered to be the messengers of the deities. Some Native American mythology, such as the Hopi mythology, considers ants as the very first animals. Ant bites are often said to have curative properties. The sting of some species of Pseudomyrmex is claimed to give fever relief.[183] Ant bites are used in the initiation ceremonies of some Amazon Indian cultures as a test of endurance.[184][185]
  381.  
  382. Ant society has always fascinated humans and has been written about both humorously and seriously. Mark Twain wrote about ants in his 1880 book A Tramp Abroad.[186] Some modern authors have used the example of the ants to comment on the relationship between society and the individual. Examples are Robert Frost in his poem "Departmental" and T. H. White in his fantasy novel The Once and Future King. The plot in French entomologist and writer Bernard Werber's Les Fourmis science-fiction trilogy is divided between the worlds of ants and humans; ants and their behaviour is described using contemporary scientific knowledge. H.G. Wells wrote about intelligent ants destroying human settlements in Brazil and threatening human civilization in his 1905 science-fiction short story, The Empire of the Ants. In more recent times, animated cartoons and 3-D animated films featuring ants have been produced including Antz, A Bug's Life, The Ant Bully, The Ant and the Aardvark,Ferdy the Ant and Atom Ant. Renowned myrmecologist E. O. Wilson wrote a short story, "Trailhead" in 2010 for The New Yorker magazine, which describes the life and death of an ant-queen and the rise and fall of her colony, from an ants' point of view.[187]
  383.  
  384. From the late 1950s through the late 1970s, ant farms were popular educational children's toys in the United States. Later versions use transparent gel instead of soil, allowing greater visibility.[188] In the early 1990s, the video game SimAnt, which simulated an ant colony, won the 1992 Codie award for "Best Simulation Program".[189]
  385.  
  386. Ants also are quite popular inspiration for many science-fiction insectoids, such as the Formics of Ender's Game, the Bugs of Starship Troopers, the giant ants in the films Them! and Empire of the Ants, Marvel Comics' super hero Ant-Man, and ants mutated into super-intelligence in Phase IV. In computer strategy games, ant-based species often benefit from increased production rates due to their single-minded focus, such as the Klackons in the Master of Orion series of games or the ChCht in Deadlock II. These characters are often credited with a hive mind, a common misconception about ant colonies.[190]
  387.  
  388. See also
  389. Book icon
  390. Book: Ants
  391. Main article: Outline of ants
  392. Ant robotics
  393. Ant venom
  394. Glossary of ant terms
  395. International Union for the Study of Social Insects
  396. Myrmecological News (journal)
  397. Task allocation and partitioning of social insects
  398. References
  399. Jump up ^ Ward, Philip S (2007). "Phylogeny, classification, and species-level taxonomy of ants (Hymenoptera: Formicidae)" (PDF). Zootaxa. 1668: 549–563.
  400. ^ Jump up to: a b Rabeling C, Brown JM, Verhaagh M (2008). "Newly discovered sister lineage sheds light on early ant evolution". PNAS. 105 (39): 14913–7. Bibcode:2008PNAS..10514913R. doi:10.1073/pnas.0806187105. PMC 2567467free to read. PMID 18794530.
  401. Jump up ^ Brady, Seán G; Fisher, Brian L; Schultz, Ted R; Ward, Philip S (2014). "The rise of army ants and their relatives: diversification of specialized predatory doryline ants". BMC Evolutionary Biology. 14: 2–14. doi:10.1186/1471-2148-14-93. PMC 4021219free to read. PMID 24886136.
  402. Jump up ^ "Hymenoptera name server. Formicidae species count.". Ohio State University.
  403. Jump up ^ Agosti D; Johnson, N F (2003). La nueva taxonomía de hormigas. Pages 45–48 in Fernández, F. Introducción a las hormigas de la región neotropical. (PDF). Instituto Humboldt, Bogotá. Retrieved 2015-12-13.
  404. Jump up ^ Oster GF, Wilson EO (1978). Caste and ecology in the social insects. Princeton University Press, Princeton. pp. 21–22. ISBN 0-691-02361-1.
  405. Jump up ^ Flannery, Tim (2011). A Natural History of the Planet. Grove/Atlantic, Inc. p. 79. ISBN 978-0-8021-9560-9.
  406. ^ Jump up to: a b Schultz TR (2000). "In search of ant ancestors". Proceedings of the National Academy of Sciences. 97 (26): 14028–14029. Bibcode:2000PNAS...9714028S. doi:10.1073/pnas.011513798. PMC 34089free to read. PMID 11106367.
  407. Jump up ^ Hölldobler & Wilson (1990), p. 471
  408. ^ Jump up to: a b Dicke E, Byde A, Cliff D, Layzell P (2004). A. J. Ispeert, M. Murata, N. Wakamiya, eds. "An ant-inspired technique for storage area network design". Proceedings of Biologically Inspired Approaches to Advanced Information Technology: First International Workshop, BioADIT 2004 LNCS 3141: 364–379.
  409. ^ Jump up to: a b Hölldobler & Wilson (1990), pp. 619–629
  410. ^ Jump up to: a b c "Pest Notes: Ants (Publication 7411)". University of California Agriculture and Natural Resources. 2007. Retrieved 5 June 2008.
  411. Jump up ^ ""ant". Merriam-Webster Online Dictionary". Merriam-Webster. Retrieved 6 June 2008.
  412. Jump up ^ "Ant. Online Etymology Dictionary". Retrieved 30 May 2009.
  413. Jump up ^ Simpson DP (1979). Cassell's Latin Dictionary (5 ed.). London: Cassell Ltd. ISBN 0-304-52257-0.
  414. Jump up ^ "Formic". Etymonline.com. Retrieved 2012-01-30.
  415. ^ Jump up to: a b Johnson, Brian R.; Borowiec, Marek L.; Chiu, Joanna C.; Lee, Ernest K.; Atallah, Joel; Ward, Philip S. (2013). "Phylogenomics resolves evolutionary relationships among ants, bees, and wasps". Current Biology. 23 (20): 1–5. doi:10.1016/j.cub.2013.08.050. PMID 24094856.
  416. Jump up ^ Wilson EO, Carpenter FM, Brown WL (1967). "The first Mesozoic ants". Science. 157 (3792): 1038–1040. Bibcode:1967Sci...157.1038W. doi:10.1126/science.157.3792.1038. PMID 17770424.
  417. Jump up ^ Perrichot, V.; Nel, A.; Néraudeau, D.; Lacau, S.; Guyot, T. (2008). "New fossil ants in French Cretaceous amber (Hymenoptera: Formicidae)". Naturwissenschaften. 95 (2): 91–97. Bibcode:2008NW.....95...91P. doi:10.1007/s00114-007-0302-7. PMID 17828384.
  418. Jump up ^ Barden, Phillip; Grimaldi, David (2014). "A Diverse Ant Fauna from the Mid-Cretaceous of Myanmar (Hymenoptera: Formicidae)". PLoS ONE. 9 (4): e93627. doi:10.1371/journal.pone.0093627. PMC 3974876free to read. PMID 24699881.
  419. Jump up ^ Perrichot, Vincent; Lacau, Sébastien; Néraudeau, Didier; Nel, André (2007-09-19). "Fossil evidence for the early ant evolution" (PDF). Naturwissenschaften. 95 (2): 85–90. doi:10.1007/s00114-007-0301-8. ISSN 0028-1042.
  420. ^ Jump up to: a b Grimaldi D, Agosti D (2001). "A formicine in New Jersey Cretaceous amber (Hymenoptera: Formicidae) and early evolution of the ants". Proceedings of the National Academy of Sciences. 97 (25): 13678–13683. Bibcode:2000PNAS...9713678G. doi:10.1073/pnas.240452097. PMC 17635free to read. PMID 11078527.
  421. Jump up ^ Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE (2006). "Phylogeny of the ants: Diversification in the Age of Angiosperms". Science. 312 (5770): 101–104. Bibcode:2006Sci...312..101M. doi:10.1126/science.1124891. PMID 16601190.
  422. ^ Jump up to: a b Wilson EO, Hölldobler B (2005). "The rise of the ants: A phylogenetic and ecological explanation". Proceedings of the National Academy of Sciences. 102 (21): 7411–7414. Bibcode:2005PNAS..102.7411W. doi:10.1073/pnas.0502264102. PMC 1140440free to read. PMID 15899976.
  423. Jump up ^ LaPolla, John S.; Dlussky, Gennady M.; Perrichot, Vincent (2013). "Ants and the Fossil Record". Annual Review of Entomology. 58: 609–630. doi:10.1146/annurev-ento-120710-100600. PMID 23317048.
  424. Jump up ^ Barden, P.; Grimaldi, D. (2012). "Rediscovery of the bizarre Cretaceous ant Haidomyrmex Dlussky (Hymenoptera: Formicidae), with two new species" (PDF). American Museum Novitates. 3755 (3755): 1–16. doi:10.1206/3755.2.
  425. Jump up ^ Hölldobler & Wilson (1990), pp. 23–24
  426. Jump up ^ Thorne, Barbara L (1997). "Evolution of eusociality in termites" (PDF). Annu. Rev. Ecol. Syst. 28: 27–53. doi:10.1146/annurev.ecolsys.28.1.27.
  427. Jump up ^ "Order Isoptera – Termites". Iowa State University Entomology. 16 February 2004. Archived from the original on 15 June 2008. Retrieved 12 June 2008.
  428. Jump up ^ "Family Mutillidae – Velvet ants". Iowa State University Entomology. 16 February 2004. Archived from the original on 30 June 2008. Retrieved 12 June 2008.
  429. Jump up ^ Hölldobler & Wilson (1990), p. 4
  430. Jump up ^ Jones, Alice S. "Fantastic ants – Did you know?". National Geographic Magazine. Archived from the original on 30 July 2008. Retrieved 5 July 2008.
  431. Jump up ^ Thomas, Philip (2007). "Pest Ants in Hawaii". Hawaiian Ecosystems at Risk project (HEAR). Retrieved 6 July 2008.
  432. Jump up ^ Hölldobler & Wilson (1990), p. 589
  433. Jump up ^ Shattuck SO (1999). Australian ants: their biology and identification. Collingwood, Vic: CSIRO. p. 149. ISBN 0-643-06659-4.
  434. Jump up ^ Schaal, Stephan (27 January 2006). "Messel". Encyclopedia of Life Sciences. doi:10.1038/npg.els.0004143. ISBN 0-470-01617-5.
  435. Jump up ^ Agosti D; Johnson NF, eds. (2005). "Antbase". American Museum of Natural History. Archived from the original on 11 August 2008. Retrieved 6 July 2008.
  436. Jump up ^ Agosti D, Majer JD, Alonso JE, Schultz TR, eds. (2000). Ants: Standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press. Retrieved 2015-12-13.
  437. Jump up ^ Johnson NF (2007). "Hymenoptera name server". Ohio State University. Retrieved 6 July 2008.
  438. Jump up ^ Borror, Triplehorn & Delong (1989), p. 737
  439. ^ Jump up to: a b c d Borror, Triplehorn & Delong (1989), pp. 24–71
  440. Jump up ^ Fent K, Rudiger W (1985). "Ocelli: A celestial compass in the desert ant Cataglyphis". Science. 228 (4696): 192–194. Bibcode:1985Sci...228..192F. doi:10.1126/science.228.4696.192. PMID 17779641.
  441. Jump up ^ Eriksson, E. Sture (1985). "Attack behaviour and distance perception in the Australian bulldog ant Myrmecia nigriceps" (PDF). J. Exp. Biol. 119 (1): 115–131.
  442. Jump up ^ Eisner T, Happ GM (1962). "The infrabuccal pocket of a formicine ant: a social filtration device". Psyche. 69 (3): 107–116. doi:10.1155/1962/25068.
  443. Jump up ^ Wilson EO (1953). "The origin and evolution of polymorphism in ants". Quarterly Review of Biology. 28 (2): 136–56. doi:10.1086/399512. PMID 13074471.
  444. Jump up ^ Weber, NA (1946). "Dimorphism in the African Oecophylla worker and an anomaly (Hym.: Formicidae)" (PDF). Annals of the Entomological Society of America. 39: 7–10.
  445. Jump up ^ Edward O. Wilson; Robert W. Taylor (1964). "A Fossil Ant Colony: New Evidence of Social Antiquity" (PDF). Psyche. 71 (2): 93–103. doi:10.1155/1964/17612.
  446. Jump up ^ Moffett MW, Tobin JE (1991). "Physical castes in ant workers: a problem for Daceton armigerum and other ants" (PDF). Psyche. 98 (4): 283–292. doi:10.1155/1991/30265. Archived from the original (PDF) on 2008-02-27.
  447. Jump up ^ Børgesen LW (2000). "Nutritional function of replete workers in the pharaoh's ant, Monomorium pharaonis (L.)". Insectes Sociaux. 47 (2): 141–146. doi:10.1007/PL00001692.
  448. Jump up ^ Rissing, Steven W (1984). "Replete Caste Production and Allometry of Workers in the Honey Ant, Myrmecocystus mexicanus Wesmael (Hymenoptera: Formicidae)". Journal of the Kansas Entomological Society. 57 (2): 347–350.
  449. Jump up ^ Hughes WO, Sumner S, Van Borm S, Boomsma JJ (2003). "Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants". Proceedings of the National Academy of Sciences of the United States of America. 100 (16): 9394–9397. Bibcode:2003PNAS..100.9394H. doi:10.1073/pnas.1633701100. PMC 170929free to read. PMID 12878720.
  450. Jump up ^ Rossa KG, Kriegera MJ, Shoemaker DD (2003). "Alternative genetic foundations for a key social polymorphism in fire ants". Genetics. 165 (4): 1853–1867. PMC 1462884free to read. PMID 14704171.
  451. Jump up ^ Crosland MW, Crozier RH (1986). "Myrmecia pilosula, an ant with only one pair of chromosomes". Science. 231 (4743): 1278. Bibcode:1986Sci...231.1278C. doi:10.1126/science.231.4743.1278. PMID 17839565.
  452. Jump up ^ Tsutsui ND, Suarez AV, Spagna JC, Johnston JS (2008). "The evolution of genome size in ants". BMC Evolutionary Biology. 8 (64): 64. doi:10.1186/1471-2148-8-64. PMC 2268675free to read. PMID 18302783. Archived from the original on 27 June 2008. Retrieved 2008-06-25.
  453. Jump up ^ Gillott, Cedric (1995). Entomology. Springer. p. 325. ISBN 0-306-44967-6.
  454. Jump up ^ Anderson, Kirk E.; Linksvayer, Timothy A.; Smith, Chris R. (2008). "The causes and consequences of genetic caste determination in ants (Hymenoptera: Formicidae)" (PDF). Myrmecol. News. 11: 119–132.
  455. Jump up ^ Hölldobler & Wilson (1990), pp. 351, 372
  456. Jump up ^ Traniello JFA (1989). "Foraging strategies of ants". Annual Review of Entomology. 34: 191–210. doi:10.1146/annurev.en.34.010189.001203.
  457. Jump up ^ Sorensen A, Busch TM, Vinson SB (1984). "Behavioral flexibility of temporal sub-castes in the fire ant, Solenopsis invicta, in response to food". Psyche. 91 (3–4): 319–332. doi:10.1155/1984/39236.
  458. Jump up ^ Keller L (1998). "Queen lifespan and colony characteristics in ants and termites". Insectes Sociaux. 45 (3): 235–246. doi:10.1007/s000400050084.
  459. ^ Jump up to: a b Franks NR, Resh VH, Cardé RT, eds. (2003). Encyclopedia of Insects. San Diego: Academic Press. pp. 29–32. ISBN 0-12-586990-8.
  460. Jump up ^ Kipyatkov VE (2001). "Seasonal life cycles and the forms of dormancy in ants (Hymenoptera, Formicoidea)". Acta Societatis Zoologicae Bohemicae. 65 (2): 198–217.
  461. Jump up ^ Heinze, Jurgen; Tsuji, Kazuki (1995). "Ant reproductive strategies" (PDF). Res. Popul. Ecol. 37 (2): 135–149. doi:10.1007/BF02515814.
  462. Jump up ^ Mikheyev, A. S. (2003). "Evidence for mating plugs in the fire ant Solenopsis invicta". Insectes Sociaux. 50 (4): 401–402. doi:10.1007/s00040-003-0697-x.
  463. Jump up ^ Peeters C, Holldobler B (1995). "Reproductive cooperation between queens and their mated workers: the complex life history of an ant with a valuable nest" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 92 (24): 10977–10979. Bibcode:1995PNAS...9210977P. doi:10.1073/pnas.92.24.10977. PMC 40553free to read. PMID 11607589.
  464. Jump up ^ Franks, N. R.; Hölldobler, B. (1987). "Sexual competition during colony reproduction in army ants". Biological Journal of the Linnean Society. 30 (3): 229–243. doi:10.1111/j.1095-8312.1987.tb00298.x.
  465. Jump up ^ Yamauchi, K.; Kawase, N. (1992). "Pheromonal manipulation of workers by a fighting male to kill his rival males in the ant Cardiocondyla wroughtonii". Naturwissenschaften. 79 (6): 274–276. Bibcode:1992NW.....79..274Y. doi:10.1007/BF01175395.
  466. Jump up ^ Taylor RW (2007). "Bloody funny wasps! Speculations on the evolution of eusociality in ants". In Snelling RR, Fisher BL, Ward PS. Advances in ant systematics (Hymenoptera: Formicidae): homage to E. O. Wilson – 50 years of contributions. Memoirs of the American Entomological Institute, 80 (PDF). American Entomological Institute. pp. 580–609. Retrieved 2015-12-13.
  467. Jump up ^ Wilson, E.O. (1957). "The organization of a nuptial flight of the ant Pheidole sitarches Wheeler" (PDF). Psyche. 64: 46–50. doi:10.1155/1957/68319.
  468. ^ Jump up to: a b c Hölldobler & Wilson (1990), pp. 143–179
  469. Jump up ^ Jackson DE, Ratnieks FL (August 2006). "Communication in ants". Curr. Biol. 16 (15): R570–R574. doi:10.1016/j.cub.2006.07.015. PMID 16890508.
  470. Jump up ^ Goss, S.; Aron, S.; Deneubourg, J.L.; Pasteels, J.M. (1989). "Self-organized shortcuts in the Argentine ant" (PDF). Naturwissenschaften. 76 (12): 579–581. Bibcode:1989NW.....76..579G. doi:10.1007/BF00462870.
  471. Jump up ^ D'Ettorre P, Heinze J (2001). "Sociobiology of slave-making ants". Acta Ethologica. 3 (2): 67–82. doi:10.1007/s102110100038.
  472. Jump up ^ Detrain C, Deneubourg JL, Pasteels JM (1999). Information processing in social insects. Birkhäuser. pp. 224–227. ISBN 3-7643-5792-4.
  473. Jump up ^ Greene MJ, Gordon DM (2007). "Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linephithema humile and Aphaenogaster cockerelli". Journal of Experimental Biology. 210 (Pt 5): 897–905. doi:10.1242/jeb.02706. PMID 17297148.
  474. Jump up ^ Hölldobler & Wilson (1990), p. 354
  475. Jump up ^ Hickling R, Brown RL (2000). "Analysis of acoustic communication by ants". Journal of the Acoustical Society of America. 108 (4): 1920–1929. Bibcode:2000ASAJ..108.1920H. doi:10.1121/1.1290515. PMID 11051518.
  476. Jump up ^ Roces F; Hölldobler B (1996). "Use of stridulation in foraging leaf-cutting ants: Mechanical support during cutting or short-range recruitment signal?". Behavioral Ecology and Sociobiology. 39 (5): 293–299. doi:10.1007/s002650050292.
  477. Jump up ^ Clarke PS (1986). "The natural history of sensitivity to jack jumper ants (Hymenoptera: Formicidae: Myrmecia pilosula) in Tasmania". Medical Journal of Australia. 145 (11–12): 564–566. PMID 3796365.
  478. Jump up ^ Brown SG, Heddle RJ, Wiese MD, Blackman KE (2005). "Efficacy of ant venom immunotherapy and whole body extracts". The Journal of Allergy and Clinical Immunology. 116 (2): 464–465. doi:10.1016/j.jaci.2005.04.025. PMID 16083810.
  479. Jump up ^ Obin MS, Vander Meer RK (1985). "Gaster flagging by fire ants (Solenopsis spp.): Functional significance of venom dispersal behavior". Journal of Chemical Ecology. 11 (12): 1757–1768. doi:10.1007/BF01012125.
  480. Jump up ^ Stafford CT (1996). "Hypersensitivity to fire ant venom". Annals of Allergy, Asthma & Immunology. 77 (2): 87–99. doi:10.1016/S1081-1206(10)63493-X. PMID 8760773.
  481. ^ Jump up to: a b c Patek SN, Baio JE, Fisher BL, Suarez AV (22 August 2006). "Multifunctionality and mechanical origins: Ballistic jaw propulsion in trap-jaw ants". Proceedings of the National Academy of Sciences. 103 (34): 12787–12792. Bibcode:2006PNAS..10312787P. doi:10.1073/pnas.0604290103. PMC 1568925free to read. PMID 16924120.
  482. Jump up ^ Gronenberg W (1996). "The trap-jaw mechanism in the Dacetine ant Daceton armigerum and Strumigenys sp" (PDF). The Journal of Experimental Biology. 199 (9): 2021–2033.
  483. Jump up ^ Jones, T.H.; Clark, D.A.; Edwards, A.A.; Davidson, D.W.; Spande, T.F.; Snelling, Roy R. (2004). "The Chemistry of Exploding Ants, Camponotus spp. (Cylindricus complex)". Journal of Chemical Ecology. 30 (8): 1479–1492. doi:10.1023/B:JOEC.0000042063.01424.28. PMID 15537154.
  484. Jump up ^ Tofilski,Adam; Couvillon, MJ; Evison, SEF; Helantera, H; Robinson, EJH; Ratnieks, FLW (2008). "Preemptive Defensive Self-Sacrifice by Ant Workers" (PDF). The American Naturalist. 172 (5): E239–E243. doi:10.1086/591688. PMID 18928332.
  485. Jump up ^ Julian GE, Cahan S (1999). "Undertaking specialization in the desert leaf-cutter ant Acromyrmex versicolor". Animal Behaviour. 58 (2): 437–442. doi:10.1006/anbe.1999.1184. PMID 10458895.
  486. Jump up ^ López-Riquelme GO, Malo EA, Cruz-López L, Fanjul-Moles ML (2006). "Antennal olfactory sensitivity in response to task-related odours of three castes of the ant Atta mexicana (hymenoptera: formicidae)". Physiological Entomology. 31 (4): 353–360. doi:10.1111/j.1365-3032.2006.00526.x.
  487. Jump up ^ Choe, Dong-Hwan; Millar JG; Rust MK (2009). "Chemical signals associated with life inhibit necrophoresis in Argentine ants". Proceedings of the National Academy of Sciences of the United States of America. 106 (20): 8251–8255. Bibcode:2009PNAS..106.8251C. doi:10.1073/pnas.0901270106. PMC 2688878free to read. PMID 19416815.
  488. Jump up ^ Tschinkel WR (2004). "The nest architecture of the Florida harvester ant, Pogonomyrmex badius". Journal of Insect Science. 4 (21): 1–19. PMC 528881free to read. PMID 15861237.
  489. Jump up ^ Peeters C; Hölldobler B; Moffett M; Musthak Ali TM (1994). ""Wall-papering" and elaborate nest architecture in the ponerine ant Harpegnathos saltator". Insectes Sociaux. 41 (2): 211–218. doi:10.1007/BF01240479.
  490. Jump up ^ Maschwitz U, Moog J (2000). "Communal peeing: a new mode of flood control in ants". Naturwissenschaften. 87 (12): 563–565. Bibcode:2000NW.....87..563M. doi:10.1007/s001140050780. PMID 11198200.
  491. Jump up ^ Nielsen MG, Christian KA (2007). "The mangrove ant, Camponotus anderseni switches to anaerobic respiration in response to elevated CO2 levels". Journal of Insect Physiology. 53 (5): 505–508. doi:10.1016/j.jinsphys.2007.02.002. PMID 17382956.
  492. Jump up ^ Franks NR, Richardson T (2006). "Teaching in tandem-running ants". Nature. 439 (7073): 153. Bibcode:2006Natur.439..153F. doi:10.1038/439153a. PMID 16407943.
  493. Jump up ^ Ravary F, Lecoutey E, Kaminski G, Châline N, Jaisson P (2007). "Individual experience alone can generate lasting division of labor in ants". Current Biology. 17 (15): 1308–1312. doi:10.1016/j.cub.2007.06.047. PMID 17629482.
  494. Jump up ^ Franks NR, Hooper J, Webb C, Dornhaus A (2005). "Tomb evaders: house-hunting hygiene in ants". Biology Letters. 1 (2): 190–192. doi:10.1098/rsbl.2005.0302. PMC 1626204free to read. PMID 17148163.
  495. Jump up ^ Hölldobler & Wilson (1990), p. 573
  496. Jump up ^ Robson SK, Kohout RJ (2005). "Evolution of nest-weaving behaviour in arboreal nesting ants of the genus Polyrhachis Fr. Smith (Hymenoptera: Formicidae)". Australian Journal of Entomology. 44 (2): 164–169. doi:10.1111/j.1440-6055.2005.00462.x.
  497. Jump up ^ Frouz, J. (2000). "The Effect of Nest Moisture on Daily Temperature Regime in the Nests of Formica polyctena Wood Ants.". Insectes Sociaux. 47: 229–235. doi:10.1007/PL00001708.
  498. Jump up ^ Carpintero, Soledad; Reyes-López, Joaquı́n; de Reynac, Luis Arias (2004). "Impact of human dwellings on the distribution of the exotic Argentine ant: a case study in the Doñana National Park, Spain". Biological Conservation. 115 (2): 279–289. doi:10.1016/S0006-3207(03)00147-2.
  499. Jump up ^ Friedrich, Russell; Philpott, Stacy M. (2009). "Nest-site Limitation and Nesting Resources of Ants (Hymenoptera: Formicidae) in Urban Green Spaces". Environmental Entomology. 38 (3): 600–607. doi:10.1603/022.038.0311.
  500. Jump up ^ Anderson, K.E.; Russell, J.A.; Moreau, C.S.; Kautz, S.; Sullam, K.E.; Hu, Y.; Basinger, U.; Mott, B.M.; Buck, N.; Wheeler, D.E. (2012). "Highly similar microbial communities are shared among related and trophically similar ant species". Molecular Ecology. 21: 2282–2296. doi:10.1111/j.1365-294x.2011.05464.x.
  501. Jump up ^ Feldhaar, H.; Straka, J.; Krischke, M.; Berthold, K.; Stoll, S.; Mueller, M.J.; Gross, R. (2007). "Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia". BMC Biology. 5: 48. doi:10.1186/1741-7007-5-48. PMC 2206011free to read. PMID 17971224.
  502. Jump up ^ Russell, J.A.; Moreau, C.S.; Goldman-Huertas, B.; Fujiwara, M.; Lohman, D.J.; Pierce, N.E. (2009). "Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants". PNAS. 106: 21236–21241. Bibcode:2009PNAS..10621236R. doi:10.1073/pnas.0907926106.
  503. Jump up ^ Schultz TR (1999). "Ants, plants and antibiotics" (PDF). Nature. 398 (6730): 747–748. Bibcode:1999Natur.398..747S. doi:10.1038/19619.
  504. ^ Jump up to: a b c Carrol CR, Janzen DH (1973). "Ecology of foraging by ants". Annual Review of Ecology and Systematics. 4: 231–257. doi:10.1146/annurev.es.04.110173.001311.
  505. Jump up ^ Wittlinger M, Wehner R, Wolf H (2006). "The Ant Odometer: Stepping on Stilts and Stumps" (PDF). Science. 312 (5782): 1965–7. Bibcode:2006Sci...312.1965W. doi:10.1126/science.1126912. PMID 16809544.
  506. Jump up ^ Ronacher B, Werner R (1995). "Desert ants Cataglyphis fortis use self-induced optic flow to measure distances travelled" (PDF). Journal of Comparative Physiology A. 177. doi:10.1007/BF00243395.
  507. Jump up ^ Werner R (2003). "Desert ant navigation: how miniature brains solve complex tasks" (PDF). Journal of Comparative Physiology. 189 (8): 579–588. doi:10.1007/s00359-003-0431-1. PMID 12879352.
  508. Jump up ^ Sommer S, Wehner R (2004). "The ant's estimation of distance travelled: experiments with desert ants, Cataglyphis fortis". Journal of Comparative Physiology. 190 (1): 1–6. doi:10.1007/s00359-003-0465-4. PMID 14614570.
  509. Jump up ^ Åkesson S, Wehner R (2002). "Visual navigation in desert ants Cataglyphis fortis: are snapshots coupled to a celestial system of reference?" (PDF). Journal of Experimental Biology. 205 (14): 1971–1978.
  510. Jump up ^ Steck K, Hansson B, Knaden M (2009). "Smells like home: Desert ants, Cataglyphis fortis, use olfactory landmarks to pinpoint the nest" (PDF). Frontiers in Zoology. 6: 5. doi:10.1186/1742-9994-6-5. PMC 2651142free to read. PMID 19250516.
  511. Jump up ^ Seidl T, Wehner R (2006). "Visual and tactile learning of ground structures in desert ants" (PDF). Journal of Experimental Biology. 209 (Pt 17): 3336–44. doi:10.1242/jeb.02364. PMID 16916970.
  512. Jump up ^ Banks AN, Srygley RB (2003). "Orientation by magnetic field in leaf-cutter ants, Atta colombica (Hymenoptera: Formicidae)". Ethology. 109 (10): 835–846. doi:10.1046/j.0179-1613.2003.00927.x.
  513. Jump up ^ Fukushi T (15 June 2001). "Homing in wood ants, Formica japonica: use of the skyline panorama". Journal of Experimental Biology. 204 (12): 2063–2072. PMID 11441048.
  514. Jump up ^ Wehner R, Menzel R (1969). "Homing in the ant Cataglyphis bicolor". Science. 164 (3876): 192–194. Bibcode:1969Sci...164..192W. doi:10.1126/science.164.3876.192. PMID 5774195.
  515. Jump up ^ Chapman, Reginald Frederick (1998). The Insects: Structure and Function (4 ed.). Cambridge University Press. p. 600. ISBN 0-521-57890-6.
  516. Jump up ^ Delsuc F (2003). "Army Ants Trapped by Their Evolutionary History". PLoS Biol. 1 (2): E37. doi:10.1371/journal.pbio.0000037. PMC 261877free to read. PMID 14624241.
  517. Jump up ^ Baroni-Urbani C, Boyan GS, Blarer A, Billen J, Musthak Ali TM (1994). "A novel mechanism for jumping in the Indian ant Harpegnathos saltator (Jerdon) (Formicidae, Ponerinae)". Experientia. 50: 63–71. doi:10.1007/BF01992052.
  518. Jump up ^ Yanoviak SP, Dudley R, Kaspari M (2005). "Directed aerial descent in canopy ants" (PDF). Nature. 433 (7026): 624–626. Bibcode:2005Natur.433..624Y. doi:10.1038/nature03254. PMID 15703745.
  519. Jump up ^ Mlot, N.J., Tovey, C.A. and Hu, D.L. (2011). "Fire ants self-assemble into waterproof rafts to survive floods". Proceedings of the National Academy of Sciences. 108 (19): 7669–7673. doi:10.1073/pnas.1016658108.
  520. Jump up ^ Morrison LW (1998). "A review of Bahamian ant (Hymenoptera: Formicidae) biogeography". Journal of Biogeography. 25 (3): 561–571. doi:10.1046/j.1365-2699.1998.2530561.x.
  521. Jump up ^ Clay RE, Andersen AN (1996). "Ant fauna of a mangrove community in the Australian seasonal tropics, with particular reference to zonation". Australian Journal of Zoology. 44 (5): 521–533. doi:10.1071/ZO9960521.
  522. Jump up ^ Crosland MWJ; Crozier RH; Jefferson E (1988). "Aspects of the biology of the primitive ant genus Myrmecia F. (Hymenoptera: Formicidae)". Australian Journal of Entomology. 27 (4): 305–309. doi:10.1111/j.1440-6055.1988.tb01179.x.
  523. Jump up ^ Diehl E; Junqueira LK; Berti-Filho E (2005). "Ant and termite mound coinhabitants in the wetlands of Santo Antonio da Patrulha, Rio Grande do Sul, Brazil". Brazilian Journal of Biology. 65 (3): 431–437. doi:10.1590/S1519-69842005000300008.
  524. Jump up ^ Achenbach, A; Foitzik, Susanne (2009). "First evidence for slave rebellion: enslaved ant workers systematically kill the brood of their social parasite Protomognathus americanus". Evolution. 63 (4): 1068–1075. doi:10.1111/j.1558-5646.2009.00591.x. PMID 19243573. See also New Scientist, April 9, 2009
  525. Jump up ^ Henderson G, Andersen JF, Phillips JK, Jeanne RL (2005). "Internest aggression and identification of possible nestmate discrimination pheromones in polygynous ant Formica montana". Journal of Chemical Ecology. 16 (7): 2217–2228. doi:10.1007/BF01026932.
  526. Jump up ^ Ward PS (1996). "A new workerless social parasite in the ant genus Pseudomyrmex (Hymenoptera: Formicidae), with a discussion of the origin of social parasitism in ants". Systematic Entomology. 21 (3): 253–263. doi:10.1046/j.1365-3113.1996.d01-12.x.
  527. Jump up ^ Taylor RW (1968). "The Australian workerless inquiline ant, Strumigenys xenos Brown (Hymenoptera-Formicidae) recorded from New Zealand". New Zealand Entomologist. 4 (1): 47–49. doi:10.1080/00779962.1968.9722888.
  528. Jump up ^ Hölldobler & Wilson (1990), pp. 436—448
  529. Jump up ^ Fournier, D; Estoup A, Orivel J; Foucaud J, Jourdan H; Le Breton J, Keller L (2005). "Clonal reproduction by males and females in the little fire ant". Nature. 435 (7046): 1230–1234. Bibcode:2005Natur.435.1230F. doi:10.1038/nature03705. PMID 15988525.
  530. Jump up ^ Reiskind J (1977). "Ant-mimicry in Panamanian clubionid and salticid spiders (Araneae: Clubionidae, Salticidae)". Biotropica. 9 (1): 1–8. doi:10.2307/2387854. JSTOR 2387854.
  531. Jump up ^ Cushing PE (1997). "Myrmecomorphy and myrmecophily in spiders: A Review" (PDF). The Florida Entomologist. 80 (2): 165–193. doi:10.2307/3495552. JSTOR 3495552.
  532. Jump up ^ Styrsky JD, Eubanks MD (January 2007). "Ecological consequences of interactions between ants and honeydew-producing insects". Proc. Biol. Sci. 274 (1607): 151–164. doi:10.1098/rspb.2006.3701. PMC 1685857free to read. PMID 17148245.
  533. Jump up ^ Jahn GC, Beardsley JW (1996). "Effects of Pheidole megacephala (Hymenoptera: Formicidae) on survival and dispersal of Dysmicoccus neobrevipes (Homoptera: Pseudococcidae)". Journal of Economic Entomology. 89: 1124–1129.
  534. Jump up ^ DeVries PJ (1992). "Singing caterpillars, ants and symbiosis". Scientific American. 267 (4): 76–82. doi:10.1038/scientificamerican1092-76.
  535. Jump up ^ Pierce NE, Braby MF, Heath A (2002). "The ecology and evolution of ant association in the Lycaenidae (Lepidoptera)". Annual Review of Entomology. 47: 733–771. doi:10.1146/annurev.ento.47.091201.145257. PMID 11729090.
  536. Jump up ^ Dejean A, Solano PJ, Ayroles J, Corbara B, Orivel J (2005). "Arboreal ants build traps to capture prey". Nature. 434 (7036): 973. Bibcode:2005Natur.434..973D. doi:10.1038/434973a. PMID 15846335.
  537. Jump up ^ Frederickson ME, Gordon DM (2007). "The devil to pay: a cost of mutualism with Myrmelachista schumanni ants in 'devil's gardens' is increased herbivory on Duroia hirsuta trees". Proceedings of the Royal Society B. 274 (1613): 1117–1123. doi:10.1098/rspb.2006.0415. PMC 2124481free to read. PMID 17301016.
  538. Jump up ^ Beattie, Andrew J.; Turnbull, Christine; Knox, R. B.; Williams, E. G. (1984). "Ant Inhibition of Pollen Function: A Possible Reason Why Ant Pollination is Rare". American Journal of Botany. 71 (3): 421–426. doi:10.2307/2443499.
  539. Jump up ^ Katayama N, Suzuki N (2004). "Role of extrafloral nectaries of Vicia faba in attraction of ants and herbivore exclusion by ants". Entomological Science. 7 (2): 119–124. doi:10.1111/j.1479-8298.2004.00057.x.
  540. Jump up ^ Fischer RC, Wanek W, Richter A, Mayer V (2003). "Do ants feed plants? A 15N labelling study of nitrogen fluxes from ants to plants in the mutualism of Pheidole and Piper". Journal of Ecology. 91: 126–134. doi:10.1046/j.1365-2745.2003.00747.x.
  541. Jump up ^ Hanzawa FM, Beattie AJ, Culver DC (1988). "Directed dispersal: demographic analysis of an ant-seed mutualism". American Naturalist. 131 (1): 1–13. doi:10.1086/284769.
  542. Jump up ^ Giladi I (2006). "Choosing benefits or partners: a review of the evidence for the evolution of myrmecochory". Oikos. 112 (3): 481–492. doi:10.1111/j.0030-1299.2006.14258.x.
  543. Jump up ^ Lengyel, Szabolcs; Aaron D. Gove; Andrew M. Latimer; Jonathan D. Majer; Robert R. Dunn (2010). "Convergent evolution of seed dispersal by ants, and phylogeny and biogeography in flowering plants: A global survey". Perspectives in Plant Ecology, Evolution and Systematics. 12: 43–55. doi:10.1016/j.ppees.2009.08.001.
  544. Jump up ^ Fischer RC, Ölzant SM, Wanek W, Mayer V (2005). "The fate of Corydalis cava elaiosomes within an ant colony of Myrmica rubra: elaiosomes are preferentially fed to larvae". Insectes Sociaux. 52 (1): 55–62. doi:10.1007/s00040-004-0773-x.
  545. Jump up ^ Hughes L, Westoby M (1 January 1992). "Capitula on stick insect eggs and elaiosomes on seeds: convergent adaptations for burial by ants". Functional Ecology. 6 (6): 642–648. doi:10.2307/2389958. ISSN 0269-8463. JSTOR 2389958.
  546. Jump up ^ Quinet Y, Tekule N, de Biseau JC (2005). "Behavioural Interactions Between Crematogaster brevispinosa rochai Forel (Hymenoptera: Formicidae) and Two Nasutitermes Species (Isoptera: Termitidae)". Journal of Insect Behavior. 18 (1): 1–17. doi:10.1007/s10905-005-9343-y.
  547. Jump up ^ Jeanne, RL (1972). "Social biology of the neotropical wasp Mischocyttarus drewseni". Bull. Mus. Comp. Zool. 144: 63–150.
  548. Jump up ^ Jeanne, Robert (July 1995). "Foraging in Social Wasps: Agelaia lacks recruitment to food (Hymenoptera: Vespidae)". Journal of the Kansas Entomological Society.
  549. ^ Jump up to: a b Sivinski J, Marshall S, Petersson E (1999). "Kleptoparasitism and phoresy in the Diptera" (PDF). Florida Entomologist. 82 (2): 179–197. doi:10.2307/3496570. JSTOR 3496570.
  550. Jump up ^ Schaechter E (2000). "Some weird and wonderful fungi". Microbiology Today. 27 (3): 116–117.
  551. Jump up ^ Sandra B. Andersen; Sylvia Gerritsma; Kalsum M. Yusah; David Mayntz; Nigel L. Hywel‐Jones; Johan Billen; Jacobus J. Boomsma; David P. Hughes (2009). "The Life of a Dead Ant: The Expression of an Adaptive Extended Phenotype". The American Naturalist. 174 (3): 424–433. doi:10.1086/603640. PMID 19627240.
  552. Jump up ^ Wojcik DP (1989). "Behavioral interactions between ants and their parasites". The Florida Entomologist. 72 (1): 43–51. doi:10.2307/3494966. JSTOR 3494966.
  553. Jump up ^ Poinar G Jr.; Yanoviak SP (2008). "Myrmeconema neotropicum n. g., n. sp., a new tetradonematid nematode parasitising South American populations of Cephalotes atratus (Hymenoptera: Formicidae), with the discovery of an apparent parasite-induced host morph" (PDF). Systematic Parasitology. 69 (2): 145–153. doi:10.1007/s11230-007-9125-3. PMID 18038201.
  554. Jump up ^ Caldwell JP (1996). "The evolution of myrmecophagy and its correlates in poison frogs (Family Dendrobatidae)". Journal of Zoology. 240 (1): 75–101. doi:10.1111/j.1469-7998.1996.tb05487.x.
  555. Jump up ^ Willis, E.; Y. Oniki (1978). "Birds and Army Ants". Annual Review of Ecology and Systematics. 9: 243–263. doi:10.1146/annurev.es.09.110178.001331.
  556. Jump up ^ Vellely AC (2001). "Foraging at army ant swarms by fifty bird species in the highlands of Costa Rica" (PDF). Ornitologia Neotropical. 12: 271–275. Retrieved 8 June 2008.
  557. Jump up ^ Inzunza, Ernesto Ruelas; Martínez-Leyva, J. Eduardo; Valenzuela-González, Jorge E. "Doves kleptoparasitize ants". The Southwestern Naturalist. 60 (1): 103–106. doi:10.1894/msh-03.1.
  558. Jump up ^ Wrege PH; Wikelski, Martin; Mandel, James T.; Rassweiler, Thomas; Couzin, Iain D. (2005). "Antbirds parasitize foraging army ants". Ecology. 86 (3): 555–559. doi:10.1890/04-1133.
  559. Jump up ^ Swenson JE, Jansson A, Riig R, Sandegren R (1999). "Bears and ants: myrmecophagy by brown bears in central Scandinavia". Canadian Journal of Zoology. 77 (4): 551–561. doi:10.1139/cjz-77-4-551.
  560. Jump up ^ Gottrup F, Leaper D (2004). "Wound healing: Historical aspects" (PDF). EWMA Journal. 4 (2): 5. Archived from the original (PDF) on 2007-06-16.
  561. Jump up ^ Gudger EW (1925). "Stitching wounds with the mandibles of ants and beetles". Journal of the American Medical Association. 84 (24): 1861–1864. doi:10.1001/jama.1925.02660500069048.
  562. Jump up ^ Sapolsky, Robert M. (2001). A Primate's Memoir: A Neuroscientist's Unconventional Life Among the Baboons. Simon and Schuster. p. 156. ISBN 0-7432-0241-4.
  563. Jump up ^ Wheeler, William M. (1910). Ants: Their Structure, Development and Behavior. Columbia University Biological Series. 9. Columbia University Press. p. 10. doi:10.5962/bhl.title.1937. ISBN 978-0-231-00121-2. ISSN 0069-6285. LCCN 10008253//r88. OCLC 560205.
  564. Jump up ^ Haddad Jr. V; Cardoso JLC; Moraes RHP (2005). "Description of an injury in a human caused by a false tocandira (Dinoponera gigantea, Perty, 1833) with a revision on folkloric, pharmacological and clinical aspects of the giant ants of the genera Paraponera and Dinoponera (sub-family Ponerinae)" (PDF). Revista do Instituto de Medicina Tropical de São Paulo. 47 (4): 235–238. doi:10.1590/S0036-46652005000400012.
  565. Jump up ^ McGain F, Winkel KD (2002). "Ant sting mortality in Australia". Toxicon. 40 (8): 1095–1100. doi:10.1016/S0041-0101(02)00097-1. PMID 12165310.
  566. Jump up ^ Downes D, Laird SA (1999). "Innovative mechanisms for sharing benefits of biodiversity and related knowledge" (PDF). The Center for International Environmental Law. Archived (PDF) from the original on 23 April 2008. Retrieved 8 June 2008.
  567. Jump up ^ Cheney RH, Scholtz E (1963). "Rooibos tea, a South African contribution to world beverages". Economic Botany. 17 (3): 186–194. doi:10.1007/BF02859435.
  568. Jump up ^ Chapman, RE; Bourke, Andrew FG (2001). "The influence of sociality on the conservation biology of social insects" (PDF). Ecology Letters. 4 (6): 650–662. doi:10.1046/j.1461-0248.2001.00253.x.
  569. Jump up ^ Holldobler, B; E. O. Wilson (2009). The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies. New York: W. W. Norton. p. 5. ISBN 0-393-06704-1.
  570. Jump up ^ "How many ants are there for every one person on earth?". info.com. Retrieved 27 July 2013.
  571. Jump up ^ DeFoliart GR (1999). "Insects as food: Why the western attitude is important". Annual Review of Entomology. 44: 21–50. doi:10.1146/annurev.ento.44.1.21. PMID 9990715.
  572. Jump up ^ Bingham CT (1903). Fauna of British India. Hymenoptera Volume 3. p. 311.
  573. ^ Jump up to: a b Bequaert J (1921). "Insects as food: How they have augmented the food supply of mankind in early and recent times". Natural History Journal. 21: 191–200.
  574. Jump up ^ Lubbock, J. (1881). "Observations on ants, bees, and wasps. IX. Color of flowers as an attraction to bees: Experiments and considerations thereon". J. Linn. Soc. Lond. (Zool.). 16 (90): 110–112. doi:10.1111/j.1096-3642.1882.tb02275.x.
  575. Jump up ^ Stadler B, Dixon AF (2008). Mutualism: Ants and their insect partners. Cambridge University Press. ISBN 978-0-521-86035-2.
  576. Jump up ^ Kennedy CH (1951). "Myrmecological technique. IV. Collecting ants by rearing pupae". The Ohio Journal of Science. 51 (1): 17–20.
  577. Jump up ^ Wojcik DP, Burges RJ, Blanton CM, Focks DA (2000). "An improved and quantified technique for marking individual fire ants (Hymenoptera: Formicidae)" (PDF). The Florida Entomologist. 83 (1): 74–78. doi:10.2307/3496231. JSTOR 3496231.
  578. Jump up ^ "27:18–19". Quran.
  579. Jump up ^ "Vol 4, Book 54, Number 536". Sahih Bukhari.
  580. Jump up ^ Deen, Mawil Y. Izzi (1990). "Islamic Environmental Ethics, Law, and Society". In Engel JR; JG Engel. Ethics of Environment and Development (PDF). Bellhaven Press, London.
  581. Jump up ^ Balee WL (2000). "Antiquity of traditional ethnobiological knowledge in Amazonia: The Tupi-Guarani family and time". Ethnohistory. 47 (2): 399–422. doi:10.1215/00141801-47-2-399.
  582. Jump up ^ Cesard N, Deturche J, Erikson P (2003). "Les Insectes dans les pratiques médicinales et rituelles d'Amazonie indigène". In Motte-Florac, E., J. M. C. Thomas. Les insectes dans la tradition orale (in French). Peeters-Selaf, Paris. pp. 395–406.
  583. Jump up ^ Schmidt RJ (1985). "The super-nettles: a dermatologist's guide to ants in the plants". International Journal of Dermatology. 24 (4): 204–210. doi:10.1111/j.1365-4362.1985.tb05760.x. PMID 3891647.
  584. Jump up ^ Twain, Mark (1880). "22 The Black Forest and Its Treasures". A Tramp Abroad. New York: Oxford University Press. ISBN 0-19-510137-5. Retrieved 2015-12-13.
  585. Jump up ^ Wilson, EO (25 January 2010). "Trailhead". The New Yorker. pp. 56–62.
  586. Jump up ^ Guri, Assaf (8 September 1998). "Habitat media for ants and other invertebrates (US Patent 5803014)". United States Patent and Trademark Office.
  587. Jump up ^ "1992 Excellence in Software Awards Winners". Software & Information Industry Association. Archived from the original on 2009-06-11. Retrieved 3 April 2008.
  588. Jump up ^ Sharkey AJC (2006). "Robots, insects and swarm intelligence". Artificial Intelligence Review. 26 (4): 255–268. doi:10.1007/s10462-007-9057-y.
  589. Cited texts
  590. Borror DJ, Triplehorn CA, Delong DM (1989). Introduction to the Study of Insects, 6th Edition. Saunders College Publishing. ISBN 0-03-025397-7.
  591. Hölldobler B, Wilson EO (1990). The Ants. Harvard University Press. ISBN 0-674-04075-9.
  592. Further reading
  593. Bolton, Barry (1995). A New General Catalogue of the Ants of the World. Harvard University Press. ISBN 978-0-674-61514-4.
  594. Hölldobler B, Wilson EO (1998). Journey to the Ants: A Story of Scientific Exploration. Belknap Press. ISBN 0-674-48526-2.
  595. Hölldobler B, Wilson EO (2009). The Superorganism: The Beauty, Elegance and Strangeness of Insect Societies. Norton & Co. ISBN 978-0-393-06704-0.
  596. External links
  597. Wikiquote has quotations related to: Ant
  598. Wikimedia Commons has media related to Formicidae.
  599. Wikispecies has information related to: Formicidae
  600. AntWeb from The California Academy of Sciences
  601. AntBase – a taxonomic database with literature sources
  602. AntWiki – Bringing Ants to the World
  603. Ant Species Fact Sheets from the National Pest Management Association on Argentine, Carpenter, Pharaoh, Odorous, and other ant species
  604. Ant Genera of the World – distribution maps
  605. The super-nettles. A dermatologist's guide to ants-in-the-plants
  606. [show] v t e
  607. Extant Hymenopteran families
  608. [show] v t e
  609. Ant taxonomy
  610. [show] v t e
  611. Eusociality
  612. Taxon Identifiers
  613. EoL: 699 GBIF: 4342 ITIS: 154193 NCBI: 36668 Fossilworks: 70728 WoRMS: 425369 Fauna Europaea: 11356
  614. Authority control
  615. NDL: 00560320
  616. Categories: AntsSymbiosisExtant Albian first appearancesMagnetoreceptive animals
  617. Navigation menu
  618. Not logged inTalkContributionsCreate accountLog inArticleTalkReadView sourceView historySearch
  619.  
  620. Search
  621. Go
  622. Main page
  623. Contents
  624. Featured content
  625. Current events
  626. Random article
  627. Donate to Wikipedia
  628. Wikipedia store
  629. Interaction
  630. Help
  631. About Wikipedia
  632. Community portal
  633. Recent changes
  634. Contact page
  635. Tools
  636. What links here
  637. Related changes
  638. Upload file
  639. Special pages
  640. Permanent link
  641. Page information
  642. Wikidata item
  643. Cite this page
  644. Print/export
  645. Create a book
  646. Download as PDF
  647. Printable version
  648. In other projects
  649. Wikimedia Commons
  650. Wikispecies
  651. Wikinews
  652. Wikiquote
  653. Languages
  654. Afrikaans
  655. Alemannisch
  656. አማርኛ
  657. Ænglisc
  658. العربية
  659. Aragonés
  660. ܐܪܡܝܐ
  661. Armãneashti
  662. অসমীয়া
  663. Asturianu
  664. Avañe'ẽ
  665. Aymar aru
  666. Azərbaycanca
  667. Bamanankan
  668. বাংলা
  669. Bahasa Banjar
  670. Bân-lâm-gú
  671. Basa Banyumasan
  672. Башҡортса
  673. Беларуская
  674. Беларуская (тарашкевіца)‎
  675. Български
  676. བོད་ཡིག
  677. Bosanski
  678. Brezhoneg
  679. Буряад
  680. Català
  681. Cebuano
  682. Čeština
  683. Cymraeg
  684. Dansk
  685. Deutsch
  686. Diné bizaad
  687. Eesti
  688. Ελληνικά
  689. Emiliàn e rumagnòl
  690. Español
  691. Esperanto
  692. Euskara
  693. فارسی
  694. Fiji Hindi
  695. Français
  696. Gaeilge
  697. Galego
  698. ગુજરાતી
  699. 客家語/Hak-kâ-ngî
  700. Хальмг
  701. 한국어
  702. Հայերեն
  703. हिन्दी
  704. Hrvatski
  705. Ido
  706. Ilokano
  707. Bahasa Indonesia
  708. Interlingua
  709. Íslenska
  710. Italiano
  711. עברית
  712. Basa Jawa
  713. ಕನ್ನಡ
  714. Kapampangan
  715. ქართული
  716. कॉशुर / کٲشُر
  717. Қазақша
  718. Kiswahili
  719. Коми
  720. Kongo
  721. Kreyòl ayisyen
  722. Kurdî
  723. Кыргызча
  724. Кырык мары
  725. Лакку
  726. Лезги
  727. Latina
  728. Latviešu
  729. Lëtzebuergesch
  730. Lietuvių
  731. Limburgs
  732. Magyar
  733. Македонски
  734. Malagasy
  735. മലയാളം
  736. मराठी
  737. مازِرونی
  738. Bahasa Melayu
  739. Mìng-dĕ̤ng-ngṳ̄
  740. Монгол
  741. မြန်မာဘာသာ
  742. Nāhuatl
  743. Na Vosa Vakaviti
  744. Nederlands
  745. Nedersaksies
  746. नेपाली
  747. नेपाल भाषा
  748. 日本語
  749. Nordfriisk
  750. Norsk bokmål
  751. Norsk nynorsk
  752. Occitan
  753. Олык марий
  754. Oʻzbekcha/ўзбекча
  755. ਪੰਜਾਬੀ
  756. Pälzisch
  757. پنجابی
  758. پښتو
  759. Перем Коми
  760. Plattdüütsch
  761. Polski
  762. Português
  763. Ripoarisch
  764. Română
  765. Rumantsch
  766. Runa Simi
  767. Русиньскый
  768. Русский
  769. Саха тыла
  770. Sardu
  771. Scots
  772. Sicilianu
  773. සිංහල
  774. Simple English
  775. Slovenčina
  776. Slovenščina
  777. Ślůnski
  778. Soomaaliga
  779. کوردیی ناوەندی
  780. Српски / srpski
  781. Srpskohrvatski / српскохрватски
  782. Basa Sunda
  783. Suomi
  784. Svenska
  785. Tagalog
  786. தமிழ்
  787. Татарча/tatarça
  788. తెలుగు
  789. ไทย
  790. Тоҷикӣ
  791. ᏣᎳᎩ
  792. Türkçe
  793. Удмурт
  794. Українська
  795. اردو
  796. ئۇيغۇرچە / Uyghurche
  797. Vahcuengh
  798. Tiếng Việt
  799. West-Vlams
  800. Winaray
  801. Wolof
  802. 吴语
  803. ייִדיש
  804. 粵語
  805. Zazaki
  806. Žemaitėška
  807. 中文
  808. Edit links
  809. This page was last modified on 1 September 2016, at 17:04.
  810. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.
  811. Privacy policyAbout WikipediaDisclaimersContact WikipediaDevelopersCookie statementMobile viewWikimedia Foundation Powered by MediaWiki
  812.  
  813. באַהאַלטן
  814. וויקי לאָוועס מאָנומענץ: די וועלט 'ס גרעסטער פאָטאָגראַפיע פאַרמעסט איז איצט אָפֿן! פאָטאָגראַפיע אַ היסטארישן פּלאַץ, לערנען מער וועגן אונדזער געשיכטע, און געווינען פּרייזאַז.
  815. דאס איז אַ ארויסגעשטעלטע אַרטיקל. דריקט דאָ פֿאַר מער אינפֿאָרמאַציע. בלאַט האַלב-פּראָטעקטעד
  816. מוראַשקע
  817. פֿון וויקיפּעדיע, די וויקיפּעדיע
  818. פֿאַר אנדערע ניצט, זען אַנט (דיסאַמביגואַטיאָן).
  819. אַנץ
  820. טעמפּאָראַל קייט: 100-0 מאַ
  821. פּרעєєאָסדקפּטדזשקפּגן
  822. אַלביאַן - לעצטע
  823. פייַער אַנץ 01.דזשפּג
  824. א גרופּע פון ​​Fire אַנץ.
  825. וויסנשאַפֿטלעכע קלאַסיפֿיקאַציע E
  826. קינגדאָם: אַנימאַליאַ
  827. פילום: אַרטהראָפּאָדאַ
  828. קלאַס: ינסעקטאַ
  829. סדר: הימענאָפּטעראַ
  830. סופּערפאַמילי: וועספּאָידעאַ
  831. משפּחה: פאָרמיסידאַע
  832. לאַטרעיללע, 1809
  833. טיפּע מינים
  834. פאָרמיקאַ רופאַ
  835. ליננאַעוס, 1761
  836. סובפאַמיליעס
  837. אַגראָעקאָמירמעסינאַע
  838. אַמבליאָפּאָנינאַע (ינקל. "אַפּאָמירמינאַע")
  839. אַנעורעטינאַע
  840. † אַרמאַניינאַע
  841. † בראָוונימעסיינאַע
  842. דאָליטשאָדערינאַע
  843. דאָרילינאַע
  844. עקטאַטאָממינאַע
  845. † פאָרמיסיינאַע
  846. פאָרמיסינאַע
  847. העטעראָפּאָנערינאַע
  848. לעפּטאַניללינאַע
  849. מאַרטיאַלינאַע
  850. מירמעסיינאַע (ינקל. "נאָטהאָמירמעסיינאַע")
  851. מירמיסינאַע
  852. פּאַראַפּאָנערינאַע
  853. פּאָנערינאַע
  854. פּראָסעראַטיינאַע
  855. פּסעודאָמירמעסינאַע
  856. † ספעקאָמירמינאַע
  857. קלאַדאָגראַם פון
  858. סובפאַמיליעס [ווייַזן]
  859. אַנץ זענען עוסאָסיאַל ינסעקץ פון דער משפּחה פאָרמיסידאַע און, צוזאמען מיט די פֿאַרבונדענע וואַספּס און ביז, געהערן צו דער סדר הימענאָפּטעראַ. אַנץ יוואַלווד פון וועספּ-ווי אָוועס אין די קרעטאַסעאָוס פּעריאָד, וועגן 99,000,000 יאָרן צוריק און דיווערסיפיעד נאָך די העכערונג פון flowering געוויקסן. מער ווי 12,500 פון אַ עסטימאַטעד גאַנץ פון 22,000 מינים האָבן שוין קלאַססיפיעד. [4] [5] זיי זענען לייכט ידענטיפיעד דורך זייער עלבאָוועד אַנטעני און די אָפּשיידנדיק נאָדע-ווי ביניען אַז Forms זייער שלאַנק וואַיסץ.
  860.  
  861. אַנץ פאָרעם קאָלאָניעס וואָס קייט אין גרייס פון אַ ביסל טוץ באַפאַלעריש מענטשן לעבעדיק אין קליין נאַטירלעך קאַוויטיז צו העכסט אָרגאַניזירט קאָלאָניעס אַז מייַ פאַרנעמען גרויס טעראַטאָריז און צונויפשטעלנ זיך פון מיליאַנז פון מענטשן. גרעסערע קאָלאָניעס צונויפשטעלנ זיך מערסטנס פון סטערילע, ווינגלעסס פעמאַלעס מאָלדינג קאַסטעס פון "טוערס", "זעלנער", אָדער אנדערע ספּעשאַלייזד גרופּעס. קימאַט אַלע מוראַשקע קאָלאָניעס אויך האָבן עטלעכע פרוכטבאַר מאַלעס גערופֿן "דראָונז" און איינער אָדער מער פרוכטבאַר פעמאַלעס גערופֿן "קווינס". די קאָלאָניעס זענען דיסקרייבד ווי סופּעראָרגאַניסמס ווייַל די אַנץ דערשייַנען צו אַרבעטן ווי אַ וניפיעד ענטיטי, קאַלעקטיוולי ארבעטן צוזאַמען צו שטיצן די קאַלאַני. [6] [7]
  862.  
  863. טעקע: בלאַקקאַנץ-ברעדקרוסט-טאָקיאָ-מייַ2015.וועבם
  864. (ווידעא) אַנץ צונויפקום עסנוואַרג
  865. אַנץ האָבן קאַלאַנייזד כּמעט יעדער לאַנדמאַסס אויף ערד. דער בלויז ערטער פעלנדיק ינדידזשאַנאַס אַנץ זענען אַנטאַרקטיקאַ און אַ ביסל ווייַט אָדער ינכאַספּאַטאַבאַל אינזלען. אַנץ טרייוו אין רובֿ יקאָוסיסטאַמז און מייַ פאָרעם 15-25% פון די ערדישע כייַע בייאַמאַס. [8] זייער הצלחה אין אַזוי פילע ינווייראַנמאַנץ האט שוין אַטריביאַטאַד צו זייער געזעלשאַפטלעך אָרגאַניזאַציע און זייער פיייקייַט צו מאָדיפיצירן כאַבאַטאַץ, צאַפּן רעסורסן, און באַשיצן זיך. זייער לאַנג גלויבנס-עוואָלוציע מיט אנדערע מינים האט געפֿירט צו מימעטיק, קאָממענסאַל, פּעראַסיטיק, און מוטואַליסטיק באציונגען. [9]
  866.  
  867. מוראַשקע סאַסייאַטיז האָבן אָפּטייל פון אַרבעט, קאָמוניקאַציע צווישן מענטשן, און אַ פיייקייַט צו סאָלווע קאָמפּלעקס פּראָבלעמס. [10] די פּעראַלעלז מיט מענטשלעך סאַסייאַטיז האָבן לאַנג שוין אַן ינספּיראַציע און אונטערטעניק פון לערנען. פילע מענטשלעך קאַלטשערז מאַכן נוצן פון אַנץ אין קוויזין, מעדאַקיישאַן, און ריטשואַלז. עטלעכע מינים זענען וואַליוד אין זייער ראָלע ווי בייאַלאַדזשיקאַל פּעסט קאָנטראָל אגענטן. [11] זייער פיייקייַט צו גווורע רעסורסן מייַ ברענגען אַנץ אין געראַנגל מיט יומאַנז, אָבער, ווי זיי קענען שעדיקן קראַפּס און באַפאַלן בנינים. עטלעכע מינים, אַזאַ ווי די רויט ימפּאָרטיד פייַער אַנט (סאָלענאָפּסיס ינוויקטאַ), זענען געקוקט ווי ינווייסיוו מינים, גרינדן זיך אין געביטן ווו זיי האָבן שוין באַקענענ אַקסאַדענאַלי. [12]
  868.  
  869. אינהאַלט [באַהאַלטן]
  870. 1 עטימאָלאָגי
  871. 2 טאקסאנאמיע און עוואַלושאַן
  872. 3 דיסטריבוטיאָן און דייווערסיטי
  873. 4 מאָרפאָלאָגי
  874. 4.1 קאָפּ
  875. 4.2 לעגס
  876. 4.3 ווינגס
  877. 4.4 מעטאַסאָמאַ
  878. 4.5 פּאָלימאָרפיסם
  879. 5 לעבן ציקל
  880. 5.1 רעפּראָדוקציע
  881. 6 בעהאַוויאָור און עקאָלאָגי
  882. 6.1 קאָמוניקאַציע
  883. 6.2 Defence
  884. 6.3 לערנען
  885. 6.4 נעסט קאַנסטראַקשאַן
  886. 6.5 קולטיוואַטיאָן פון עסנוואַרג
  887. 6.6 נאַוויגאַציע
  888. 6.7 לאָקאָמאָטיאָן
  889. 6.8 קאָאָפּעראַטיאָן און פאַרמעסט
  890. 6.9 באציונגען מיט אנדערע אָרגאַניזאַמז
  891. 7 רעלאַטיאָנשיפּ מיט יומאַנז
  892. 7.1 ווי עסנוואַרג
  893. 7.2 ווי פּעסץ
  894. 7.3 אין וויסנשאַפֿט און טעכנאָלאָגיע
  895. 7.4 אין קולטור
  896. 8 זע אויך
  897. 9 רעפֿערענצן
  898. 9.1 דערמאנט טעקסץ
  899. 10 ווייטער לייענען
  900. 11 עקסטערנאַל לינקס
  901. עטימאָלאָגי
  902. דער וואָרט "מוראַשקע" איז דערייווד פון Ante, עמעטע פון ​​מיטל ענגליש וואָס זענען דערייווד פון ǣמעטטע פון ​​אַלטע ענגליש, און איז שייך צו די דיאַלעקטאַל האָלענדיש עמט און די אַלטע הויך דייַטש āמעיזאַ, דעריבער די מאָדערן דייַטש אַמעיסע. כל פון די ווערטער קומען פון מערב גערמאַניק * ēמאַיטידזשǭ, און דער אָריגינעל טייַטש פון דער וואָרט איז געווען "די ביטער" (פֿון פּראָטאָ-גערמאַניק * אַי-, "אַוועק, אַוועק" + * מאַיט- "שנייַדן"). [13] [ 14] די משפּחה נאָמען פאָרמיסידאַע איז דערייווד פון די רעדאַגירן פאָרמīקאַ ( "מוראַשקע") [15] פון וואָס די ווערטער אין אנדערע ראָמאַנס שפּראַכן, אַזאַ ווי די פּאָרטוגעזיש פאָרמיגאַ, איטאַליעניש פאָרמיקאַ, שפּאַניש האָרמיגאַ, רומעניש פורניקă, און פראנצויזיש פאָורמי ביסט דערייווד. עס האט שוין היפּאָטהעסיסעד אַז אַ פּראָטאָ-ינדאָ-European וואָרט * מאָרווי- איז געניצט, קפ. סאַנסקריט וואַמראַה, רעדאַגירן פאָרמīקאַ, גריכיש μύρμηξ מýרמēקס, אַלטע קהילה סלאַוואָניק מראַווידזשי, ישן איריש מאָירב, ישן נאָרסע מאַורר, האָלענדיש מיער. [16]
  903.  
  904. טאקסאנאמיע און עוואַלושאַן
  905.  
  906. אַנץ פאָססיליזעד אין באַלטיק בורשטין
  907. אַקולעאַטאַ
  908.  
  909. טשריסידאָידעאַ
  910.  
  911.  
  912.  
  913.  
  914. וועספּידאַע
  915.  
  916.  
  917. רהאָפּאַלאָסאָמאַטידאַע
  918.  
  919.  
  920.  
  921.  
  922.  
  923. פּאָמפּילידאַע
  924.  
  925.  
  926. טיפיידאַע
  927.  
  928.  
  929.  
  930.  
  931. סקאָליאָידעאַ
  932.  
  933.  
  934.  
  935. אַפּאָידעאַ
  936.  
  937.  
  938. פאָרמיסידאַע
  939.  
  940.  
  941.  
  942.  
  943.  
  944.  
  945. פילאָגענעטיק שטעלע פון ​​די פאָרמיסידאַע. [17]
  946. די משפּחה פאָרמיסידאַע געהערט צו די סדר הימענאָפּטעראַ, וואָס אויך כולל סאַוופליעס, ביז, און וואַספּס. אַנץ יוואַלווד פון אַ ייכעס ין די אַקולעאַטע וואַספּס, און אַ 2013 לערנען סאַגדזשעסץ אַז זיי זענען אַ שוועסטער גרופּע פון ​​די אַפּאָידעאַ. [17] אין 1966, י אָו ווילסאָן און זיין חברים ידענטיפיעד די Fossil בלייבט פון אַ מוראַשקע (ספעקאָמירמאַ) אַז געלעבט אין די קרעטאַסעאָוס פּעריאָד. די ספּעסאַמאַן, טראַפּט אין בורשטין דייטינג צוריק צו אַרום 92,000,000 יאר צוריק, האט פֿעיִקייטן געפֿונען אין עטלעכע וואַספּס, אָבער נישט געפֿונען אין מאָדערן אַנץ. [18] ספעקאָמירמאַ עפשער איז געווען אַ ערד פאָראַגער, בשעת האַידאָמירמעקס און האַידאָמירמאָדעס, שייך גענעראַ אין סובפאַמילי ספעקאָמירמינאַע, זענען ריקאַנסטראַקטיד ווי אַקטיוו אַרבאָרעאַל פּרעדאַטערז. [19] עלטער אַנץ אין די מין ספעקאָמירמאָדעס האָבן שוין געפֿונען אין 99,000,000 יאָר-אַלט בורשטין פֿון מיאַנמאַר. [20] [21] נאָך די העכערונג פון flowering געוויקסן וועגן 100 מיליאָן יאר צוריק זיי דיווערסיפיעד און אנגענומען עקאַלאַדזשיקאַל דאַמאַנאַנס אַרום 60 מיליאָן יאר צוריק. [22] [23] [24] [25] עטלעכע גרופּעס, אַזאַ ווי די לעפּטאַניללינאַע און מאַרטיאַלינאַע, זענען סאַגדזשעסטיד צו האָבן דיווערסיפיעד פון פרי פּרימיטיוו אַנץ וואָס זענען מסתּמא צו האָבן שוין פּרעדאַטערז ונטער דער ייבערפלאַך פון דעם באָדן. [2] [26]
  947.  
  948. בעת די קרעטאַסעאָוס צייַט, אַ ביסל מינים פון פּרימיטיוו אַנץ ריינדזשד וויידלי אויף די לאַוראַסיאַן סופּערקאָנטינענט (די נאָרדערן האַלבקייַלעך). זיי זענען קאַרג אין פאַרגלייַך צו די פּאַפּיאַליישאַנז פון אנדערע ינסעקץ, רעפּריזענטינג בלויז וועגן 1% פון די גאנצע ינסעקט באַפעלקערונג. אַנץ געווארן דאָמינאַנט נאָך אַדאַפּטיוו ראַדיאַציע אין די אָנהייב פון די פּאַלעאָגענע פּעריאָד. דורך דעם אָליגאָסענע און מיאָסענע, אַנץ האט קומען צו פאָרשטעלן 20-40% פון אַלע ינסעקץ געפֿונען אין הויפּט Fossil דיפּאַזאַץ. פון די מינים וואָס געלעבט אין די עאָסענע עפּאָטש, אַרום איין אין 10 גענעראַ בלייַבנ לעבן צו די פּרעזענט. גענעראַ סערווייווינג הייַנט קאַמפּרייז 56% פון די גענעראַ אין באַלטיק בורשטין פאָססילס (פרי אָליגאָסענע), און 92% פון די גענעראַ אין דאָמיניקאַן בורשטין פאָססילס (משמעות פרי מיאָסענע). [22] [27]
  949.  
  950. טערמיטעס, כאָטש מאל גערופֿן 'ווייַס אַנץ', זענען נישט אַנץ. זיי געהערן צו דער סאַב-סדר יסאָפּטעראַ ין די סדר בלאַטטאָדעאַ. טערמיטעס זענען מער ענג שייך צו קאַקראָוטשיז און מאַנטידס. טערמיטעס זענען עוסאָסיאַל, אָבער אַנדערש זייַן שטארק אין די דזשאַנעטיקס פון רעפּראָדוקציע. די ענלעכקייַט פון זייער געזעלשאַפטלעך סטרוקטור צו וואָס פון אַנץ איז אַטריביאַטאַד צו קאָנווערגענט עוואָלוציע. [28] סאַמעט אַנץ קוקן ווי גרויס אַנץ, אָבער זענען ווינגלעסס ווייַבלעך וואַספּס. [29] [30]
  951.  
  952. פאַרשפּרייטונג און דייווערסיטי
  953. קאנט נומער פון
  954. מינים [31]
  955. נעאָטראָפּיקס 2162
  956. נעאַרקטיק 580
  957. אייראָפּע 180
  958. AFRICA 2500
  959. אזיע 2080
  960. Melanesia 275
  961. אויסטראַליע 985
  962. פּאָלינעסיאַ 42
  963. אַנץ זענען געפֿונען אויף אַלע קאַנטאַנאַנץ אַחוץ אַנטאַרקטיקאַ, און בלויז אַ ביסל גרויס אינזלען, אַזאַ ווי גרינלאַנד, יסעלאַנד, פּאַרץ פון פּאָלינעסיאַ און די האַוואַייאַן אינזלען מאַנגל געבוירן מוראַשקע מינים. [32] [33] אַנץ פאַרנעמען אַ ברייט קייט פון עקאַלאַדזשיקאַל ניטשיז און גווורע פילע פאַרשידענע עסנוואַרג רעסורסן ווי דירעקט אָדער ומדירעקט הערביוואָרעס, פּרעדאַטערז און סקאַווענגערס. רוב מוראַשקע מינים זענען אָמניוואָראָוס גענעראַליסץ, אָבער אַ ביסל זענען מומכע פעעדערס. זייער עקאַלאַדזשיקאַל דאַמאַנאַנס איז דעמאַנסטרייטיד דורך זייער בייאַמאַס: אַנץ זענען עסטימאַטעד צו קאָנטריבוטע 15-20% (אויף דורכשניטלעך און קימאַט 25% אין די טראַפּיקס) פון ערדישע כייַע בייאַמאַס, יקסידינג אַז פון די ווערטעבראַטעס. [8]
  964.  
  965. אַנץ קייט אין גרייס 0.75-52 מילאַמיטערז (.030-2.0 אין), [34] [35] דעם גרעסטן מינים ווייל די Fossil טיטאַנאָמירמאַ גיגאַנטעום, די מלכּה פון וואָס איז געווען 6 סענטימעטער (2.4 אין) לאַנג מיט אַ ווינגספּאַן פון 15 סענטימעטער ( 5.9 אין). [36] אַנץ בייַטן אין קאָלירן; רובֿ אַנץ זענען רויט אָדער שוואַרץ, אָבער אַ ביסל מינים זענען גרין און עטלעכע טראַפּיקאַל מינים האָבן אַ מעטאַלליק לאַסטער. מער ווי 12,000 מינים זענען איצט געקענט (מיט אויבערשטער עסטאַמאַץ פון די פּאָטענציעל עקזיסטענץ פון וועגן 22,000) (זען דעם אַרטיקל רשימה פון מוראַשקע גענעראַ), מיט די גרעסטע דייווערסיטי אין די טראַפּיקס. טאַקסאָנאָמיק שטודיום פאָרזעצן צו האַלטן די גריידינג און סיסטעמאַטיקס פון אַנץ. אָנליין דאַטאַבייסיז פון מוראַשקע מינים, כולל אַנטבאַסע און די הימענאָפּטעראַ נאמען סערווירער, העלפן צו האַלטן שפּור פון די באקאנט און ניי דיסקרייבד מינים. [37] די קאָרעוו יז מיט וואָס אַנץ מייַ זייַן סאַמפּאַלד און געלערנט אין יקאָוסיסטאַמז האט געמאכט זיי נוצלעך ווי גראדן מינים אין בייאָודייווערסאַטי שטודיום. [38] [39]
  966.  
  967. מאָרפאָלאָגי
  968. אַנץ זענען בוילעט אין זייער מאָרפאָלאָגי פון אנדערע ינסעקץ אין נאכדעם עלבאָוועד אַנטעני, מעטאַפּלעוראַל גלאַנדז, און אַ שטאַרק קאַנסטריקשאַן פון זייער רגע אַבדאָמינאַל אָפּשניט אין אַ נאָדע-ווי פּעטיאָלע. די קאָפּ, מעסאָסאָמאַ, און מעטאַסאָמאַ זענען די דרייַ בוילעט גוף סעגמאַנץ. די פּעטיאָלע Forms אַ שמאָל טאַליע צווישן זייער מעסאָסאָמאַ (טהאָראַקס פּלוס די ערשטער אַבדאָמינאַל אָפּשניט, וואָס איז פוסעד צו עס) און גאַסטער (בויך ווייניקער די אַבדאָמינאַל סעגמאַנץ אין די פּעטיאָלע). די פּעטיאָלע מייַ זייַן געגרינדעט דורך איין אָדער צוויי נאָודז (די רגע אַליין, אָדער די רגע און דריט אַבדאָמינאַל סעגמאַנץ). [40]
  969.  
  970.  
  971. ביק מוראַשקע ווייַזונג די שטאַרק מאַנדיבלעס און די לעפיערעך גרויס קאַמפּאַונד אויגן אַז צושטעלן ויסגעצייכנט זעאונג
  972. ווי אנדערע ינסעקץ, אַנץ האָבן אַ עקסאָסקעלעטאָן, אַ פונדרויסנדיק קאַווערינג אַז גיט אַ פּראַטעקטיוו קייסינג אַרום דעם גוף און אַ פונט פון אַטאַטשמאַנט פֿאַר מאַסאַלז, אין קאַנטראַסט צו די ינערלעך סקעלאַטאַנז פון יומאַנז און אנדערע ווערטעבראַטעס. ינסעקץ טאָן ניט האָבן לונגען; זויערשטאָף און אנדערע גאַסאַז, אַזאַ ווי טשאַד דייאַקסייד, פאָרן דורך זייער עקסאָסקעלעטאָן דורך קליינטשיק וואַלווז גערופֿן ספּיראַקלעס. ינסעקץ אויך מאַנגל פֿאַרמאַכט בלוט כלים; אַנשטאָט, זיי האָבן אַ לאַנג, דין, פּערפאָראַטעד רער צוזאמען די שפּיץ פון די גוף (גערופֿן די "דאָרסאַל אַאָרטאַ") אַז פֿעיִקייטן ווי אַ האַרץ, און פּאַמפּס האַעמאָלימף צו די קאָפּ, אַזוי דרייווינג די סערקיאַליישאַן פון די ינערלעך פלוידס. די נערוועז סיסטעם באשטייט פון אַ ווענטראַל נערוו שנור אַז ראַנז די לענג פון די גוף, מיט עטלעכע גאַנגליאַ און צווייגן צוזאמען די וועג ריטשינג אין די יקסטרעמאַטיז פון די אַפּפּענדאַגעס. [41]
  973.  
  974.  
  975. דיאַגראַמע פון ​​אַ אַרבעטער אַנט (פּאַטשיקאָנדילאַ ווערענאַע)
  976. קאָפּ
  977. אַ מוראַשקע ס קאָפּ כּולל פילע סענסערי אָרגאַנס. ווי רובֿ ינסעקץ, אַנץ האָבן קאַמפּאַונד אויגן געמאכט פון סך קליינטשיק לענסעס אַטאַטשט צוזאַמען. מוראַשקע אויגן זענען גוט פֿאַר אַקוטע באַוועגונג דיטעקשאַן, אָבער טאָן ניט פאָרשלאָגן אַ הויך האַכלאָטע בילד. זיי אויך האָבן דרייַ קליין אָסעללי (פּשוט אויגן) אויף די שפּיץ פון די קאָפּ אַז דיטעקט ליכט לעוועלס און פּאָלאַריזאַטיאָן. [42] קאַמפּערד צו ווערטעבראַטעס, רובֿ אַנץ האָבן נעבעך-צו-מיטלמעסיק ריע און אַ ביסל סובטערראַנעאַן מינים זענען גאָר בלינד. אָבער, עטלעכע אַנץ, אַזאַ ווי אויסטראַליע ס בולדאָג מוראַשקע, האָבן ויסגעצייכנט זעאונג און זענען טויגעוודיק פון דיסקרימאַנייטינג די דיסטאַנסע און גרייס פון אַבדזשעקס מאָווינג קימאַט אַ מעטער אַוועק. [43]
  978.  
  979. צוויי אַנטעני ( "פעעלערס") זענען אַטאַטשט צו די קאָפּ; די אָרגאַנס דיטעקט קעמיקאַלז, לופט קעראַנץ, און ווייבריישאַנז; זיי אויך זענען געניצט צו יבערשיקן און באַקומען סיגנאַלז דורך פאַרבינדן. דער קאָפּ האט צוויי שטאַרק דזשאָז, די מאַנדיבלעס, געוויינט צו פירן עסנוואַרג, מאַניפּולירן אַבדזשעקס, בויען נעסץ, און פֿאַר פאַרטיידיקונג. [41] אין עטלעכע מינים, אַ קליין קעשענע (ינפראַבוקקאַל קאַמער) ין די מויל סטאָרז עסנוואַרג, אַזוי עס מייַ זייַן דורכגעגאנגען צו אנדערע אַנץ אָדער זייער לאַרווי. [44]
  980.  
  981. לעגס
  982. אַלע זעקס לעגס זענען אַטאַטשט צו די מעסאָסאָמאַ ( "טהאָראַקס") און פאַרענדיקן אין אַ כוקט קרעל.
  983.  
  984. ווינגס
  985. בלויז רעפּראָדוקטיווע אַנץ, קווינס, און מאַלעס, האָבן פֿליגלען. קווינס אָפּדאַך זייערע פֿליגלען נאָך די נופּטיאַל פלי, געלאזן קענטיק סטאַבז, אַ דיסטינגגווישינג שטריך פון קווינס. אין אַ ביסל מינים, ווינגלעסס קווינס (ערגאַטאָידס) און מאַלעס פּאַסירן. [41]
  986.  
  987. מעטאַסאָמאַ
  988. די מעטאַסאָמאַ (די "בויך") פון די מוראַשקע הייזער וויכטיק ינערלעך אָרגאַנס, כולל יענע פון ​​די רעפּראָדוקטיווע, רעספּעראַטאָרי (טראַטשעאַע), און עקסקרעטאָרי סיסטעמס. טוערס פון פילע מינים האָבן זייער יי-ינסטאַלירונג סטראַקטשערז modified זיך סטינגז אַז זענען געניצט פֿאַר סובדוינג רויב און דעפענדינג זייער נעסץ. [41]
  989.  
  990. פּאָלימאָרפיסם
  991.  
  992. זיבן לעאַפקוטטער מוראַשקע טוערס פון פאַרשידן קאַסטעס (לינקס) און צוויי קווינס (רעכט)
  993. אין די קאָלאָניעס פון אַ ביסל מוראַשקע מינים, עס זענען גשמיות קאַסטעס-טוערס אין בוילעט גרייס-קלאסן, גערופֿן מינערווערטיק, מידיאַן, און הויפּט טוערס. אָפֿט, די גרעסערע אַנץ האָבן דיספּראַפּאָרשאַנאַטלי גרעסערע קעפּ, און קאָראַספּאַנדינגלי סטראָנגגער מאַנדיבלעס. אַזאַ מענטשן זענען א מאל גערופֿן "זעלנער" אַנץ ווייַל זייער סטראָנגגער מאַנדיבלעס מאַכן זיי מער עפעקטיוו אין קאַמף, כאָטש זיי נאָך זענען טוערס און זייער "דוטיז" טיפּיקלי טאָן ניט בייַטן זייער פון די מינערווערטיק אָדער מידיאַן טוערס. אין אַ ביסל מינים, די מידיאַן טוערס זענען ניטאָ, קריייטינג אַ שאַרף צעטיילן צווישן די מיינערז און מיידזשערז. [45] וויווער אַנץ, למשל, האָבן אַ בוילעט בימאָדאַל גרייס פאַרשפּרייטונג. [46] [47] עטלעכע אנדערע מינים ווייַזן קעסיידערדיק ווערייישאַן אין די נומער פון טוערס. דער קלענסטער און גרעסטער טוערס אין פעידאָלאָגעטאָן דיווערסוס ווייַזן קימאַט אַ 500-פאַרלייגן חילוק אין זייער טרוקן-ווייץ. [48] טוערס קענען ניט פּאָר; אָבער, ווייַל פון די האַפּלאָדיפּלאָיד געשלעכט-פעסטקייַט סיסטעם אין אַנץ, טוערס פון אַ נומער פון מינים קענען לייגן ונפערטיליסעד עגגס אַז ווערן גאָר פרוכטבאַר, האַפּלאָיד מאַלעס. די ראָלע פון ​​טוערס מייַ טוישן מיט זייער עלטער און אין עטלעכע מינים, אַזאַ ווי האָנייפּאָט אַנץ, יונג טוערס זענען געפֿיטערט ביז זייער גאַסטערס זענען דיסטענדעד, און אַקט ווי לעבעדיק עסנוואַרג סטאָרידזש כלים. די עסנוואַרג סטאָרידזש טוערס זענען גערופֿן רעפּלעטעס. [49] פֿאַר בייַשפּיל, די ריפּליט טוערס אַנטוויקלען אין די צפֿון אמעריקאנער האָנייפּאָט מוראַשקע מירמעקאָסיסטוס מעקסיקאַנוס. וסואַללי דעם גרעסטן טוערס אין די קאַלאַני אַנטוויקלען אין רעפּלעטעס; און, אויב רעפּלעטעס זענען אַוועקגענומען פון די קאַלאַני, אנדערע טוערס ווערן רעפּלעטעס, דעמאַנסטרייטינג די בייגיקייַט פון דעם באַזונדער פּאָלימאָרפיסם. [50] דאס פּאָלימאָרפיסם אין מאָרפאָלאָגי און נאַטור פון טוערס טכילעס איז געווען געדאַנק צו זיין באשלאסן דורך ינווייראַנמענאַל סיבות אַזאַ ווי דערנערונג און כאָרמאָונז אַז געפֿירט צו פאַרשידענע דיוועלאַפּמענאַל פּאַטס; אָבער, גענעטיק חילוק צווישן אַרבעטער קאַסטעס האָבן שוין אנגעוויזן אין אַקראָמירמעקס Sp. [51] די פּאָלימאָרפיסמס זענען געפֿירט דורך לעפיערעך קליין גענעטיק ענדערונגען; Differences אין אַ איין גענע פון ​​סאָלענאָפּסיס ינוויקטאַ קענען באַשליסן צי די קאַלאַני וועט האָבן איין אָדער קייפל קווינס. [52] די אַוסטראַליאַן דזשאַק דזשאַמפּער אַנט (מירמעסיאַ פּילאָסולאַ) האט בלויז אַ איין פּאָר פון טשראָמאָסאָמעס (מיט די מאַלעס ווייל נאָר איין כראָמאָסאָם ווי זיי זענען האַפּלאָיד), די לאָואַסט נומער באקאנט פֿאַר קיין כייַע, מאכן עס אַ טשיקאַווע ונטערטעניק פֿאַר שטודיום אין די דזשאַנעטיקס און דיוועלאַפּמענאַל ביאָלאָגי פון געזעלשאַפטלעך ינסעקץ. [53] [54]
  994.  
  995. לעבן ציקל
  996.  
  997. פלייש יטער מוראַשקע נעסט בעשאַס סוואָרמינג
  998. דער לעבן פון אַ מוראַשקע סטאַרץ פון אַ יי. אויב דער יי איז פערטיליזעד, די נאָכקום וועט זיין ווייַבלעך דיפּלאָיד; אויב נישט, עס וועט זיין זכר האַפּלאָיד. אַנץ אַנטוויקלען דורך גאַנץ מעטאַמאָרפאָסיס מיט די לאַרוואַ סטאַגעס פּאַסינג דורך אַ פּופּאַל בינע איידער ימערדזשינג ווי אַ דערוואַקסן. די לאַרוואַ איז לאַרגעלי immobile און איז געפֿיטערט און קערד פֿאַר דורך טוערס. עסנוואַרג איז געגעבן צו די לאַרווי דורך טראָפאַללאַקסיס, אַ פּראָצעס אין וואָס אַ מוראַשקע רעגורגיטאַטעס פליסיק עסנוואַרג געהאלטן אין זייַן גערעטעניש. דאס איז אויך ווי אַדאַלץ טיילן עסנוואַרג, סטאָרד אין די "געזעלשאַפטלעך מאָגן". לאַרווי, ספּעציעל אין די שפּעטער סטאַגעס, מייַ אויך זיין צוגעשטעלט האַרט עסנוואַרג, אַזאַ ווי טראָפיק עגגס, ברעקלעך פון רויב, און זאמען געבראכט דורך טוערס.
  999.  
  1000. די לאַרווי וואַקסן דורך אַ סעריע פון ​​פיר אָדער פינף מאָולץ און אַרייַן די פּופּאַל בינע. די פּיופּאַ האט די אַפּפּענדאַגעס פּאָטער און נישט פוסעד צו דעם גוף ווי אין אַ פלאַטערל פּיופּאַ. [55] די דיפפערענטיאַטיאָן אין קווינס און טוערס (וואָס זענען ביידע ווייַבלעך), און פאַרשידענע קאַסטעס פון טוערס, איז ינפלוענסעד אין עטלעכע מינים דורך די דערנערונג די לאַרווי קריגן. גענעטיק ינפלוענסעס און די קאָנטראָל פון גענע אויסדרוק דורך די דיוועלאַפּמענאַל סוויווע זענען קאָמפּליצירט און די פעסטקייַט פון קאַסט האלט צו זיין אַ ונטערטעניק פון פאָרשונג. [56] ווינגעד זכר אַנץ, גערופֿן דראָונז, אַרויסקומען פון פּופּאַע צוזאמען מיט די יוזשאַלי באַפליגלט ברידינג פעמאַלעס. עטלעכע מינים, אַזאַ ווי אַרמיי אַנץ, האָבן ווינגלעסס קווינס. לאַרווי און פּופּאַע דאַרפֿן צו זיין געהאלטן בייַ פאַירלי קעסיידערדיק טעמפּעראַטורעס צו ענשור געהעריק אַנטוויקלונג, און אַזוי אָפֿט, זענען באווויגן אַרום צווישן די פאַרשידן פּליד טשיימבערז ין די קאַלאַני. [57]
  1001.  
  1002. א נייַ אַרבעטער ספּענז דער ערשטער ביסל טעג פון זייַן דערוואַקסן לעבן קאַרינג פֿאַר די מלכּה און יונג. זי דעמאָלט גראַדזשאַוואַץ צו דיגינג און אנדערע נעסט אַרבעט, און שפּעטער צו דעפענדינג די נעסט און פאָראַגינג. די ענדערונגען זענען מאל פאַירלי פּלוצעמדיק, און דעפינירן וואָס זענען גערופֿן צייַטעדיק קאַסטעס. אַ דערקלערונג פֿאַר די סיקוואַנס איז סאַגדזשעסטיד דורך די הויך קאַזשאַלטיז ינוואַלווד אין פאָראַגינג, מאכן עס אַ פּאַסיק ריזיקירן נאָר פֿאַר אַנץ וואס זענען עלטער און זענען מסתּמא צו שטאַרבן באַלד פון נאַטירלעך ז. [58] [59]
  1003.  
  1004. מוראַשקע קאָלאָניעס קענען זייַן לאַנג-געלעבט. די קווינס קענען לעבן פֿאַר אַרויף צו 30 יאר, און טוערס לעבן 1-3 יאר. מאַלעס, אָבער, זענען מער טראַנסיטאָרי, ווייל גאַנץ קורץ-געלעבט און סערווייווינג פֿאַר בלויז אַ ביסל וואָכן. [60] מוראַשקע קווינס זענען עסטימאַטעד צו לעבן 100 מאל ווי לאַנג ווי יינזאַם ינסעקץ פון אַ ענלעך גרייס. [61]
  1005.  
  1006. אַנץ זענען אַקטיוו אַלע יאָר לאַנג אין די טראַפּיקס, אָבער, אין קולער מקומות, זיי בלייַבנ לעבן דער ווינטער אין אַ שטאַט פון דאָרמאַנסי אָדער ינאַקטיוויטי. די Forms פון ינאַקטיוויטי זענען וועריד און עטלעכע טעמפּעראַט מינים האָבן לאַרווי געגאנגען אין די ינאַקטיוו שטאַט, (דיאַפּאַוסע), בשעת אין אנדערע, די אַדאַלץ אַליין פאָרן די ווינטער אין אַ שטאַט פון רידוסט טעטיקייט. [62]
  1007.  
  1008. רעפּראָדוקציע
  1009.  
  1010. אַנץ מייטינג
  1011. א ברייט קייט פון רעפּראָדוקטיווע סטראַטעגיעס האָבן שוין אנגעוויזן אין מוראַשקע מינים. פעמאַלעס פון פילע מינים זענען באקאנט צו זיין טויגעוודיק פון רעפּראָדוסינג אַסעקסואַללי דורך טהעליטאָקאָוס פּאַרטהענאָגענעסיס. [63] סאַקרישאַנז פון די זכר אַקסעסערי גלאַנדז אין עטלעכע מינים קענען צאַפּן די ווייַבלעך דזשענאַטאַל עפן און פאַרמייַדן פעמאַלעס פון שייַעך-מייטינג. [64] רוב מוראַשקע מינים האָבן אַ סיסטעם אין וואָס נאָר דער מלכּה און ברידינג פעמאַלעס האָבן די פיייקייַט צו פּאָר. פאַרקערט צו פאָלקס גלויבן, עטלעכע מוראַשקע נעסץ האָבן קייפל קווינס, בשעת אנדערע מייַ עקסיסטירן אָן קווינס. טוערס מיט די פיייקייַט צו רעפּראָדוצירן זענען גערופֿן "גאַמערגאַטעס" און קאָלאָניעס אַז מאַנגל קווינס זענען דעמאָלט גערופֿן גאַמערגאַטע קאָלאָניעס; קאָלאָניעס מיט קווינס זענען געזאגט צו זייַן מאַלקע-רעכט. [65]
  1012.  
  1013. דראָנעס קענען אויך פּאָר מיט יגזיסטינג קווינס דורך קומט אַ פרעמד קאַלאַני. ווען די דראָון איז טכילעס קעגן דורך די טוערס, עס אַוטפּוץ אַ מייטינג Pheromone. אויב אנערקענט ווי אַ פּאָר, עס וועט זיין געטראגן צו די מלכּה צו פּאָר. [66] מאַלעס מייַ אויך פּאַטראָל די נעסט און קאַמף אנדערע דורך גראַבינג זיי מיט זייער מאַנדיבלעס, דורכנעמיק זייער עקסאָסקעלעטאָן און דעמאָלט מאַרקינג זיי מיט אַ Pheromone. די אנגעצייכנט זכר איז ינטערפּראַטאַד ווי אַ ינוויידער דורך אַרבעטער אַנץ און איז געהרגעט. [67]
  1014.  
  1015.  
  1016. פערטיליסעד פלייש-יטער מוראַשקע מלכּה אָנהייב צו גראָבן אַ נייַ קאַלאַני
  1017. רוב אַנץ זענען וניוואָלטינע, פּראַדוסינג אַ נייַ דור יעדער יאָר. [68] בעת די מינים-ספּעציפיש ברידינג צייַט, נייַ רעפּראָדוקטיוועס, פעמאַלעס, און באַפליגלט מאַלעס לאָזן די קאַלאַני אין וואָס איז גערופֿן אַ נופּטיאַל פלי. די נופּטיאַל פלי יוזשאַוואַלי נעמט אָרט אין די שפּעט פרילינג אָדער פרי זומער ווען די וועטער איז הייס און פייַכט. היץ מאכט פליענדיק גרינגער און פרעשלי געפֿאַלן רעגן מאכט די ערד ווייך פֿאַר מאַטעד קווינס צו גראָבן נעסץ. [69] מאַלעס טיפּיקלי נעמען פלי איידער די פעמאַלעס. מאַלעס דעמאָלט נוצן וויזשאַוואַל קיוז צו געפֿינען אַ פּראָסט מייטינג ערד, למשל, אַ לאַנדמאַרק אַזאַ ווי אַ סאָסנע בוים צו וואָס אנדערע מאַלעס אין דער געגנט קאַנווערדזש. מאַלעס פאַרבאָרגן אַ מייטינג Pheromone אַז פעמאַלעס נאָכגיין. מאַלעס וועט אָנקלאַפּן פעמאַלעס אין די לופט, אָבער די פאַקטיש מייטינג פּראָצעס יוזשאַוואַלי נעמט אָרט אויף דער ערד. פעמאַלעס פון עטלעכע מינים פּאָר מיט נאָר איין זכר אָבער אין אנדערע זיי מייַ פּאָר מיט ווי פילע ווי צען אָדער מער פאַרשידענע מאַלעס, סטאָרינג די זיירע אין זייער ספּערמאַטהעקאַע. [70]
  1018.  
  1019. מאַטעד פעמאַלעס דעמאָלט זוכן אַ פּאַסיק אָרט צו נעמען אַ קאַלאַני. עס, זיי ברעכן אַוועק זייערע פֿליגלען און אָנהייבן צו לייגן און זאָרגן פֿאַר עגגס. די פעמאַלעס קענען סאַלעקטיוולי פערטיליזע צוקונפֿט עגגס מיט די זיירע סטאָרד אָדער לייגן ונפערטיליזעד האַפּלאָיד עגגס צו פּראָדוצירן טוערס. דער ערשטער טוערס צו לוקע זענען שוואַך און קלענערער ווי שפּעטער טוערס, אָבער זיי נעמען צו דינען די קאַלאַני מיד. זיי פאַרגרעסערן די נעסט, פאָראַגע פֿאַר עסנוואַרג, און זאָרגן פֿאַר די אנדערע עגגס. מינים וואָס האָבן קייפל קווינס מייַ האָבן אַ מאַלקע געלאזן די נעסט צוזאמען מיט עטלעכע טוערס צו געפֿונען אַ קאַלאַני אין אַ נייַ פּלאַץ, [70] אַ פּראָצעס קרויוויש צו סוואָרמינג אין האָנייבעעס.
  1020.  
  1021. בעהאַוויאָור און עקאָלאָגי
  1022. קאָמוניקאַציע
  1023.  
  1024. צוויי קאַמפּאָנאָטוס סעריסעוס טוערס קאַמיונאַקייטינג דורך פאַרבינדן און פעראָמאָנעס
  1025. אַנץ יבערגעבן מיט יעדער אנדערע ניצן פעראָמאָנעס, סאָונדס, און פאַרבינדן. [71] די נוצן פון פעראָמאָנעס ווי כעמיש סיגנאַלז איז מער דעוועלאָפּעד אין אַנץ, אַזאַ ווי די רויט קאָמבייַן מוראַשקע, ווי אין אנדערע הימענאָפּטעראַן גרופּעס. ווי אנדערע ינסעקץ, אַנץ זע סמעללס מיט זייער לאַנג, דין, און רירעוודיק אַנטעני. די פּערד אַנטעני צושטעלן אינפֿאָרמאַציע וועגן די ריכטונג און ינטענסיטי פון סענץ. זינט רובֿ אַנץ לעבן אויף דער ערד, זיי נוצן די באָדן ייבערפלאַך צו לאָזן Pheromone טריילז אַז מייַ זייַן נאכגעגאנגען דורך אנדערע אַנץ. אין מינים אַז פאָראַגע אין גרופּעס, אַ פאָראַגער אַז פינדס עסנוואַרג מאַרקס אַ שטעג אויף דעם וועג צוריק צו די קאַלאַני; דעם שטעג איז נאכגעגאנגען דורך אנדערע אַנץ, די אַנץ דעמאָלט פאַרשטאַרקן די שטעג ווען זיי קאָפּ צוריק מיט עסנוואַרג צו די קאַלאַני. ווען דער עסנוואַרג מקור איז ויסגעמאַטערט, קיין נייַ טריילז זענען אנגעצייכנט דורך אומגעקערט אַנץ און דער רייעך סלאָולי דיסאַפּייץ. דאס אָפּפירונג העלפּס אַנץ האַנדלען מיט ענדערונגען אין זייער סוויווע. פֿאַר בייַשפּיל, ווען אַ געגרינדעט דרך צו אַ עסנוואַרג מקור איז בלאקירט דורך אַ שטערונג, די פאָראַגערס לאָזן דעם דרך צו ויספאָרשן נייַ רוץ. אויב אַ מוראַשקע איז מצליח, עס בלעטער אַ נייַ שטעג מאַרקינג די שאָרטיסט מאַרשרוט אויף זייַן צוריקקומען. מצליח טריילז זענען נאכגעגאנגען דורך מער אַנץ, רעינפאָרסינג בעסער רוץ און ביסלעכווייַז ידענטיפיינג דער בעסטער דרך. [72]
  1026.  
  1027. אַנץ נוצן פעראָמאָנעס פֿאַר מער ווי נאָר מאכן טריילז. א קראַשט מוראַשקע עמיץ אַ שרעק Pheromone אַז סענדז נירביי אַנץ אין אַ באַפאַלן Frenzy און אַטראַקץ מער אַנץ פון ווייַטער אַוועק. עטלעכע מוראַשקע מינים אַפֿילו נוצן "פּראָפּאַגאַנדע פעראָמאָנעס" צו צעטומלען פייַנט אַנץ און מאַכן זיי קעמפן צווישן זיך. [73] פעראָמאָנעס זענען Produced דורך אַ ברייט קייט פון סטראַקטשערז כולל דופאָור ס גלאַנדז, סם גלאַנדז און גלאַנדז אויף די הינדגוט, פּיגידיום, גראָבע קישקע, סטערנום, און הינד טיביאַ. [61] פעראָמאָנעס אויך זענען עקסטשאַנגעד, געמישט מיט עסנוואַרג, און דורכגעגאנגען דורך טראָפאַללאַקסיס, טראַנספעררינג אינפֿאָרמאַציע ין די קאַלאַני. [74] דאס אַלאַוז אנדערע אַנץ צו דיטעקט וואָס אַרבעט גרופּע (למשל, פאָראַגינג אָדער נעסט וישאַלט) אנדערע קאַלאַני מיטגלידער געהערן צו. [75] אין מוראַשקע מינים מיט מלכּה קאַסטעס, ווען די דאָמינאַנט מלכּה סטאַפּס פּראַדוסינג אַ ספּעציפיש Pheromone, טוערס אָנהייבן צו כאַפּן נייַ קווינס אין די קאַלאַני. [76]
  1028.  
  1029. עטלעכע אַנץ פּראָדוצירן סאָונדס דורך סטרידולאַטיאָן, ניצן די גאַסטער סעגמאַנץ און זייער מאַנדיבלעס. סאָונדס מייַ ווערן געניצט צו יבערגעבן מיט קאַלאַני מיטגלידער אָדער מיט אנדערע מינים. [77] [78]
  1030.  
  1031. Defence
  1032.  
  1033. א פּלעקטראָקטענאַ Sp. ארויסטריטן אן אנדער פון זייַן מין צו באַשיצן זייַן טעריטאָריע
  1034. זען אויך ינסעקט Defenses
  1035. אַנץ באַפאַלן און באַשיצן זיך דורך בייטינג און, אין פילע מינים, דורך סטינגינג, אָפֿט ינדזשעקטינג אָדער ספּרייינג קעמיקאַלז, אַזאַ ווי פאָרמיק זויער אין די פאַל פון פאָרמיסינע אַנץ, אַלקאַלוידז און פּיפּערידינעס אין פייַער אַנץ, און אַ פאַרשיידנקייַט פון פּראָטעין קאַמפּאָונאַנץ אין אנדערע אַנץ. קויל אַנץ (פּאַראַפּאָנעראַ), ליגן אין סענטראַל און דרום אַמעריקע, זענען געהאלטן צו האָבן די מערסט ווייטיקדיק שטעכן פון קיין ינסעקט, כאָטש עס איז יוזשאַוואַלי ניט פאַטאַל צו יומאַנז. דאס שטעכן איז געגעבן דעם העכסטן ראַנג אויף די שמיט סטינג פּיין ינדעקס.
  1036.  
  1037. די שטעכן פון דזשאַק דזשאַמפּער אַנץ קענען זייַן פאַטאַל, [79] און אַ אַנטיווענאָם האט שוין דעוועלאָפּעד פֿאַר עס. [80]
  1038.  
  1039. פייַער אַנץ, סאָלענאָפּסיס ספּפּ., זענען יינציק אין בעת ​​אַ סאַם סאַק מיט פּיפּערידינע אַלקאַלוידז. [81] זייער סטינגז זענען ווייטיקדיק און קענען זיין געפערלעך צו היפּערסענסיטיווע מענטשן. [82]
  1040.  
  1041.  
  1042. א וועבער מוראַשקע אין קאַמף שטעלע, מאַנדיבלעס ברייט עפענען
  1043. טראַפּ-קין אַנץ פון די מין אָדאָנטאָמאַטשוס זענען יקוויפּט מיט מאַנדיבלעס גערופֿן טראַפּ-דזשאָז, וואָס קנאַקן פאַרמאַכן Faster ווי קיין אנדערע באַפאַלעריש אַפּפּענדאַגעס ין די כייַע מלכות. [83] איין לערנען פון אָדאָנטאָמאַטשוס באַורי רעקאָרדעד שפּיץ ספּידז פון צווישן 126 און 230 קילאמעטער / ה (78 און 143 מ.פ.ש), מיט די דזשאָז קלאָוזינג ין 130 מיקראָסעקאָנדס אויף דורכשניטלעך. די אַנץ זענען אויך באמערקט צו נוצן זייער דזשאָז ווי אַ קאַטאַפּאַלט צו אַרויסוואַרפן ינטרודערז אָדער שלייַדערן זיך צוריק צו אַנטלויפן אַ סאַקאָנע. [83] איידער סטרייקינג, די מוראַשקע אָפּענס זייַן מאַנדיבלעס גאָר וויידלי און לאַקס זיי אין דעם פּאָזיציע דורך אַ ינערלעך מעקאַניזאַם. ענערגיע איז סטאָרד אין אַ דיק באַנדע פון ​​מוסקל און עקספּלאָסיוועלי רעלעאַסעד ווען טריגערד דורך די סטימיאַליישאַן פון סענסערי אָרגאַנס ריזעמבאַלינג כערז אויף די ין פון די מאַנדיבלעס. די מאַנדיבלעס אויך דערלויבן לאַנגזאַם און פייַן מווומאַנץ פֿאַר אנדערע טאַסקס. טראַפּ-דזשאָז אויך זענען געזען אין די ווייַטערדיק גענעראַ: אַנאָטשעטוס, אָרעקטאָגנאַטהוס, און סטרומיגעניס, [83] פּלוס עטלעכע מיטגלידער פון דער דאַסעטיני שבט, [84] וואָס זענען וויוד ווי יגזאַמפּאַלז פון קאָנווערגענט עוואָלוציע.
  1044.  
  1045. א Malaysian מינים פון מוראַשקע אין די קאַמפּאָנאָטוס סילינדריקוס גרופּע האט ענלאַרגעד מאַנדיבולאַר גלאַנדז וואָס פאַרברייטערן אין זייער גאַסטער. ווען דיסטורבעד, טוערס בראָך די מעמבראַנע פון ​​די גאַסטער, קאָזינג אַ פּלאַצן פון סאַקרישאַנז מיט אַסעטאָפענאָנעס און אנדערע קעמיקאַלז אַז ימאָובאַלייז קליין ינסעקט אַטאַקערז. די אַרבעטער דערנאָך דיעס. [85]
  1046.  
  1047. סואַסיידאַל Defenses דורך טוערס זענען אויך אנגעוויזן אין אַ בראַזיליאַן מוראַשקע, פאָרעליוס פּוסיללוס, ווו אַ קליין גרופּע פון ​​אַנץ בלעטער די זיכערהייַט פון די נעסט נאָך סילינג די אַרייַנגאַנג פון די אַרויס יעדער אָוונט. [86]
  1048.  
  1049.  
  1050. מוראַשקע בערגעלע האָלעס פאַרמייַדן וואַסער פון קומט די נעסט בעשאַס רעגן.
  1051. אין דערצו צו פאַרטיידיקונג קעגן פּרעדאַטערז, אַנץ דאַרפֿן צו באַשיצן זייער קאָלאָניעס פון פּאַטאַדזשאַנז. עטלעכע אַרבעטער אַנץ טייַנען די היגיענע פון ​​די קאַלאַני און זייער אַקטיוויטעטן אַרייַננעמען אונטערנעמונג אָדער נעקראָפאָרי, די באַזייַטיקונג פון טויט נעסט-מאַטעס. [87] אָלעיק זויער האט שוין ידענטיפיעד ווי די קאַמפּאַונד רעלעאַסעד פון טויט אַנץ אַז טריגערז נעקראָפאָריק נאַטור אין אַטטאַ מעקסיקאַנאַ [88] בשעת טוערס פון לינעפּיטהעמאַ הומילע רעאַגירן צו דער אַוועק פון קוואַליטעט קעמיקאַלז (דאָליטשאָדיאַל און ירידאָמירמעסין) פאָרשטעלן אויף די קוטיקלע פון ​​זייער לעבעדיק נעסטמאַטעס צו צינגל ענלעך נאַטור. [89]
  1052.  
  1053. נעסץ מייַ זיין פּראָטעקטעד פון גשמיות טרעץ אַזאַ ווי flooding און אָוווערכיטינג דורך פּראָטים נעסט אַרקאַטעקטשער. [90] [91] טוערס פון קאַטאַולאַקוס מוטיקוס, אַ אַרבאָרעאַל מינים וואָס לעבן אין פאַבריק כאַלאָוז, רעספּאָנד צו flooding דורך געטרונקען וואַסער ין דער נעסט, און עקסקרעטינג עס אַרויס. [92] קאַמפּאָנאָטוס אַנדערסעני, וואָס נעסץ אין די קאַוויטיז פון האָלץ אין מאַנגראָווע כאַבאַטאַץ, דילז מיט סובמערגענסע אונטער וואַסער דורך סוויטשינג צו אַנעראָוביק אָטעמען. [93]
  1054.  
  1055. לערנען
  1056. פילע אַנימאַלס קענען לערנען ביכייוויערז דורך נאָכמאַך, אָבער אַנץ מייַ זיין דער בלויז גרופּע באַזונדער פון מאַמאַלז ווו ינטעראַקטיוו לערערייַ האט שוין באמערקט. א נאַלאַדזשאַבאַל פאָראַגער פון טעמנאָטהאָראַקס אַלביפּענניס וועט פירן אַ נאַיוו נעסט-פּאָר צו ניי דיסקאַווערד עסנוואַרג דורך די פּראָצעס פון טאַנדאַם פליסנדיק. דעם נאכגייער באקומט וויסן דורך זייַן לידינג דאָצענט. די פירער איז אַקיוטלי שפּירעוודיק צו דער פּראָגרעס פון די נאכגייער און סלאָוז אַראָפּ ווען די נאכגייער לאַגס און ספּידז אַרויף ווען די נאכגייער געץ אויך נאָענט. [94]
  1057.  
  1058. קאָנטראָללעד יקספּעראַמאַנץ מיט קאָלאָניעס פון סעראַפּאַטשיס ביראָי פֿאָרשלאָגן אַז אַ יחיד מייַ קלייַבן נעסט ראָלעס באזירט אויף איר פרייַערדיק דערפאַרונג. אַ גאַנצן דור פון יידעניקאַל טוערס איז געווען צעטיילט אין צוויי גרופּעס וועמענס אַוטקאַם אין עסנוואַרג פאָראַגינג איז קאַנטראָולד. איין גרופּע איז געווען תמיד ריוואָרדיד מיט רויב, בשעת עס איז געווען געמאכט זיכער אַז די אנדערע ניט אַנדערש. ווי אַ רעזולטאַט, מיטגלידער פון די מצליח גרופּע געשטארקט זייער פאָראַגינג אַטטעמפּץ בשעת די ניט געראָטן גרופּע ווענטשערד אויס ווייניקערע און ווייניקערע מאל. א חודש שפּעטער, די מצליח פאָראַגערס געצויגן אין זייער ראָלע בשעת די אנדערע האט באווויגן צו ספּעשאַלייז אין פּליד זאָרגן. [95]
  1059.  
  1060. נעסט קאַנסטראַקשאַן
  1061. הויפּט אַרטיקל: מוראַשקע קאַלאַני
  1062. טעקע: אַמעיסען קראַבבעלנ.וועבם
  1063.  
  1064. בלאַט נעסט פון וועבער אַנץ, פּאַמאַליקאַן, פיליפינען
  1065. קאָמפּלעקס נעסץ זענען געבויט דורך פילע מוראַשקע מינים, אָבער אנדערע מינים זענען נאָומאַדיק און טאָן ניט בויען שטענדיק סטראַקטשערז. אַנץ מייַ פאָרעם סובטערראַנעאַן נעסץ אָדער בויען זיי אויף ביימער. די נעסץ מייַ זייַן געפֿונען אין דער ערד, אונטער שטיינער אָדער לאָגס, ין לאָגס, פּוסט סטעמס, אָדער אַפֿילו ייקאָרנז. די מאַטעריאַלס געניצט פֿאַר קאַנסטראַקשאַן אַרייַננעמען באָדן און פאַבריק ענין, [70] און אַנץ Carefully סעלעקטירן זייער נעסט זייטלעך; טעמנאָטהאָראַקס אַלביפּענניס וועט ויסמייַדן זייטלעך מיט טויט אַנץ, ווי די מייַ אָנווייַזן די בייַזייַן פון פּעסץ אָדער קרענק. זיי זענען שנעל צו פאַרלאָזן געגרינדעט נעסץ בייַ דער ערשטער צייכן פון טרעץ. [96]
  1066.  
  1067. די אַרמיי אַנץ פון דרום אַמעריקע, אַזאַ ווי די עסיטאָן בורטשעלליי מינים, און די שאָפער אַנץ פון Africa טאָן ניט בויען שטענדיק נעסץ, אָבער אַנשטאָט, בייַטנ לויט דער ריי צווישן נאָמאַדיסם און סטאַגעס ווו די טוערס פאָרעם אַ צייַטווייַליק נעסט (ביוואָואַק) פון זייער אייגן ללבער, דורך האלטן יעדער אנדערע צוזאַמען. [97]
  1068.  
  1069. וויווער אַנט (אָעקאָפיללאַ ספּפּ.) טוערס בויען נעסץ אין ביימער דורך אַטאַטשינג בלעטער צוזאַמען, ערשטער פּולינג זיי צוזאַמען מיט בריקן פון טוערס און דעמאָלט ינדוסינג זייער לאַרווי צו פּראָדוצירן זייַד ווי זיי זענען באווויגן צוזאמען די בלאַט עדזשאַז. ענלעך Forms פון נעסט קאַנסטראַקשאַן זענען געזען אין עטלעכע מינים פון פּאָלירהאַטשיס. [98]
  1070.  
  1071. פאָרמיקאַ פּאָליקטענאַ, צווישן אנדערע מוראַשקע מינים, קאַנסטראַקץ נעסץ אַז טייַנען אַ לעפיערעך קעסיידערדיק ינלענדיש טעמפּעראַטור אַז AIDS אין דער אַנטוויקלונג פון לאַרווי. די אַנץ טייַנען די נעסט טעמפּעראַטור דורך טשוזינג דעם אָרט, נעסט מאַטעריאַלס, קאַנטראָולינג ווענאַליישאַן און מיינטיינינג די היץ פון זונ ראַדיאַציע, אַרבעטער טעטיקייט און מאַטאַבאַליזאַם, און אין עטלעכע פייַכט נעסץ, מייקראָוביאַל טעטיקייט אין די נעסט מאַטעריאַלס. [99]
  1072.  
  1073. עטלעכע מוראַשקע מינים, אַזאַ ווי יענע וואָס נוצן נאַטירלעך קאַוויטיז, קענען זיין אַפּערטוניסטיק און מאַכן נוצן פון די קאַנטראָולד מיקראָ-קלימאַט ביטנייַ ין מענטש דוועלינגז און אנדערע קינסטלעך סטראַקטשערז צו הויז זייער קאָלאָניעס און נעסט סטראַקטשערז. [100] [101]
  1074.  
  1075. קולטיוואַטיאָן פון עסנוואַרג
  1076. הויפּט אַרטיקל: מוראַשקע-פונגוס מוטואַליסם
  1077.  
  1078. מירמעקאָסיסטוס, האָנייפּאָט אַנץ, קראָם עסנוואַרג צו פאַרמייַדן קאַלאַני הונגער
  1079. רוב אַנץ זענען דזשענעראַליסט פּרעדאַטערז, סקאַווענגערס, און ומדירעקט הערביוואָרעס, [24] אָבער אַ ביסל האָבן יוואַלווד ספּעשאַלייזד וועגן פון באקומען דערנערונג. עס איז געגלויבט אַז פילע מוראַשקע מינים אַז דינגען אין ומדירעקט הערביוואָרי רעלי אויף ספּעשאַלייזד סימבייאָוסאַס מיט זייער קישקע מייקראָובז [102] צו אַפּגרייד די נוטרישאַנאַל ווערט פון די עסנוואַרג זיי קלייַבן [103] און לאָזן זיי צו בלייַבנ לעבן אין ניטראָגען נעבעך מקומות, אַזאַ ווי ראַינפאָררעסט קאַנאָפּיעס . [104] לעאַפקוטטער אַנץ (אַטטאַ און אַקראָמירמעקס) קאָרמען אויסשליסלעך אויף אַ פונגוס אַז וואקסט בלויז ין זייער קאָלאָניעס. זיי תמיד זאַמלען בלעטער וואָס זענען גענומען צו די קאַלאַני, שנייַדן אין קליינטשיק ברעקלעך און געשטעלט אין פונגאַל גאַרדענס. טוערס ספּעשאַלייז אין Related טאַסקס לויט צו זייער סיזעס. די גרעסטן אַנץ שנייַדן סטאָקס, קלענערער טוערס קייַען די בלעטער און די קלענסטער טענד די פונגוס. לעאַפקוטטער אַנץ זענען שפּירעוודיק גענוג צו דערקענען די רעאַקציע פון ​​די פונגוס צו פאַרשידענע פאַבריק מאַטעריאַל, משמעות דיטעקטינג כעמיש סיגנאַלז פון די פונגוס. אויב אַ באַזונדער טיפּ פון בלאַט איז געפֿונען צו זייַן טאַקסיק צו די פונגוס, די קאַלאַני וועט ניט מער זאַמלען עס. די אַנץ קאָרמען אויף סטראַקטשערז Produced דורך די פונגי גערופֿן גאָנגילידיאַ. סימביאַטיק באַקטיריאַ אויף די יקסטיריער ייבערפלאַך פון די אַנץ פּראָדוצירן אַנטיביאַטיקס וואָס טייטן באַקטיריאַ באַקענענ אין די נעסט אַז מייַ שאַטן די פונגי. [105]
  1080.  
  1081. נאַוויגאַציע
  1082.  
  1083. אַ מוראַשקע שטעג
  1084. פאָראַגינג אַנץ אַרומפאָרן דיסטאַנסאַז אַרויף צו 200 מעטער (700 ft) פון זייער נעסט [106] און רייעך טריילז לאָזן זיי צו געפֿינען זייער וועג צוריק אַפֿילו אין די טונקל. אין הייס און טרוקן מקומות, טאָג-פאָראַגינג אַנץ פּנים טויט דורך דעסיקקאַטיאָן, אַזוי די פיייקייַט צו געפינען די שאָרטיסט מאַרשרוט צוריק צו דער נעסט ראַדוסאַז אַז ריזיקירן.
  1085.  
  1086.  
  1087.  
  1088.  
  1089.  
  1090.  
  1091.  
  1092.  
  1093.  
  1094.  
  1095.  
  1096.  
  1097.  
  1098.  
  1099.  
  1100.  
  1101.  
  1102.  
  1103.  
  1104.  
  1105.  
  1106.  
  1107.  
  1108.  
  1109.  
  1110.  
  1111.  
  1112.  
  1113.  
  1114.  
  1115.  
  1116.  
  1117.  
  1118.  
  1119.  
  1120.  
  1121.  
  1122.  
  1123.  
  1124.  
  1125.  
  1126.  
  1127.  
  1128.  
  1129.  
  1130.  
  1131.  
  1132.  
  1133.  
  1134.  
  1135.  
  1136.  
  1137.  
  1138.  
  1139.  
  1140.  
  1141.  
  1142.  
  1143.  
  1144.  
  1145.  
  1146.  
  1147.  
  1148.  
  1149.  
  1150.  
  1151.  
  1152.  
  1153.  
  1154.  
  1155.  
  1156.  
  1157.  
  1158.  
  1159.  
  1160.  
  1161.  
  1162.  
  1163.  
  1164.  
  1165.  
  1166.  
  1167.  
  1168.  
  1169.  
  1170.  
  1171.  
  1172.  
  1173.  
  1174.  
  1175.  
  1176.  
  1177.  
  1178.  
  1179.  
  1180.  
  1181.  
  1182.  
  1183.  
  1184.  
  1185.  
  1186.  
  1187.  
  1188.  
  1189.  
  1190.  
  1191.  
  1192.  
  1193.  
  1194.  
  1195.  
  1196.  
  1197.  
  1198.  
  1199.  
  1200.  
  1201.  
  1202.  
  1203.  
  1204.  
  1205.  
  1206.  
  1207.  
  1208.  
  1209.  
  1210.  
  1211.  
  1212.  
  1213.  
  1214.  
  1215.  
  1216.  
  1217.  
  1218.  
  1219.  
  1220.  
  1221.  
  1222.  
  1223.  
  1224.  
  1225.  
  1226.  
  1227.  
  1228.  
  1229.  
  1230.  
  1231.  
  1232.  
  1233.  
  1234.  
  1235.  
  1236.  
  1237.  
  1238.  
  1239.  
  1240.  
  1241.  
  1242.  
  1243.  
  1244.  
  1245.  
  1246.  
  1247.  
  1248.  
  1249.  
  1250.  
  1251.  
  1252.  
  1253.  
  1254.  
  1255.  
  1256.  
  1257.  
  1258.  
  1259.  
  1260.  
  1261.  
  1262.  
  1263.  
  1264.  
  1265.  
  1266.  
  1267.  
  1268.  
  1269.  
  1270.  
  1271.  
  1272.  
  1273.  
  1274.  
  1275.  
  1276.  
  1277.  
  1278.  
  1279.  
  1280.  
  1281.  
  1282.  
  1283.  
  1284.  
  1285.  
  1286.  
  1287.  
  1288.  
  1289.  
  1290.  
  1291.  
  1292.  
  1293.  
  1294.  
  1295.  
  1296.  
  1297.  
  1298.  
  1299.  
  1300.  
  1301.  
  1302.  
  1303.  
  1304.  
  1305.  
  1306.  
  1307.  
  1308.  
  1309.  
  1310.  
  1311.  
  1312.  
  1313.  
  1314.  
  1315.  
  1316.  
  1317.  
  1318.  
  1319.  
  1320.  
  1321.  
  1322.  
  1323.  
  1324.  
  1325.  
  1326.  
  1327.  
  1328.  
  1329.  
  1330.  
  1331.  
  1332.  
  1333.  
  1334.  
  1335.  
  1336.  
  1337.  
  1338.  
  1339.  
  1340.  
  1341.  
  1342.  
  1343.  
  1344.  
  1345.  
  1346.  
  1347.  
  1348.  
  1349.  
  1350.  
  1351.  
  1352.  
  1353.  
  1354.  
  1355.  
  1356.  
  1357.  
  1358.  
  1359.  
  1360.  
  1361.  
  1362.  
  1363.  
  1364.  
  1365.  
  1366.  
  1367.  
  1368.  
  1369.  
  1370.  
  1371.  
  1372.  
  1373.  
  1374.  
  1375.  
  1376.  
  1377.  
  1378.  
  1379.  
  1380.  
  1381.  
  1382.  
  1383.  
  1384.  
  1385.  
  1386.  
  1387.  
  1388.  
  1389.  
  1390.  
  1391.  
  1392.  
  1393.  
  1394.  
  1395.  
  1396.  
  1397.  
  1398.  
  1399.  
  1400.  
  1401.  
  1402.  
  1403.  
  1404.  
  1405.  
  1406.  
  1407.  
  1408.  
  1409.  
  1410.  
  1411.  
  1412.  
  1413.  
  1414.  
  1415.  
  1416.  
  1417.  
  1418.  
  1419.  
  1420.  
  1421.  
  1422.  
  1423.  
  1424.  
  1425.  
  1426.  
  1427.  
  1428.  
  1429.  
  1430.  
  1431.  
  1432.  
  1433.  
  1434.  
  1435.  
  1436.  
  1437.  
  1438.  
  1439.  
  1440.  
  1441.  
  1442.  
  1443.  
  1444.  
  1445.  
  1446.  
  1447.  
  1448.  
  1449.  
  1450.  
  1451.  
  1452.  
  1453.  
  1454.  
  1455.  
  1456.  
  1457.  
  1458.  
  1459.  
  1460.  
  1461.  
  1462.  
  1463.  
  1464.  
  1465.  
  1466.  
  1467.  
  1468.  
  1469.  
  1470.  
  1471.  
  1472.  
  1473.  
  1474.  
  1475.  
  1476.  
  1477.  
  1478.  
  1479.  
  1480.  
  1481.  
  1482.  
  1483.  
  1484.  
  1485.  
  1486.  
  1487.  
  1488.  
  1489.  
  1490.  
  1491.  
  1492.  
  1493.  
  1494.  
  1495.  
  1496.  
  1497.  
  1498.  
  1499.  
  1500.  
  1501.  
  1502.  
  1503.  
  1504.  
  1505.  
  1506.  
  1507.  
  1508.  
  1509.  
  1510.  
  1511.  
  1512.  
  1513.  
  1514.  
  1515.  
  1516.  
  1517.  
  1518.  
  1519.  
  1520.  
  1521.  
  1522.  
  1523.  
  1524.  
  1525.  
  1526.  
  1527.  
  1528.  
  1529.  
  1530.  
  1531.  
  1532.  
  1533.  
  1534.  
  1535.  
  1536.  
  1537.  
  1538.  
  1539.  
  1540.  
  1541.  
  1542.  
  1543.  
  1544.  
  1545.  
  1546.  
  1547.  
  1548.  
  1549.  
  1550.  
  1551.  
  1552.  
  1553.  
  1554.  
  1555.  
  1556.  
  1557.  
  1558.  
  1559.  
  1560.  
  1561.  
  1562.  
  1563.  
  1564.  
  1565.  
  1566.  
  1567.  
  1568.  
  1569.  
  1570.  
  1571.  
  1572.  
  1573.  
  1574.  
  1575.  
  1576.  
  1577.  
  1578.  
  1579.  
  1580.  
  1581.  
  1582.  
  1583.  
  1584.  
  1585.  
  1586.  
  1587.  
  1588.  
  1589.  
  1590.  
  1591.  
  1592.  
  1593.  
  1594.  
  1595.  
  1596.  
  1597.  
  1598.  
  1599.  
  1600.  
  1601.  
  1602.  
  1603.  
  1604.  
  1605.  
  1606.  
  1607.  
  1608.  
  1609.  
  1610.  
  1611.  
  1612.  
  1613.  
  1614.  
  1615.  
  1616.  
  1617.  
  1618. Suggest an edit
  1619. bahaltn
  1620. viki loves monuments: di velt 's grester fotografye farmest iz itst ofn! fotografye a histarishn plats, lernen mer vegn aundzer geshikhte, aun gevinen preyzaz.
  1621. das iz a aroysgeshtelte artikl. drikt do far mer informatsye. blat halb-protekted
  1622. murashke
  1623. fun vikipedye, di vikipedye
  1624. far andere nitst, zen ant (disambiguatyon).
  1625. ants
  1626. temporal keyt: 100-0 ma
  1627. preєєosdkptjkpgn
  1628. albyan - letste
  1629. fayer ants 01.jpg
  1630. a grupe fun ​​Fire ants.
  1631. visnshaftlekhe klasifikatsye E
  1632. kingdom: animalya
  1633. filum: arthropoda
  1634. klas: insekta
  1635. sdr: himenoptera
  1636. superfamili: vespoidea
  1637. mshpkhh: formisidae
  1638. latreille, 1809
  1639. tipe minim
  1640. formika rufa
  1641. linnaeus, 1761
  1642. subfamilyes
  1643. agroekomirmesinae
  1644. amblyoponinae (inkl. "apomirminae")
  1645. aneuretinae
  1646. † armaneynae
  1647. † brovnimeseynae
  1648. dolitshoderinae
  1649. dorilinae
  1650. ektatomminae
  1651. † formiseynae
  1652. formisinae
  1653. heteroponerinae
  1654. leptanillinae
  1655. martyalinae
  1656. mirmeseynae (inkl. "nothomirmeseynae")
  1657. mirmisinae
  1658. paraponerinae
  1659. ponerinae
  1660. proserateynae
  1661. pseudomirmesinae
  1662. † sfekomirminae
  1663. kladogram fun
  1664. subfamilyes [vayzn]
  1665. ants zenen eusosyal insekts fun der mshpkhh formisidae aun, tsuzamen mit di farbundene vasps aun biz, gehern tsu der sdr himenoptera. ants ivalvd fun vesp-vi oves in di kretaseous peryod, vegn 99,000,000 yorn tsurik aun diversifyed nokh di hekherung fun flowering gevixn. mer vi 12,500 fun a estimated gants fun 22,000 minim hobn shoyn klassifyed. [4] [5] zey zenen leykht identifyed durkh zeyer elboved anteni aun di opsheydndik node-vi binyen az Forms zeyer shlank vaists.
  1666.  
  1667. ants forem kolonyes vos keyt in greys fun a bisl tuts bafalerish mentshn lebedik in kleyn natirlekh kavitiz tsu hekhst organizirt kolonyes az may farnemen groys teratoriz aun tsunoyfshteln zikh fun milyanz fun mentshn. gresere kolonyes tsunoyfshteln zikh merstns fun sterile, vingless females molding kastes fun "tuers", "zelner", oder andere speshaleyzd grupes. kimat ale murashke kolonyes aoykh hobn etlekhe frukhtbar males gerufn "drounz" aun eyner oder mer frukhtbar females gerufn "kvins". di kolonyes zenen diskreybd vi superorganisms vayl di ants dershaynen tsu arbetn vi a unifyed entiti, kalektivli arbetn tsuzamen tsu shtitsn di kalani. [6] [7]
  1668.  
  1669. teke: blakkants-bredkrust-tokyo-may2015.vebm
  1670. (videa) ants tsunoyfkum esnvarg
  1671. ants hobn kalaneyzd kmet yeder landmass aoyf erd. der bloyz erter felndik indijanas ants zenen antarktika aun a bisl vayt oder inkhaspatabal inzlen. ants treyv in ruv ikousistamz aun may forem 15-25% fun di erdishe khaye beyamas. [8] zeyer htslkhh in azoy file inveyranmants hat shoyn atribyatad tsu zeyer gezelshaftlekh organizatsye aun zeyer feyikayt tsu modifitsirn khabatats, tsapn resursn, aun bashitsn zikh. zeyer lang gloybns-evolutsye mit andere minim hat gefirt tsu mimetik, kommensal, perasitik, aun mutualistik batsiungen. [9]
  1672.  
  1673. murashke saseyatiz hobn opteyl fun arbet, komunikatsye tsvishn mentshn, aun a feyikayt tsu solve komplex problems. [10] di peralelz mit mentshlekh saseyatiz hobn lang shoyn an inspiratsye aun auntertenik fun lernen. file mentshlekh kaltsherz makhn nutsn fun ants in kvizin, medakeyshan, aun ritshualz. etlekhe minim zenen valiud in zeyer role vi beyalajikal pest kontrol agentn. [11] zeyer feyikayt tsu gvure resursn may brengen ants in gerangl mit iumanz, ober, vi zey kenen shedikn kraps aun bafaln bninim. etlekhe minim, aza vi di royt importid fayer ant (solenopsis invikta), zenen gekukt vi inveysiv minim, grindn zikh in gebitn vu zey hobn shoyn bakenen axadenali. [12]
  1674.  
  1675. inhalt [bahaltn]
  1676. 1 etimologi
  1677. 2 taxanamye aun evalushan
  1678. 3 distributyon aun deyversiti
  1679. 4 morfologi
  1680. 4.1 kop
  1681. 4.2 legs
  1682. 4.3 vings
  1683. 4.4 metasoma
  1684. 4.5 polimorfism
  1685. 5 lebn tsikl
  1686. 5.1 reproduktsye
  1687. 6 behavyour aun ekologi
  1688. 6.1 komunikatsye
  1689. 6.2 Defence
  1690. 6.3 lernen
  1691. 6.4 nest kanstrakshan
  1692. 6.5 kultivatyon fun esnvarg
  1693. 6.6 navigatsye
  1694. 6.7 lokomotyon
  1695. 6.8 kooperatyon aun farmest
  1696. 6.9 batsiungen mit andere organizamz
  1697. 7 relatyonship mit iumanz
  1698. 7.1 vi esnvarg
  1699. 7.2 vi pests
  1700. 7.3 in visnshaft aun tekhnologye
  1701. 7.4 in kultur
  1702. 8 ze aoykh
  1703. 9 referentsn
  1704. 9.1 dermant texts
  1705. 10 veyter leyenen
  1706. 11 external linx
  1707. etimologi
  1708. der vort "murashke" iz dereyvd fun Ante, emete fun ​​mitl english vos zenen dereyvd fun ǣmette fun ​​alte english, aun iz sheykh tsu di dyalektal holendish emt aun di alte hoykh daytsh āmeiza, deriber di modern daytsh ameise. khl fun di verter kumen fun merb germanik * ēmaitijǭ, aun der originel taytsh fun der vort iz geven "di biter" (fun proto-germanik * ai-, "avek, avek" + * mait- "shnaydn"). [13] [ 14] di mshpkhh nomen formisidae iz dereyvd fun di redagirn formīka ( "murashke") [15] fun vos di verter in andere romans shprakhn, aza vi di portugezish formiga, italyenish formika, shpanish hormiga, rumenish furnikă, aun frantsoyzish fourmi bist dereyvd. es hat shoyn hipothesised az a proto-indo-European vort * morvi- iz genitst, kf. sanskrit vamrah, redagirn formīka, grikhish μύρμηξ mýrmēx, alte khilh slavonik mraviji, ishn irish moirb, ishn norse maurr, holendish myer. [16]
  1709.  
  1710. taxanamye aun evalushan
  1711.  
  1712. ants fossilized in baltik burshtin
  1713. akuleata
  1714.  
  1715. tshrisidoidea
  1716.  
  1717.  
  1718.  
  1719.  
  1720. vespidae
  1721.  
  1722.  
  1723. rhopalosomatidae
  1724.  
  1725.  
  1726.  
  1727.  
  1728.  
  1729. pompilidae
  1730.  
  1731.  
  1732. tifeydae
  1733.  
  1734.  
  1735.  
  1736.  
  1737. skolyoidea
  1738.  
  1739.  
  1740.  
  1741. apoidea
  1742.  
  1743.  
  1744. formisidae
  1745.  
  1746.  
  1747.  
  1748.  
  1749.  
  1750.  
  1751. filogenetik shtele fun ​​di formisidae. [17]
  1752. di mshpkhh formisidae gehert tsu di sdr himenoptera, vos aoykh khull savflyes, biz, aun vasps. ants ivalvd fun a eykhes in di akuleate vasps, aun a 2013 lernen sagjests az zey zenen a shvester grupe fun ​​di apoidea. [17] in 1966, i ou vilson aun zeyn khbrim identifyed di Fossil bleybt fun a murashke (sfekomirma) az gelebt in di kretaseous peryod. di spesaman, trapt in burshtin deyting tsurik tsu arum 92,000,000 yar tsurik, hat feikeytn gefunen in etlekhe vasps, ober nisht gefunen in modern ants. [18] sfekomirma efsher iz geven a erd forager, bshes haidomirmex aun haidomirmodes, sheykh genera in subfamili sfekomirminae, zenen rikanstraktid vi aktiv arboreal predaterz. [19] elter ants in di min sfekomirmodes hobn shoyn gefunen in 99,000,000 yor-alt burshtin fun myanmar. [20] [21] nokh di hekherung fun flowering gevixn vegn 100 milyon yar tsurik zey diversifyed aun angenumen ekalajikal damanans arum 60 milyon yar tsurik. [22] [23] [24] [25] etlekhe grupes, aza vi di leptanillinae aun martyalinae, zenen sagjestid tsu hobn diversifyed fun fri primitiv ants vos zenen mstma tsu hobn shoyn predaterz unter der eyberflakh fun dem bodn. [2] [26]
  1753.  
  1754. bes di kretaseous tsayt, a bisl minim fun primitiv ants reynjd veydli aoyf di laurasyan superkontinent (di nordern halbkaylekh). zey zenen karg in farglaykh tsu di papyaleyshanz fun andere insekts, reprizenting bloyz vegn 1% fun di gantse insekt bafelkerung. ants gevarn dominant nokh adaptiv radyatsye in di onheyb fun di paleogene peryod. durkh dem oligosene aun myosene, ants hat kumen tsu forshteln 20-40% fun ale insekts gefunen in hoypt Fossil dipazats. fun di minim vos gelebt in di eosene epotsh, arum eyn in 10 genera blaybn lebn tsu di prezent. genera serveyving haynt kampreyz 56% fun di genera in baltik burshtin fossils (fri oligosene), aun 92% fun di genera in dominikan burshtin fossils (mshmeus fri myosene). [22] [27]
  1755.  
  1756. termites, khotsh mal gerufn 'vays ants', zenen nisht ants. zey gehern tsu der sab-sdr isoptera in di sdr blattodea. termites zenen mer eng sheykh tsu kakroutshiz aun mantids. termites zenen eusosyal, ober andersh zayn shtark in di janetix fun reproduktsye. di enlekhkayt fun zeyer gezelshaftlekh struktur tsu vos fun ants iz atribyatad tsu konvergent evolutsye. [28] samet ants kukn vi groys ants, ober zenen vingless vayblekh vasps. [29] [30]
  1757.  
  1758. farshpreytung aun deyversiti
  1759. kant numer fun
  1760. minim [31]
  1761. neotropix 2162
  1762. nearktik 580
  1763. eyrope 180
  1764. AFRICA 2500
  1765. azye 2080
  1766. Melanesia 275
  1767. aoystralye 985
  1768. polinesya 42
  1769. ants zenen gefunen aoyf ale kantanants akhuts antarktika, aun bloyz a bisl groys inzlen, aza vi grinland, iseland, parts fun polinesya aun di havaeyan inzlen mangl geboyrn murashke minim. [32] [33] ants farnemen a breyt keyt fun ekalajikal nitshiz aun gvure file farshidene esnvarg resursn vi direkt oder umdirekt herbivores, predaterz aun skavengers. rub murashke minim zenen omnivorous generalists, ober a bisl zenen mumkhe feeders. zeyer ekalajikal damanans iz demanstreytid durkh zeyer beyamas: ants zenen estimated tsu kontribute 15-20% (aoyf durkhshnitlekh aun kimat 25% in di trapix) fun erdishe khaye beyamas, ixiding az fun di vertebrates. [8]
  1770.  
  1771. ants keyt in greys 0.75-52 milamiterz (.030-2.0 in), [34] [35] dem grestn minim veyl di Fossil titanomirma giganteum, di mlkh fun vos iz geven 6 sentimeter (2.4 in) lang mit a vingspan fun 15 sentimeter ( 5.9 in). [36] ants baytn in kolirn; ruv ants zenen royt oder shvarts, ober a bisl minim zenen grin aun etlekhe trapikal minim hobn a metallik laster. mer vi 12,000 minim zenen itst gekent (mit aoybershter estamats fun di potentsyel ekzistents fun vegn 22,000) (zen dem artikl rshimh fun murashke genera), mit di greste deyversiti in di trapix. taxonomik shtudium forzetsn tsu haltn di greyding aun sistematix fun ants. onleyn databeysiz fun murashke minim, khull antbase aun di himenoptera namen servirer, helfn tsu haltn shpur fun di bakant aun ney diskreybd minim. [37] di korev iz mit vos ants may zayn sampald aun gelernt in ikousistamz hat gemakht zey nutslekh vi gradn minim in beyoudeyversati shtudium. [38] [39]
  1772.  
  1773. morfologi
  1774. ants zenen boylet in zeyer morfologi fun andere insekts in nakhdem elboved anteni, metapleural glandz, aun a shtark kanstrikshan fun zeyer rge abdominal opshnit in a node-vi petyole. di kop, mesosoma, aun metasoma zenen di dray boylet guf segmants. di petyole Forms a shmol talye tsvishn zeyer mesosoma (thorax plus di ershter abdominal opshnit, vos iz fused tsu es) aun gaster (boykh veyniker di abdominal segmants in di petyole). di petyole may zayn gegrindet durkh eyn oder tsvey noudz (di rge aleyn, oder di rge aun drit abdominal segmants). [40]
  1775.  
  1776.  
  1777. bik murashke vayzung di shtark mandibles aun di lefyerekh groys kampaund aoygn az tsushteln oysgetseykhnt zeaung
  1778. vi andere insekts, ants hobn a exoskeleton, a fundroysndik kavering az git a pratektiv keysing arum dem guf aun a funt fun atatshmant far masalz, in kantrast tsu di inerlekh skelatanz fun iumanz aun andere vertebrates. insekts ton nit hobn lungen; zoyershtof aun andere gasaz, aza vi tshad deyaxeyd, forn durkh zeyer exoskeleton durkh kleyntshik valvz gerufn spirakles. insekts aoykh mangl farmakht blut khlim; anshtot, zey hobn a lang, din, perforated rer tsuzamen di shpits fun di guf (gerufn di "dorsal aorta") az feikeytn vi a harts, aun pamps haemolimf tsu di kop, azoy dreyving di serkyaleyshan fun di inerlekh floyds. di nervez sistem bashteyt fun a ventral nerv shnur az ranz di leng fun di guf, mit etlekhe ganglya aun tsveygn tsuzamen di veg ritshing in di ixtrematiz fun di appendages. [41]
  1779.  
  1780.  
  1781. dyagrame fun ​​a arbeter ant (patshikondila verenae)
  1782. kop
  1783. a murashke s kop kull file senseri organs. vi ruv insekts, ants hobn kampaund aoygn gemakht fun skh kleyntshik lenses atatsht tsuzamen. murashke aoygn zenen gut far akute bavegung ditekshan, ober ton nit forshlogn a hoykh hakhlote bild. zey aoykh hobn dray kleyn oselli (pshut aoygn) aoyf di shpits fun di kop az ditekt likht levels aun polarizatyon. [42] kamperd tsu vertebrates, ruv ants hobn nebekh-tsu-mitlmesik rye aun a bisl subterranean minim zenen gor blind. ober, etlekhe ants, aza vi aoystralye s buldog murashke, hobn oysgetseykhnt zeaung aun zenen toygevdik fun diskrimaneyting di distanse aun greys fun abjex moving kimat a meter avek. [43]
  1784.  
  1785. tsvey anteni ( "feelers") zenen atatsht tsu di kop; di organs ditekt kemikalz, luft kerants, aun veybreyshanz; zey aoykh zenen genitst tsu ibershikn aun bakumen signalz durkh farbindn. der kop hat tsvey shtark joz, di mandibles, geveynt tsu firn esnvarg, manipulirn abjex, boyen nests, aun far farteydikung. [41] in etlekhe minim, a kleyn keshene (infrabukkal kamer) in di moyl storz esnvarg, azoy es may zayn durkhgegangen tsu andere ants oder zeyer larvi. [44]
  1786.  
  1787. legs
  1788. ale zex legs zenen atatsht tsu di mesosoma ( "thorax") aun farendikn in a khukt krel.
  1789.  
  1790. vings
  1791. bloyz reproduktive ants, kvins, aun males, hobn fliglen. kvins opdakh zeyere fliglen nokh di nuptyal fli, gelazn kentik stabz, a distinggvishing shtrikh fun kvins. in a bisl minim, vingless kvins (ergatoids) aun males pasirn. [41]
  1792.  
  1793. metasoma
  1794. di metasoma (di "boykh") fun di murashke heyzer vikhtik inerlekh organs, khull yene fun ​​di reproduktive, resperatori (tratsheae), aun exkretori sistems. tuers fun file minim hobn zeyer ey-instalirung straktsherz modified zikh stingz az zenen genitst far subdoyng royb aun defending zeyer nests. [41]
  1795.  
  1796. polimorfism
  1797.  
  1798. zibn leafkutter murashke tuers fun farshidn kastes (linx) aun tsvey kvins (rekht)
  1799. in di kolonyes fun a bisl murashke minim, es zenen gshmius kastes-tuers in boylet greys-klasn, gerufn minervertik, midyan, aun hoypt tuers. oft, di gresere ants hobn dispraporshanatli gresere kep, aun koraspandingli strongger mandibles. aza mentshn zenen a mal gerufn "zelner" ants vayl zeyer strongger mandibles makhn zey mer efektiv in kamf, khotsh zey nokh zenen tuers aun zeyer "dutiz" tipikli ton nit baytn zeyer fun di minervertik oder midyan tuers. in a bisl minim, di midyan tuers zenen nito, kreyiting a sharf tseteyln tsvishn di meynerz aun meyjerz. [45] viver ants, lmshl, hobn a boylet bimodal greys farshpreytung. [46] [47] etlekhe andere minim vayzn keseyderdik vereyishan in di numer fun tuers. der klenster aun grester tuers in feidologeton diversus vayzn kimat a 500-farleygn khiluk in zeyer trukn-veyts. [48] tuers kenen nit por; ober, vayl fun di haplodiploid geshlekht-festkayt sistem in ants, tuers fun a numer fun minim kenen leygn unfertilised eggs az vern gor frukhtbar, haploid males. di role fun ​​tuers may toyshn mit zeyer elter aun in etlekhe minim, aza vi honeypot ants, iung tuers zenen gefitert biz zeyer gasters zenen distended, aun akt vi lebedik esnvarg storij khlim. di esnvarg storij tuers zenen gerufn repletes. [49] far bayshpil, di riplit tuers antviklen in di tsfun amerikaner honeypot murashke mirmekosistus mexikanus. usualli dem grestn tuers in di kalani antviklen in repletes; aun, aoyb repletes zenen avekgenumen fun di kalani, andere tuers vern repletes, demanstreyting di beygikayt fun dem bazunder polimorfism. [50] das polimorfism in morfologi aun natur fun tuers tkhiles iz geven gedank tsu zeyn bashlasn durkh inveyranmenal sibus aza vi dernerung aun khormounz az gefirt tsu farshidene divelapmenal pats; ober, genetik khiluk tsvishn arbeter kastes hobn shoyn angevizn in akromirmex Sp. [51] di polimorfisms zenen gefirt durkh lefyerekh kleyn genetik enderungen; Differences in a eyn gene fun ​​solenopsis invikta kenen bashlisn tsi di kalani vet hobn eyn oder keyfl kvins. [52] di australyan jak jamper ant (mirmesya pilosula) hat bloyz a eyn por fun tshromosomes (mit di males veyl nor eyn khromosom vi zey zenen haploid), di louast numer bakant far keyn khaye, makhn es a tshikave untertenik far shtudium in di janetix aun divelapmenal byologi fun gezelshaftlekh insekts. [53] [54]
  1800.  
  1801. lebn tsikl
  1802.  
  1803. fleysh iter murashke nest beshas svorming
  1804. der lebn fun a murashke starts fun a ey. aoyb der ey iz fertilized, di nokhkum vet zeyn vayblekh diploid; aoyb nisht, es vet zeyn zkhr haploid. ants antviklen durkh gants metamorfosis mit di larva stages pasing durkh a pupal bine eyder imerjing vi a dervaxn. di larva iz largeli immobile aun iz gefitert aun kerd far durkh tuers. esnvarg iz gegebn tsu di larvi durkh trofallaxis, a protses in vos a murashke regurgitates flisik esnvarg gehaltn in zayn geretenish. das iz aoykh vi adalts teyln esnvarg, stord in di "gezelshaftlekh mogn". larvi, spetsyel in di shpeter stages, may aoykh zeyn tsugeshtelt hart esnvarg, aza vi trofik eggs, breklekh fun royb, aun zamen gebrakht durkh tuers.
  1805.  
  1806. di larvi vaxn durkh a serye fun ​​fir oder finf moults aun arayn di pupal bine. di piupa hat di appendages poter aun nisht fused tsu dem guf vi in a flaterl piupa. [55] di differentyatyon in kvins aun tuers (vos zenen beyde vayblekh), aun farshidene kastes fun tuers, iz influensed in etlekhe minim durkh di dernerung di larvi krign. genetik influenses aun di kontrol fun gene aoysdruk durkh di divelapmenal svive zenen komplitsirt aun di festkayt fun kast halt tsu zeyn a untertenik fun forshung. [56] vinged zkhr ants, gerufn drounz, aroyskumen fun pupae tsuzamen mit di iuzhali bafliglt briding females. etlekhe minim, aza vi armey ants, hobn vingless kvins. larvi aun pupae darfn tsu zeyn gehaltn bay fairli keseyderdik temperatures tsu enshur geherik antviklung, aun azoy oft, zenen bavoygn arum tsvishn di farshidn plid tsheymberz in di kalani. [57]
  1807.  
  1808. a nay arbeter spenz der ershter bisl teg fun zayn dervaxn lebn karing far di mlkh aun iung. zi demolt grajavats tsu diging aun andere nest arbet, aun shpeter tsu defending di nest aun foraging. di enderungen zenen mal fairli plutsemdik, aun definirn vos zenen gerufn tsaytedik kastes. a derklerung far di sikvans iz sagjestid durkh di hoykh kazhaltiz invalvd in foraging, makhn es a pasik rizikirn nor far ants vas zenen elter aun zenen mstma tsu shtarbn bald fun natirlekh z. [58] [59]
  1809.  
  1810. murashke kolonyes kenen zayn lang-gelebt. di kvins kenen lebn far aroyf tsu 30 yar, aun tuers lebn 1-3 yar. males, ober, zenen mer transitori, veyl gants kurts-gelebt aun serveyving far bloyz a bisl vokhn. [60] murashke kvins zenen estimated tsu lebn 100 mal vi lang vi eynzam insekts fun a enlekh greys. [61]
  1811.  
  1812. ants zenen aktiv ale yor lang in di trapix, ober, in kuler mkumus, zey blaybn lebn der vinter in a shtat fun dormansi oder inaktiviti. di Forms fun inaktiviti zenen verid aun etlekhe temperat minim hobn larvi gegangen in di inaktiv shtat, (dyapause), bshes in andere, di adalts aleyn forn di vinter in a shtat fun ridust tetikeyt. [62]
  1813.  
  1814. reproduktsye
  1815.  
  1816. ants meyting
  1817. a breyt keyt fun reproduktive strategyes hobn shoyn angevizn in murashke minim. females fun file minim zenen bakant tsu zeyn toygevdik fun reprodusing asexualli durkh thelitokous parthenogenesis. [63] sakrishanz fun di zkhr axeseri glandz in etlekhe minim kenen tsapn di vayblekh jenatal efn aun farmaydn females fun shayekh-meyting. [64] rub murashke minim hobn a sistem in vos nor der mlkh aun briding females hobn di feyikayt tsu por. farkert tsu folx gloybn, etlekhe murashke nests hobn keyfl kvins, bshes andere may existirn on kvins. tuers mit di feyikayt tsu reprodutsirn zenen gerufn "gamergates" aun kolonyes az mangl kvins zenen demolt gerufn gamergate kolonyes; kolonyes mit kvins zenen gezagt tsu zayn malke-rekht. [65]
  1818.  
  1819. drones kenen aoykh por mit igzisting kvins durkh kumt a fremd kalani. ven di droun iz tkhiles kegn durkh di tuers, es autputs a meyting Pheromone. aoyb anerkent vi a por, es vet zeyn getragn tsu di mlkh tsu por. [66] males may aoykh patrol di nest aun kamf andere durkh grabing zey mit zeyer mandibles, durkhnemik zeyer exoskeleton aun demolt marking zey mit a Pheromone. di angetseykhnt zkhr iz interpratad vi a inveyder durkh arbeter ants aun iz gehrget. [67]
  1820.  
  1821.  
  1822. fertilised fleysh-iter murashke mlkh onheyb tsu grobn a nay kalani
  1823. rub ants zenen univoltine, pradusing a nay dur yeder yor. [68] bes di minim-spetsifish briding tsayt, nay reproduktives, females, aun bafliglt males lozn di kalani in vos iz gerufn a nuptyal fli. di nuptyal fli iuzhavali nemt ort in di shpet friling oder fri zumer ven di veter iz heys aun faykht. hits makht flyendik gringer aun freshli gefaln regn makht di erd veykh far mated kvins tsu grobn nests. [69] males tipikli nemen fli eyder di females. males demolt nutsn vizhaval kiuz tsu gefinen a prost meyting erd, lmshl, a landmark aza vi a sosne boym tsu vos andere males in der gegnt kanverj. males farborgn a meyting Pheromone az females nokhgeyn. males vet onklapn females in di luft, ober di faktish meyting protses iuzhavali nemt ort aoyf der erd. females fun etlekhe minim por mit nor eyn zkhr ober in andere zey may por mit vi file vi tsen oder mer farshidene males, storing di zeyre in zeyer spermathekae. [70]
  1824.  
  1825. mated females demolt zukhn a pasik ort tsu nemen a kalani. es, zey brekhn avek zeyere fliglen aun onheybn tsu leygn aun zorgn far eggs. di females kenen salektivli fertilize tsukunft eggs mit di zeyre stord oder leygn unfertilized haploid eggs tsu produtsirn tuers. der ershter tuers tsu luke zenen shvakh aun klenerer vi shpeter tuers, ober zey nemen tsu dinen di kalani mid. zey fargresern di nest, forage far esnvarg, aun zorgn far di andere eggs. minim vos hobn keyfl kvins may hobn a malke gelazn di nest tsuzamen mit etlekhe tuers tsu gefunen a kalani in a nay plats, [70] a protses kroyvish tsu svorming in honeybees.
  1826.  
  1827. behavyour aun ekologi
  1828. komunikatsye
  1829.  
  1830. tsvey kamponotus seriseus tuers kamiunakeyting durkh farbindn aun feromones
  1831. ants ibergebn mit yeder andere nitsn feromones, sounds, aun farbindn. [71] di nutsn fun feromones vi khemish signalz iz mer developed in ants, aza vi di royt kombayn murashke, vi in andere himenopteran grupes. vi andere insekts, ants ze smells mit zeyer lang, din, aun rirevdik anteni. di perd anteni tsushteln informatsye vegn di rikhtung aun intensiti fun sents. zint ruv ants lebn aoyf der erd, zey nutsn di bodn eyberflakh tsu lozn Pheromone treylz az may zayn nakhgegangen durkh andere ants. in minim az forage in grupes, a forager az finds esnvarg marx a shteg aoyf dem veg tsurik tsu di kalani; dem shteg iz nakhgegangen durkh andere ants, di ants demolt farshtarkn di shteg ven zey kop tsurik mit esnvarg tsu di kalani. ven der esnvarg mkur iz oysgematert, keyn nay treylz zenen angetseykhnt durkh aumgekert ants aun der reyekh slouli disapeyts. das opfirung helps ants handlen mit enderungen in zeyer svive. far bayshpil, ven a gegrindet drkh tsu a esnvarg mkur iz blakirt durkh a shterung, di foragers lozn dem drkh tsu oysforshn nay ruts. aoyb a murashke iz mtslikh, es bleter a nay shteg marking di shortist marshrut aoyf zayn tsurikkumen. mtslikh treylz zenen nakhgegangen durkh mer ants, reinforsing beser ruts aun bislekhvayz identifeyng der bester drkh. [72]
  1832.  
  1833. ants nutsn feromones far mer vi nor makhn treylz. a krasht murashke emits a shrek Pheromone az sendz nirbey ants in a bafaln Frenzy aun atrakts mer ants fun vayter avek. etlekhe murashke minim afilu nutsn "propagande feromones" tsu tsetumlen faynt ants aun makhn zey kemfn tsvishn zikh. [73] feromones zenen Produced durkh a breyt keyt fun straktsherz khull dufour s glandz, sm glandz aun glandz aoyf di hindgut, pigidium, grobe kishke, sternum, aun hind tibya. [61] feromones aoykh zenen extshanged, gemisht mit esnvarg, aun durkhgegangen durkh trofallaxis, transferring informatsye in di kalani. [74] das alauz andere ants tsu ditekt vos arbet grupe (lmshl, foraging oder nest oyshalt) andere kalani mitglider gehern tsu. [75] in murashke minim mit mlkh kastes, ven di dominant mlkh staps pradusing a spetsifish Pheromone, tuers onheybn tsu khapn nay kvins in di kalani. [76]
  1834.  
  1835. etlekhe ants produtsirn sounds durkh stridulatyon, nitsn di gaster segmants aun zeyer mandibles. sounds may vern genitst tsu ibergebn mit kalani mitglider oder mit andere minim. [77] [78]
  1836.  
  1837. Defence
  1838.  
  1839. a plektroktena Sp. aroystritn an ander fun zayn min tsu bashitsn zayn teritorye
  1840. zen aoykh insekt Defenses
  1841. ants bafaln aun bashitsn zikh durkh beyting aun, in file minim, durkh stinging, oft injekting oder spreying kemikalz, aza vi formik zoyer in di fal fun formisine ants, alkaloydz aun piperidines in fayer ants, aun a farsheydnkayt fun protein kampounants in andere ants. koyl ants (paraponera), lign in sentral aun drum amerike, zenen gehaltn tsu hobn di merst veytikdik shtekhn fun keyn insekt, khotsh es iz iuzhavali nit fatal tsu iumanz. das shtekhn iz gegebn dem hekhstn rang aoyf di shmit sting peyn index.
  1842.  
  1843. di shtekhn fun jak jamper ants kenen zayn fatal, [79] aun a antivenom hat shoyn developed far es. [80]
  1844.  
  1845. fayer ants, solenopsis spp., zenen eyntsik in bes ​​a sam sak mit piperidine alkaloydz. [81] zeyer stingz zenen veytikdik aun kenen zeyn geferlekh tsu hipersensitive mentshn. [82]
  1846.  
  1847.  
  1848. a veber murashke in kamf shtele, mandibles breyt efenen
  1849. trap-kin ants fun di min odontomatshus zenen ikvipt mit mandibles gerufn trap-joz, vos knakn farmakhn Faster vi keyn andere bafalerish appendages in di khaye mlkhus. [83] eyn lernen fun odontomatshus bauri rekorded shpits spidz fun tsvishn 126 aun 230 kilameter / h (78 aun 143 m.f.sh), mit di joz klouzing in 130 mikrosekonds aoyf durkhshnitlekh. di ants zenen aoykh bamerkt tsu nutsn zeyer joz vi a katapalt tsu aroysvarfn intruderz oder shlaydern zikh tsurik tsu antloyfn a sakone. [83] eyder streyking, di murashke opens zayn mandibles gor veydli aun lax zey in dem pozitsye durkh a inerlekh mekanizam. energye iz stord in a dik bande fun ​​muskl aun explosiveli released ven trigerd durkh di stimyaleyshan fun senseri organs rizembaling kherz aoyf di in fun di mandibles. di mandibles aoykh derloybn langzam aun fayn mvumants far andere tasx. trap-joz aoykh zenen gezen in di vayterdik genera: anotshetus, orektognathus, aun strumigenis, [83] plus etlekhe mitglider fun der dasetini shbt, [84] vos zenen viud vi igzampalz fun konvergent evolutsye.
  1850.  
  1851. a Malaysian minim fun murashke in di kamponotus silindrikus grupe hat enlarged mandibular glandz vos farbreytern in zeyer gaster. ven disturbed, tuers brokh di membrane fun ​​di gaster, kozing a platsn fun sakrishanz mit asetofenones aun andere kemikalz az imoubaleyz kleyn insekt atakerz. di arbeter dernokh dyes. [85]
  1852.  
  1853. suaseydal Defenses durkh tuers zenen aoykh angevizn in a brazilyan murashke, forelius pusillus, vu a kleyn grupe fun ​​ants bleter di zikherhayt fun di nest nokh siling di arayngang fun di aroys yeder ovnt. [86]
  1854.  
  1855.  
  1856. murashke bergele holes farmaydn vaser fun kumt di nest beshas regn.
  1857. in dertsu tsu farteydikung kegn predaterz, ants darfn tsu bashitsn zeyer kolonyes fun patajanz. etlekhe arbeter ants taynen di higyene fun ​​di kalani aun zeyer aktivitetn araynnemen aunternemung oder nekrofori, di bazaytikung fun toyt nest-mates. [87] oleik zoyer hat shoyn identifyed vi di kampaund released fun toyt ants az trigerz nekroforik natur in atta mexikana [88] bshes tuers fun linepithema humile reagirn tsu der avek fun kvalitet kemikalz (dolitshodyal aun iridomirmesin) forshteln aoyf di kutikle fun ​​zeyer lebedik nestmates tsu tsingl enlekh natur. [89]
  1858.  
  1859. nests may zeyn protekted fun gshmius trets aza vi flooding aun ovuerkhiting durkh protim nest arkatektsher. [90] [91] tuers fun kataulakus mutikus, a arboreal minim vos lebn in fabrik khalouz, respond tsu flooding durkh getrunken vaser in der nest, aun exkreting es aroys. [92] kamponotus anderseni, vos nests in di kavitiz fun holts in mangrove khabatats, dilz mit submergense aunter vaser durkh svitshing tsu aneroubik otemen. [93]
  1860.  
  1861. lernen
  1862. file animals kenen lernen bikheyvyerz durkh nokhmakh, ober ants may zeyn der bloyz grupe bazunder fun mamalz vu interaktiv lereray hat shoyn bamerkt. a nalajabal forager fun temnothorax albipennis vet firn a naiv nest-por tsu ney diskaverd esnvarg durkh di protses fun tandam flisndik. dem nakhgeyer bakumt visn durkh zayn liding dotsent. di firer iz akiutli shpirevdik tsu der progres fun di nakhgeyer aun slouz arop ven di nakhgeyer lags aun spidz aroyf ven di nakhgeyer gets aoykh noent. [94]
  1863.  
  1864. kontrolled ixperamants mit kolonyes fun serapatshis biroi forshlogn az a ikhid may klaybn nest roles bazirt aoyf ir frayerdik derfarung. a gantsn dur fun eydenikal tuers iz geven tseteylt in tsvey grupes vemens autkam in esnvarg foraging iz kantrould. eyn grupe iz geven smid rivordid mit royb, bshes es iz geven gemakht zikher az di andere nit andersh. vi a rezultat, mitglider fun di mtslikh grupe geshtarkt zeyer foraging attempts bshes di nit gerotn grupe ventsherd aoys veynikere aun veynikere mal. a khudsh shpeter, di mtslikh foragers getsoygn in zeyer role bshes di andere hat bavoygn tsu speshaleyz in plid zorgn. [95]
  1865.  
  1866. nest kanstrakshan
  1867. hoypt artikl: murashke kalani
  1868. teke: ameisen krabbeln.vebm
  1869.  
  1870. blat nest fun veber ants, pamalikan, filifinen
  1871. komplex nests zenen geboyt durkh file murashke minim, ober andere minim zenen noumadik aun ton nit boyen shtendik straktsherz. ants may forem subterranean nests oder boyen zey aoyf beymer. di nests may zayn gefunen in der erd, aunter shteyner oder logs, in logs, pust stems, oder afilu eykornz. di materyals genitst far kanstrakshan araynnemen bodn aun fabrik enin, [70] aun ants Carefully selektirn zeyer nest zeytlekh; temnothorax albipennis vet oysmaydn zeytlekh mit toyt ants, vi di may onvayzn di bayzayn fun pests oder krenk. zey zenen shnel tsu farlozn gegrindet nests bay der ershter tseykhn fun trets. [96]
  1872.  
  1873. di armey ants fun drum amerike, aza vi di esiton burtshelley minim, aun di shofer ants fun Africa ton nit boyen shtendik nests, ober anshtot, baytn loyt der rey tsvishn nomadism aun stages vu di tuers forem a tsaytvaylik nest (bivouak) fun zeyer eygn llber, durkh haltn yeder andere tsuzamen. [97]
  1874.  
  1875. viver ant (oekofilla spp.) tuers boyen nests in beymer durkh atatshing bleter tsuzamen, ershter puling zey tsuzamen mit brikn fun tuers aun demolt indusing zeyer larvi tsu produtsirn zayd vi zey zenen bavoygn tsuzamen di blat ejaz. enlekh Forms fun nest kanstrakshan zenen gezen in etlekhe minim fun polirhatshis. [98]
  1876.  
  1877. formika poliktena, tsvishn andere murashke minim, kanstrakts nests az taynen a lefyerekh keseyderdik inlendish temperatur az AIDS in der antviklung fun larvi. di ants taynen di nest temperatur durkh tshuzing dem ort, nest materyals, kantrouling venaleyshan aun meynteyning di hits fun zun radyatsye, arbeter tetikeyt aun matabalizam, aun in etlekhe faykht nests, meykroubyal tetikeyt in di nest materyals. [99]
  1878.  
  1879. etlekhe murashke minim, aza vi yene vos nutsn natirlekh kavitiz, kenen zeyn apertunistik aun makhn nutsn fun di kantrould mikro-klimat bitnay in mentsh dvelingz aun andere kinstlekh straktsherz tsu hoyz zeyer kolonyes aun nest straktsherz. [100] [101]
  1880.  
  1881. kultivatyon fun esnvarg
  1882. hoypt artikl: murashke-fungus mutualism
  1883.  
  1884. mirmekosistus, honeypot ants, krom esnvarg tsu farmaydn kalani hunger
  1885. rub ants zenen jeneralist predaterz, skavengers, aun umdirekt herbivores, [24] ober a bisl hobn ivalvd speshaleyzd vegn fun bakumen dernerung. es iz gegloybt az file murashke minim az dingen in umdirekt herbivori reli aoyf speshaleyzd simbeyousas mit zeyer kishke meykroubz [102] tsu apgreyd di nutrishanal vert fun di esnvarg zey klaybn [103] aun lozn zey tsu blaybn lebn in nitrogen nebekh mkumus, aza vi rainforrest kanopyes . [104] leafkutter ants (atta aun akromirmex) kormen aoysshlislekh aoyf a fungus az vaxt bloyz in zeyer kolonyes. zey smid zamlen bleter vos zenen genumen tsu di kalani, shnaydn in kleyntshik breklekh aun geshtelt in fungal gardens. tuers speshaleyz in Related tasx loyt tsu zeyer sizes. di grestn ants shnaydn stox, klenerer tuers kayen di bleter aun di klenster tend di fungus. leafkutter ants zenen shpirevdik genug tsu derkenen di reaktsye fun ​​di fungus tsu farshidene fabrik materyal, mshmeus ditekting khemish signalz fun di fungus. aoyb a bazunder tip fun blat iz gefunen tsu zayn taxik tsu di fungus, di kalani vet nit mer zamlen es. di ants kormen aoyf straktsherz Produced durkh di fungi gerufn gongilidya. simbyatik baktirya aoyf di ixtiryer eyberflakh fun di ants produtsirn antibyatix vos teytn baktirya bakenen in di nest az may shatn di fungi. [105]
  1886.  
  1887. navigatsye
  1888.  
  1889. a murashke shteg
  1890. foraging ants arumforn distansaz aroyf tsu 200 meter (700 ft) fun zeyer nest [106] aun reyekh treylz lozn zey tsu gefinen zeyer veg tsurik afilu in di tunkl. in heys aun trukn mkumus, tog-foraging ants pnim toyt durkh desikkatyon, azoy di feyikayt tsu gefinen di shortist marshrut tsurik tsu der nest radusaz az rizikirn. Diurnal desert ants of the genus Cataglyphis such as the Sahara desert ant navigate by keeping track of direction as well as distance travelled. Distances travelled are measured using an internal pedometer that keeps count of the steps taken [107] and also by evaluating the movement of objects in their visual field (optical flow).[108] Directions are measured using the position of the sun.[109] They integrate this information to find the shortest route back to their nest.[110] Like all ants, they can also make use of visual landmarks when available [111] as well as olfactory and tactile cues to navigate.[112][113] Some species of ant are able to use the Earth's magnetic field for navigation.[114] The compound eyes of ants have specialised cells that detect polarised light from the Sun, which is used to determine direction.[115][116] These polarization detectors are sensitive in the ultraviolet region of the light spectrum.[117] In some army ant species, a group of foragers who become separated from the main column may sometimes turn back on themselves and form a circular ant mill. The workers may then run around continuously until they die of exhaustion.[118]
  1891.  
  1892. Locomotion
  1893. The female worker ants do not have wings and reproductive females lose their wings after their mating flights in order to begin their colonies. Therefore, unlike their wasp ancestors, most ants travel by walking. Some species are capable of leaping. For example, Jerdon's jumping ant (Harpegnathos saltator) is able to jump by synchronising the action of its mid and hind pairs of legs.[119] There are several species of gliding ant including Cephalotes atratus; this may be a common trait among most arboreal ants. Ants with this ability are able to control the direction of their descent while falling.[120]
  1894.  
  1895. Other species of ants can form chains to bridge gaps over water, underground, or through spaces in vegetation. Some species also form floating rafts that help them survive floods.[121] These rafts may also have a role in allowing ants to colonise islands.[122] Polyrhachis sokolova, a species of ant found in Australian mangrove swamps, can swim and live in underwater nests. Since they lack gills, they go to trapped pockets of air in the submerged nests to breathe.[123]
  1896.  
  1897. Cooperation and competition
  1898.  
  1899. Meat-eater ants feeding on a cicada, social ants cooperate and collectively gather food
  1900. Not all ants have the same kind of societies. The Australian bulldog ants are among the biggest and most basal of ants. Like virtually all ants, they are eusocial, but their social behaviour is poorly developed compared to other species. Each individual hunts alone, using her large eyes instead of chemical senses to find prey.[124]
  1901.  
  1902. Some species (such as Tetramorium caespitum) attack and take over neighbouring ant colonies. Others are less expansionist, but just as aggressive; they invade colonies to steal eggs or larvae, which they either eat or raise as workers or slaves. Extreme specialists among these slave-raiding ants, such as the Amazon ants, are incapable of feeding themselves and need captured workers to survive.[125] Captured workers of the enslaved species Temnothorax have evolved a counter strategy, destroying just the female pupae of the slave-making Protomognathus americanus, but sparing the males (who don't take part in slave-raiding as adults).[126]
  1903.  
  1904.  
  1905. A worker Harpegnathos saltator (a jumping ant) engaged in battle with a rival colony's queen
  1906. Ants identify kin and nestmates through their scent, which comes from hydrocarbon-laced secretions that coat their exoskeletons. If an ant is separated from its original colony, it will eventually lose the colony scent. Any ant that enters a colony without a matching scent will be attacked.[127] Also, the reason why two separate colonies of ants will attack each other even if they are of the same species is because the genes responsible for pheromone production are different between them. The Argentine ant, however, does not have this characteristic, due to lack of genetic diversity, and has become a global pest because of it.
  1907.  
  1908. Parasitic ant species enter the colonies of host ants and establish themselves as social parasites; species such as Strumigenys xenos are entirely parasitic and do not have workers, but instead, rely on the food gathered by their Strumigenys perplexa hosts.[128][129] This form of parasitism is seen across many ant genera, but the parasitic ant is usually a species that is closely related to its host. A variety of methods are employed to enter the nest of the host ant. A parasitic queen may enter the host nest before the first brood has hatched, establishing herself prior to development of a colony scent. Other species use pheromones to confuse the host ants or to trick them into carrying the parasitic queen into the nest. Some simply fight their way into the nest.[130]
  1909.  
  1910. A conflict between the sexes of a species is seen in some species of ants with these reproducers apparently competing to produce offspring that are as closely related to them as possible. The most extreme form involves the production of clonal offspring. An extreme of sexual conflict is seen in Wasmannia auropunctata, where the queens produce diploid daughters by thelytokous parthenogenesis and males produce clones by a process whereby a diploid egg loses its maternal contribution to produce haploid males who are clones of the father.[131]
  1911.  
  1912. Relationships with other organisms
  1913.  
  1914. The spider Myrmarachne plataleoides (female shown) mimics weaver ants to avoid predators.
  1915. Ants form symbiotic associations with a range of species, including other ant species, other insects, plants, and fungi. They also are preyed on by many animals and even certain fungi. Some arthropod species spend part of their lives within ant nests, either preying on ants, their larvae, and eggs, consuming the food stores of the ants, or avoiding predators. These inquilines may bear a close resemblance to ants. The nature of this ant mimicry (myrmecomorphy) varies, with some cases involving Batesian mimicry, where the mimic reduces the risk of predation. Others show Wasmannian mimicry, a form of mimicry seen only in inquilines.[132][133]
  1916.  
  1917.  
  1918. An ant collects honeydew from an aphid
  1919. Aphids and other hemipteran insects secrete a sweet liquid called honeydew, when they feed on plant sap. The sugars in honeydew are a high-energy food source, which many ant species collect.[134] In some cases, the aphids secrete the honeydew in response to ants tapping them with their antennae. The ants in turn keep predators away from the aphids and will move them from one feeding location to another. When migrating to a new area, many colonies will take the aphids with them, to ensure a continued supply of honeydew. Ants also tend mealybugs to harvest their honeydew. Mealybugs may become a serious pest of pineapples if ants are present to protect mealybugs from their natural enemies.[135]
  1920.  
  1921. Myrmecophilous (ant-loving) caterpillars of the butterfly family Lycaenidae (e.g., blues, coppers, or hairstreaks) are herded by the ants, led to feeding areas in the daytime, and brought inside the ants' nest at night. The caterpillars have a gland which secretes honeydew when the ants massage them. Some caterpillars produce vibrations and sounds that are perceived by the ants.[136] Other caterpillars have evolved from ant-loving to ant-eating: these myrmecophagous caterpillars secrete a pheromone that makes the ants act as if the caterpillar is one of their own larvae. The caterpillar is then taken into the ant nest where it feeds on the ant larvae.[137] Fungus-growing ants that make up the tribe Attini, including leafcutter ants, cultivate certain species of fungus in the Leucoagaricus or Leucocoprinus genera of the Agaricaceae family. In this ant-fungus mutualism, both species depend on each other for survival. The ant Allomerus decemarticulatus has evolved a three-way association with the host plant, Hirtella physophora (Chrysobalanaceae), and a sticky fungus which is used to trap their insect prey.[138]
  1922.  
  1923.  
  1924. Ants may obtain nectar from flowers such as the dandelion but are only rarely known to pollinate flowers.
  1925. Lemon ants make devil's gardens by killing surrounding plants with their stings and leaving a pure patch of lemon ant trees, (Duroia hirsuta). This modification of the forest provides the ants with more nesting sites inside the stems of the Duroia trees.[139] Although some ants obtain nectar from flowers, pollination by ants is somewhat rare.[140] Some plants have special nectar exuding structures, extrafloral nectaries, that provide food for ants, which in turn protect the plant from more damaging herbivorous insects.[141] Species such as the bullhorn acacia (Acacia cornigera) in Central America have hollow thorns that house colonies of stinging ants (Pseudomyrmex ferruginea) who defend the tree against insects, browsing mammals, and epiphytic vines. Isotopic labelling studies suggest that plants also obtain nitrogen from the ants.[142] In return, the ants obtain food from protein- and lipid-rich Beltian bodies. Another example of this type of ectosymbiosis comes from the Macaranga tree, which has stems adapted to house colonies of Crematogaster ants.
  1926.  
  1927. Many tropical tree species have seeds that are dispersed by ants.[143] Seed dispersal by ants or myrmecochory is widespread and new estimates suggest that nearly 9% of all plant species may have such ant associations.[144][145] Some plants in fire-prone grassland systems are particularly dependent on ants for their survival and dispersal as the seeds are transported to safety below the ground. Many ant-dispersed seeds have special external structures, elaiosomes, that are sought after by ants as food.[146]
  1928.  
  1929. A convergence, possibly a form of mimicry, is seen in the eggs of stick insects. They have an edible elaiosome-like structure and are taken into the ant nest where the young hatch.[147]
  1930.  
  1931.  
  1932. A meat ant tending a common leafhopper nymph
  1933. Most ants are predatory and some prey on and obtain food from other social insects including other ants. Some species specialise in preying on termites (Megaponera and Termitopone) while a few Cerapachyinae prey on other ants.[106] Some termites, including Nasutitermes corniger, form associations with certain ant species to keep away predatory ant species.[148] The tropical wasp Mischocyttarus drewseni coats the pedicel of its nest with an ant-repellent chemical.[149] It is suggested that many tropical wasps may build their nests in trees and cover them to protect themselves from ants. Other wasps such as A. multipicta defend against ants by blasting them off the nest with bursts of wing buzzing.[150] Stingless bees (Trigona and Melipona) use chemical defences against ants.[106] Certain species of ants have the power to drive certain wasps, such as Polybia occidentalis to extinction if they attack more than once and the wasps cannot keep up with rebuilding their nest.
  1934.  
  1935. Flies in the Old World genus Bengalia (Calliphoridae) prey on ants and are kleptoparasites, snatching prey or brood from the mandibles of adult ants.[151] Wingless and legless females of the Malaysian phorid fly (Vestigipoda myrmolarvoidea) live in the nests of ants of the genus Aenictus and are cared for by the ants.[151]
  1936.  
  1937. Fungi in the genera Cordyceps and Ophiocordyceps infect ants. Ants react to their infection by climbing up plants and sinking their mandibles into plant tissue. The fungus kills the ants, grows on their remains, and produces a fruiting body. It appears that the fungus alters the behaviour of the ant to help disperse its spores [152] in a microhabitat that best suits the fungus.[153] Strepsipteran parasites also manipulate their ant host to climb grass stems, to help the parasite find mates.[154]
  1938.  
  1939. A nematode (Myrmeconema neotropicum) that infects canopy ants (Cephalotes atratus) causes the black-coloured gasters of workers to turn red. The parasite also alters the behaviour of the ant, causing them to carry their gasters high. The conspicuous red gasters are mistaken by birds for ripe fruits, such as Hyeronima alchorneoides, and eaten. The droppings of the bird are collected by other ants and fed to their young, leading to further spread of the nematode.[155]
  1940.  
  1941.  
  1942. Spiders sometimes feed on ants
  1943. South American poison dart frogs in the genus Dendrobates feed mainly on ants, and the toxins in their skin may come from the ants.[156]
  1944.  
  1945. Army ants forage in a wide roving column, attacking any animals in that path that are unable to escape. In Central and South America, Eciton burchellii is the swarming ant most commonly attended by "ant-following" birds such as antbirds and woodcreepers.[157][158] This behaviour was once considered mutualistic, but later studies found the birds to be parasitic. Direct kleptoparasitism (birds stealing food from the ants' grasp) is rare and has been noted in Inca doves which pick seeds at nest entrances as they are being transported by species of Pogonomyrmex.[159] Birds that follow ants eat many prey insects and thus decrease the foraging success of ants.[160] Birds indulge in a peculiar behaviour called anting that, as yet, is not fully understood. Here birds rest on ant nests, or pick and drop ants onto their wings and feathers; this may be a means to remove ectoparasites from the birds.
  1946.  
  1947. Anteaters, aardvarks, pangolins, echidnas and numbats have special adaptations for living on a diet of ants. These adaptations include long, sticky tongues to capture ants and strong claws to break into ant nests. Brown bears (Ursus arctos) have been found to feed on ants. About 12%, 16%, and 4% of their faecal volume in spring, summer, and autumn, respectively, is composed of ants.[161]
  1948.  
  1949. Relationship with humans
  1950.  
  1951. Weaver ants are used as a biological control for citrus cultivation in southern China
  1952. Ants perform many ecological roles that are beneficial to humans, including the suppression of pest populations and aeration of the soil. The use of weaver ants in citrus cultivation in southern China is considered one of the oldest known applications of biological control.[11] On the other hand, ants may become nuisances when they invade buildings, or cause economic losses.
  1953.  
  1954. In some parts of the world (mainly Africa and South America), large ants, especially army ants, are used as surgical sutures. The wound is pressed together and ants are applied along it. The ant seizes the edges of the wound in its mandibles and locks in place. The body is then cut off and the head and mandibles remain in place to close the wound.[162][163][164] The large heads of the soldiers of the leafcutting ant Atta cephalotes are also used by native surgeons in closing wounds.[165]
  1955.  
  1956. Some ants have toxic venom and are of medical importance. The species include Paraponera clavata (tocandira) and Dinoponera spp. (false tocandiras) of South America [166] and the Myrmecia ants of Australia.[167]
  1957.  
  1958. In South Africa, ants are used to help harvest rooibos (Aspalathus linearis), which are small seeds used to make a herbal tea. The plant disperses its seeds widely, making manual collection difficult. Black ants collect and store these and other seeds in their nest, where humans can gather them en masse. Up to half a pound (200 g) of seeds may be collected from one ant-heap.[168][169]
  1959.  
  1960. Although most ants survive attempts by humans to eradicate them, a few are highly endangered. These tend to be island species that have evolved specialized traits and risk being displaced by introduced ant species. Examples include the critically endangered Sri Lankan relict ant (Aneuretus simoni) and Adetomyrma venatrix of Madagascar.[170]
  1961.  
  1962. It has been estimated by E.O. Wilson that the total number of individual ants alive in the world at any one time is between one and ten quadrillion (short scale) (i.e. between 1015 and 1016). According to this estimate, the total biomass of all the ants in the world is approximately equal to the total biomass of the entire human race.[171] Also, according to this estimate, there are approximately 1 million ants for every human on Earth.[172]
  1963.  
  1964. As food
  1965. See also: Entomophagy
  1966.  
  1967. Roasted ants in Colombia
  1968.  
  1969. Ant larvae for sale in Isaan, Thailand
  1970. Ants and their larvae are eaten in different parts of the world. The eggs of two species of ants are used in Mexican escamoles. They are considered a form of insect caviar and can sell for as much as US$40 per pound ($90/kg) because they are seasonal and hard to find. In the Colombian department of Santander, hormigas culonas (roughly interpreted as "large-bottomed ants") Atta laevigata are toasted alive and eaten.[173]
  1971.  
  1972. In areas of India, and throughout Burma and Thailand, a paste of the green weaver ant (Oecophylla smaragdina) is served as a condiment with curry.[174] Weaver ant eggs and larvae, as well as the ants, may be used in a Thai salad, yam (Thai: ยำ), in a dish called yam khai mot daeng (Thai: ยำไขมดแดง) or red ant egg salad, a dish that comes from the Issan or north-eastern region of Thailand. Saville-Kent, in the Naturalist in Australia wrote "Beauty, in the case of the green ant, is more than skin-deep. Their attractive, almost sweetmeat-like translucency possibly invited the first essays at their consumption by the human species". Mashed up in water, after the manner of lemon squash, "these ants form a pleasant acid drink which is held in high favor by the natives of North Queensland, and is even appreciated by many European palates".[175]
  1973.  
  1974. In his First Summer in the Sierra, John Muir notes that the Digger Indians of California ate the tickling, acid gasters of the large jet-black carpenter ants. The Mexican Indians eat the replete workers, or living honey-pots, of the honey ant (Myrmecocystus).[175]
  1975.  
  1976. As pests
  1977. See also: Ants of medical importance
  1978.  
  1979. The tiny pharaoh ant is a major pest in hospitals and office blocks; it can make nests between sheets of paper
  1980. Some ant species are considered as pests, primarily those that occur in human habitations, where their presence is often problematic. For example, the presence of ants would be undesirable in sterile places such as hospitals or kitchens. Some species or genera commonly categorized as pests include the Argentine ant, pavement ant, yellow crazy ant, banded sugar ant, Pharaoh ant, carpenter ants, odorous house ant, red imported fire ant, and European fire ant. Some ants will raid stored food, others may damage indoor structures, some can damage agricultural crops directly (or by aiding sucking pests), and some will sting or bite.[12] The adaptive nature of ant colonies make it nearly impossible to eliminate entire colonies and most pest management practices aim to control local populations and tend to be temporary solutions. Ant populations are managed by a combination of approaches that make use of chemical, biological and physical methods. Chemical methods include the use of insecticidal bait which is gathered by ants as food and brought back to the nest where the poison is inadvertently spread to other colony members through trophallaxis. Management is based on the species and techniques can vary according to the location and circumstance.[12]
  1981.  
  1982. In science and technology
  1983.  
  1984. Camponotus nearcticus workers travelling between two formicaria through connector tubing
  1985. See also: Myrmecology, Biomimetics, and Ant colony optimization algorithms
  1986. Observed by humans since the dawn of history, the behaviour of ants has been documented and the subject of early writings and fables passed from one century to another. Those using scientific methods, myrmecologists, study ants in the laboratory and in their natural conditions. Their complex and variable social structures have made ants ideal model organisms. Ultraviolet vision was first discovered in ants by Sir John Lubbock in 1881.[176] Studies on ants have tested hypotheses in ecology and sociobiology, and have been particularly important in examining the predictions of theories of kin selection and evolutionarily stable strategies.[177] Ant colonies may be studied by rearing or temporarily maintaining them in formicaria, specially constructed glass framed enclosures.[178] Individuals may be tracked for study by marking them with dots of colours.[179]
  1987.  
  1988. The successful techniques used by ant colonies have been studied in computer science and robotics to produce distributed and fault-tolerant systems for solving problems, for example Ant colony optimization and Ant robotics. This area of biomimetics has led to studies of ant locomotion, search engines that make use of "foraging trails", fault-tolerant storage, and networking algorithms.[10]
  1989.  
  1990. In culture
  1991.  
  1992. Aesop's ants: picture by Milo Winter, 1888-1956
  1993. Anthropomorphised ants have often been used in fables and children's stories to represent industriousness and cooperative effort. They also are mentioned in religious texts.[180][181] In the Book of Proverbs in the Bible, ants are held up as a good example for humans for their hard work and cooperation. Aesop did the same in his fable The Ant and the Grasshopper. In the Quran, Sulayman is said to have heard and understood an ant warning other ants to return home to avoid being accidentally crushed by Sulayman and his marching army.[Quran 27:18][182] In parts of Africa, ants are considered to be the messengers of the deities. Some Native American mythology, such as the Hopi mythology, considers ants as the very first animals. Ant bites are often said to have curative properties. The sting of some species of Pseudomyrmex is claimed to give fever relief.[183] Ant bites are used in the initiation ceremonies of some Amazon Indian cultures as a test of endurance.[184][185]
  1994.  
  1995. Ant society has always fascinated humans and has been written about both humorously and seriously. Mark Twain wrote about ants in his 1880 book A Tramp Abroad.[186] Some modern authors have used the example of the ants to comment on the relationship between society and the individual. Examples are Robert Frost in his poem "Departmental" and T. H. White in his fantasy novel The Once and Future King. The plot in French entomologist and writer Bernard Werber's Les Fourmis science-fiction trilogy is divided between the worlds of ants and humans; ants and their behaviour is described using contemporary scientific knowledge. H.G. Wells wrote about intelligent ants destroying human settlements in Brazil and threatening human civilization in his 1905 science-fiction short story, The Empire of the Ants. In more recent times, animated cartoons and 3-D animated films featuring ants have been produced including Antz, A Bug's Life, The Ant Bully, The Ant and the Aardvark,Ferdy the Ant and Atom Ant. Renowned myrmecologist E. O. Wilson wrote a short story, "Trailhead" in 2010 for The New Yorker magazine, which describes the life and death of an ant-queen and the rise and fall of her colony, from an ants' point of view.[187]
  1996.  
  1997. From the late 1950s through the late 1970s, ant farms were popular educational children's toys in the United States. Later versions use transparent gel instead of soil, allowing greater visibility.[188] In the early 1990s, the video game SimAnt, which simulated an ant colony, won the 1992 Codie award for "Best Simulation Program".[189]
  1998.  
  1999. Ants also are quite popular inspiration for many science-fiction insectoids, such as the Formics of Ender's Game, the Bugs of Starship Troopers, the giant ants in the films Them! and Empire of the Ants, Marvel Comics' super hero Ant-Man, and ants mutated into super-intelligence in Phase IV. In computer strategy games, ant-based species often benefit from increased production rates due to their single-minded focus, such as the Klackons in the Master of Orion series of games or the ChCht in Deadlock II. These characters are often credited with a hive mind, a common misconception about ant colonies.[190]
  2000.  
  2001. See also
  2002. Book icon
  2003. Book: Ants
  2004. Main article: Outline of ants
  2005. Ant robotics
  2006. Ant venom
  2007. Glossary of ant terms
  2008. International Union for the Study of Social Insects
  2009. Myrmecological News (journal)
  2010. Task allocation and partitioning of social insects
  2011. References
  2012. Jump up ^ Ward, Philip S (2007). "Phylogeny, classification, and species-level taxonomy of ants (Hymenoptera: Formicidae)" (PDF). Zootaxa. 1668: 549-563.
  2013. ^ Jump up to: a b Rabeling C, Brown JM, Verhaagh M (2008). "Newly discovered sister lineage sheds light on early ant evolution". PNAS. 105 (39): 14913-7. Bibcode:2008PNAS..10514913R. doi:10.1073/pnas.0806187105. PMC 2567467free to read. PMID 18794530.
  2014. Jump up ^ Brady, Seán G; Fisher, Brian L; Schultz, Ted R; Ward, Philip S (2014). "The rise of army ants and their relatives: diversification of specialized predatory doryline ants". BMC Evolutionary Biology. 14: 2-14. doi:10.1186/1471-2148-14-93. PMC 4021219free to read. PMID 24886136.
  2015. Jump up ^ "Hymenoptera name server. Formicidae species count.". Ohio State University.
  2016. Jump up ^ Agosti D; Johnson, N F (2003). La nueva taxonomía de hormigas. Pages 45-48 in Fernández, F. Introducción a las hormigas de la región neotropical. (PDF). Instituto Humboldt, Bogotá. Retrieved 2015-12-13.
  2017. Jump up ^ Oster GF, Wilson EO (1978). Caste and ecology in the social insects. Princeton University Press, Princeton. pp. 21-22. ISBN 0-691-02361-1.
  2018. Jump up ^ Flannery, Tim (2011). A Natural History of the Planet. Grove/Atlantic, Inc. p. 79. ISBN 978-0-8021-9560-9.
  2019. ^ Jump up to: a b Schultz TR (2000). "In search of ant ancestors". Proceedings of the National Academy of Sciences. 97 (26): 14028-14029. Bibcode:2000PNAS...9714028S. doi:10.1073/pnas.011513798. PMC 34089free to read. PMID 11106367.
  2020. Jump up ^ Hölldobler & Wilson (1990), p. 471
  2021. ^ Jump up to: a b Dicke E, Byde A, Cliff D, Layzell P (2004). A. J. Ispeert, M. Murata, N. Wakamiya, eds. "An ant-inspired technique for storage area network design". Proceedings of Biologically Inspired Approaches to Advanced Information Technology: First International Workshop, BioADIT 2004 LNCS 3141: 364-379.
  2022. ^ Jump up to: a b Hölldobler & Wilson (1990), pp. 619-629
  2023. ^ Jump up to: a b c "Pest Notes: Ants (Publication 7411)". University of California Agriculture and Natural Resources. 2007. Retrieved 5 June 2008.
  2024. Jump up ^ ""ant". Merriam-Webster Online Dictionary". Merriam-Webster. Retrieved 6 June 2008.
  2025. Jump up ^ "Ant. Online Etymology Dictionary". Retrieved 30 May 2009.
  2026. Jump up ^ Simpson DP (1979). Cassell's Latin Dictionary (5 ed.). London: Cassell Ltd. ISBN 0-304-52257-0.
  2027. Jump up ^ "Formic". Etymonline.com. Retrieved 2012-01-30.
  2028. ^ Jump up to: a b Johnson, Brian R.; Borowiec, Marek L.; Chiu, Joanna C.; Lee, Ernest K.; Atallah, Joel; Ward, Philip S. (2013). "Phylogenomics resolves evolutionary relationships among ants, bees, and wasps". Current Biology. 23 (20): 1-5. doi:10.1016/j.cub.2013.08.050. PMID 24094856.
  2029. Jump up ^ Wilson EO, Carpenter FM, Brown WL (1967). "The first Mesozoic ants". Science. 157 (3792): 1038-1040. Bibcode:1967Sci...157.1038W. doi:10.1126/science.157.3792.1038. PMID 17770424.
  2030. Jump up ^ Perrichot, V.; Nel, A.; Néraudeau, D.; Lacau, S.; Guyot, T. (2008). "New fossil ants in French Cretaceous amber (Hymenoptera: Formicidae)". Naturwissenschaften. 95 (2): 91-97. Bibcode:2008NW.....95...91P. doi:10.1007/s00114-007-0302-7. PMID 17828384.
  2031. Jump up ^ Barden, Phillip; Grimaldi, David (2014). "A Diverse Ant Fauna from the Mid-Cretaceous of Myanmar (Hymenoptera: Formicidae)". PLoS ONE. 9 (4): e93627. doi:10.1371/journal.pone.0093627. PMC 3974876free to read. PMID 24699881.
  2032. Jump up ^ Perrichot, Vincent; Lacau, Sébastien; Néraudeau, Didier; Nel, André (2007-09-19). "Fossil evidence for the early ant evolution" (PDF). Naturwissenschaften. 95 (2): 85-90. doi:10.1007/s00114-007-0301-8. ISSN 0028-1042.
  2033. ^ Jump up to: a b Grimaldi D, Agosti D (2001). "A formicine in New Jersey Cretaceous amber (Hymenoptera: Formicidae) and early evolution of the ants". Proceedings of the National Academy of Sciences. 97 (25): 13678-13683. Bibcode:2000PNAS...9713678G. doi:10.1073/pnas.240452097. PMC 17635free to read. PMID 11078527.
  2034. Jump up ^ Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE (2006). "Phylogeny of the ants: Diversification in the Age of Angiosperms". Science. 312 (5770): 101-104. Bibcode:2006Sci...312..101M. doi:10.1126/science.1124891. PMID 16601190.
  2035. ^ Jump up to: a b Wilson EO, Hölldobler B (2005). "The rise of the ants: A phylogenetic and ecological explanation". Proceedings of the National Academy of Sciences. 102 (21): 7411-7414. Bibcode:2005PNAS..102.7411W. doi:10.1073/pnas.0502264102. PMC 1140440free to read. PMID 15899976.
  2036. Jump up ^ LaPolla, John S.; Dlussky, Gennady M.; Perrichot, Vincent (2013). "Ants and the Fossil Record". Annual Review of Entomology. 58: 609-630. doi:10.1146/annurev-ento-120710-100600. PMID 23317048.
  2037. Jump up ^ Barden, P.; Grimaldi, D. (2012). "Rediscovery of the bizarre Cretaceous ant Haidomyrmex Dlussky (Hymenoptera: Formicidae), with two new species" (PDF). American Museum Novitates. 3755 (3755): 1-16. doi:10.1206/3755.2.
  2038. Jump up ^ Hölldobler & Wilson (1990), pp. 23-24
  2039. Jump up ^ Thorne, Barbara L (1997). "Evolution of eusociality in termites" (PDF). Annu. Rev. Ecol. Syst. 28: 27-53. doi:10.1146/annurev.ecolsys.28.1.27.
  2040. Jump up ^ "Order Isoptera - Termites". Iowa State University Entomology. 16 February 2004. Archived from the original on 15 June 2008. Retrieved 12 June 2008.
  2041. Jump up ^ "Family Mutillidae - Velvet ants". Iowa State University Entomology. 16 February 2004. Archived from the original on 30 June 2008. Retrieved 12 June 2008.
  2042. Jump up ^ Hölldobler & Wilson (1990), p. 4
  2043. Jump up ^ Jones, Alice S. "Fantastic ants - Did you know?". National Geographic Magazine. Archived from the original on 30 July 2008. Retrieved 5 July 2008.
  2044. Jump up ^ Thomas, Philip (2007). "Pest Ants in Hawaii". Hawaiian Ecosystems at Risk project (HEAR). Retrieved 6 July 2008.
  2045. Jump up ^ Hölldobler & Wilson (1990), p. 589
  2046. Jump up ^ Shattuck SO (1999). Australian ants: their biology and identification. Collingwood, Vic: CSIRO. p. 149. ISBN 0-643-06659-4.
  2047. Jump up ^ Schaal, Stephan (27 January 2006). "Messel". Encyclopedia of Life Sciences. doi:10.1038/npg.els.0004143. ISBN 0-470-01617-5.
  2048. Jump up ^ Agosti D; Johnson NF, eds. (2005). "Antbase". American Museum of Natural History. Archived from the original on 11 August 2008. Retrieved 6 July 2008.
  2049. Jump up ^ Agosti D, Majer JD, Alonso JE, Schultz TR, eds. (2000). Ants: Standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press. Retrieved 2015-12-13.
  2050. Jump up ^ Johnson NF (2007). "Hymenoptera name server". Ohio State University. Retrieved 6 July 2008.
  2051. Jump up ^ Borror, Triplehorn & Delong (1989), p. 737
  2052. ^ Jump up to: a b c d Borror, Triplehorn & Delong (1989), pp. 24-71
  2053. Jump up ^ Fent K, Rudiger W (1985). "Ocelli: A celestial compass in the desert ant Cataglyphis". Science. 228 (4696): 192-194. Bibcode:1985Sci...228..192F. doi:10.1126/science.228.4696.192. PMID 17779641.
  2054. Jump up ^ Eriksson, E. Sture (1985). "Attack behaviour and distance perception in the Australian bulldog ant Myrmecia nigriceps" (PDF). J. Exp. Biol. 119 (1): 115-131.
  2055. Jump up ^ Eisner T, Happ GM (1962). "The infrabuccal pocket of a formicine ant: a social filtration device". Psyche. 69 (3): 107-116. doi:10.1155/1962/25068.
  2056. Jump up ^ Wilson EO (1953). "The origin and evolution of polymorphism in ants". Quarterly Review of Biology. 28 (2): 136-56. doi:10.1086/399512. PMID 13074471.
  2057. Jump up ^ Weber, NA (1946). "Dimorphism in the African Oecophylla worker and an anomaly (Hym.: Formicidae)" (PDF). Annals of the Entomological Society of America. 39: 7-10.
  2058. Jump up ^ Edward O. Wilson; Robert W. Taylor (1964). "A Fossil Ant Colony: New Evidence of Social Antiquity" (PDF). Psyche. 71 (2): 93-103. doi:10.1155/1964/17612.
  2059. Jump up ^ Moffett MW, Tobin JE (1991). "Physical castes in ant workers: a problem for Daceton armigerum and other ants" (PDF). Psyche. 98 (4): 283-292. doi:10.1155/1991/30265. Archived from the original (PDF) on 2008-02-27.
  2060. Jump up ^ Børgesen LW (2000). "Nutritional function of replete workers in the pharaoh's ant, Monomorium pharaonis (L.)". Insectes Sociaux. 47 (2): 141-146. doi:10.1007/PL00001692.
  2061. Jump up ^ Rissing, Steven W (1984). "Replete Caste Production and Allometry of Workers in the Honey Ant, Myrmecocystus mexicanus Wesmael (Hymenoptera: Formicidae)". Journal of the Kansas Entomological Society. 57 (2): 347-350.
  2062. Jump up ^ Hughes WO, Sumner S, Van Borm S, Boomsma JJ (2003). "Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants". Proceedings of the National Academy of Sciences of the United States of America. 100 (16): 9394-9397. Bibcode:2003PNAS..100.9394H. doi:10.1073/pnas.1633701100. PMC 170929free to read. PMID 12878720.
  2063. Jump up ^ Rossa KG, Kriegera MJ, Shoemaker DD (2003). "Alternative genetic foundations for a key social polymorphism in fire ants". Genetics. 165 (4): 1853-1867. PMC 1462884free to read. PMID 14704171.
  2064. Jump up ^ Crosland MW, Crozier RH (1986). "Myrmecia pilosula, an ant with only one pair of chromosomes". Science. 231 (4743): 1278. Bibcode:1986Sci...231.1278C. doi:10.1126/science.231.4743.1278. PMID 17839565.
  2065. Jump up ^ Tsutsui ND, Suarez AV, Spagna JC, Johnston JS (2008). "The evolution of genome size in ants". BMC Evolutionary Biology. 8 (64): 64. doi:10.1186/1471-2148-8-64. PMC 2268675free to read. PMID 18302783. Archived from the original on 27 June 2008. Retrieved 2008-06-25.
  2066. Jump up ^ Gillott, Cedric (1995). Entomology. Springer. p. 325. ISBN 0-306-44967-6.
  2067. Jump up ^ Anderson, Kirk E.; Linksvayer, Timothy A.; Smith, Chris R. (2008). "The causes and consequences of genetic caste determination in ants (Hymenoptera: Formicidae)" (PDF). Myrmecol. News. 11: 119-132.
  2068. Jump up ^ Hölldobler & Wilson (1990), pp. 351, 372
  2069. Jump up ^ Traniello JFA (1989). "Foraging strategies of ants". Annual Review of Entomology. 34: 191-210. doi:10.1146/annurev.en.34.010189.001203.
  2070. Jump up ^ Sorensen A, Busch TM, Vinson SB (1984). "Behavioral flexibility of temporal sub-castes in the fire ant, Solenopsis invicta, in response to food". Psyche. 91 (3-4): 319-332. doi:10.1155/1984/39236.
  2071. Jump up ^ Keller L (1998). "Queen lifespan and colony characteristics in ants and termites". Insectes Sociaux. 45 (3): 235-246. doi:10.1007/s000400050084.
  2072. ^ Jump up to: a b Franks NR, Resh VH, Cardé RT, eds. (2003). Encyclopedia of Insects. San Diego: Academic Press. pp. 29-32. ISBN 0-12-586990-8.
  2073. Jump up ^ Kipyatkov VE (2001). "Seasonal life cycles and the forms of dormancy in ants (Hymenoptera, Formicoidea)". Acta Societatis Zoologicae Bohemicae. 65 (2): 198-217.
  2074. Jump up ^ Heinze, Jurgen; Tsuji, Kazuki (1995). "Ant reproductive strategies" (PDF). Res. Popul. Ecol. 37 (2): 135-149. doi:10.1007/BF02515814.
  2075. Jump up ^ Mikheyev, A. S. (2003). "Evidence for mating plugs in the fire ant Solenopsis invicta". Insectes Sociaux. 50 (4): 401-402. doi:10.1007/s00040-003-0697-x.
  2076. Jump up ^ Peeters C, Holldobler B (1995). "Reproductive cooperation between queens and their mated workers: the complex life history of an ant with a valuable nest" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 92 (24): 10977-10979. Bibcode:1995PNAS...9210977P. doi:10.1073/pnas.92.24.10977. PMC 40553free to read. PMID 11607589.
  2077. Jump up ^ Franks, N. R.; Hölldobler, B. (1987). "Sexual competition during colony reproduction in army ants". Biological Journal of the Linnean Society. 30 (3): 229-243. doi:10.1111/j.1095-8312.1987.tb00298.x.
  2078. Jump up ^ Yamauchi, K.; Kawase, N. (1992). "Pheromonal manipulation of workers by a fighting male to kill his rival males in the ant Cardiocondyla wroughtonii". Naturwissenschaften. 79 (6): 274-276. Bibcode:1992NW.....79..274Y. doi:10.1007/BF01175395.
  2079. Jump up ^ Taylor RW (2007). "Bloody funny wasps! Speculations on the evolution of eusociality in ants". In Snelling RR, Fisher BL, Ward PS. Advances in ant systematics (Hymenoptera: Formicidae): homage to E. O. Wilson - 50 years of contributions. Memoirs of the American Entomological Institute, 80 (PDF). American Entomological Institute. pp. 580-609. Retrieved 2015-12-13.
  2080. Jump up ^ Wilson, E.O. (1957). "The organization of a nuptial flight of the ant Pheidole sitarches Wheeler" (PDF). Psyche. 64: 46-50. doi:10.1155/1957/68319.
  2081. ^ Jump up to: a b c Hölldobler & Wilson (1990), pp. 143-179
  2082. Jump up ^ Jackson DE, Ratnieks FL (August 2006). "Communication in ants". Curr. Biol. 16 (15): R570-R574. doi:10.1016/j.cub.2006.07.015. PMID 16890508.
  2083. Jump up ^ Goss, S.; Aron, S.; Deneubourg, J.L.; Pasteels, J.M. (1989). "Self-organized shortcuts in the Argentine ant" (PDF). Naturwissenschaften. 76 (12): 579-581. Bibcode:1989NW.....76..579G. doi:10.1007/BF00462870.
  2084. Jump up ^ D'Ettorre P, Heinze J (2001). "Sociobiology of slave-making ants". Acta Ethologica. 3 (2): 67-82. doi:10.1007/s102110100038.
  2085. Jump up ^ Detrain C, Deneubourg JL, Pasteels JM (1999). Information processing in social insects. Birkhäuser. pp. 224-227. ISBN 3-7643-5792-4.
  2086. Jump up ^ Greene MJ, Gordon DM (2007). "Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linephithema humile and Aphaenogaster cockerelli". Journal of Experimental Biology. 210 (Pt 5): 897-905. doi:10.1242/jeb.02706. PMID 17297148.
  2087. Jump up ^ Hölldobler & Wilson (1990), p. 354
  2088. Jump up ^ Hickling R, Brown RL (2000). "Analysis of acoustic communication by ants". Journal of the Acoustical Society of America. 108 (4): 1920-1929. Bibcode:2000ASAJ..108.1920H. doi:10.1121/1.1290515. PMID 11051518.
  2089. Jump up ^ Roces F; Hölldobler B (1996). "Use of stridulation in foraging leaf-cutting ants: Mechanical support during cutting or short-range recruitment signal?". Behavioral Ecology and Sociobiology. 39 (5): 293-299. doi:10.1007/s002650050292.
  2090. Jump up ^ Clarke PS (1986). "The natural history of sensitivity to jack jumper ants (Hymenoptera: Formicidae: Myrmecia pilosula) in Tasmania". Medical Journal of Australia. 145 (11-12): 564-566. PMID 3796365.
  2091. Jump up ^ Brown SG, Heddle RJ, Wiese MD, Blackman KE (2005). "Efficacy of ant venom immunotherapy and whole body extracts". The Journal of Allergy and Clinical Immunology. 116 (2): 464-465. doi:10.1016/j.jaci.2005.04.025. PMID 16083810.
  2092. Jump up ^ Obin MS, Vander Meer RK (1985). "Gaster flagging by fire ants (Solenopsis spp.): Functional significance of venom dispersal behavior". Journal of Chemical Ecology. 11 (12): 1757-1768. doi:10.1007/BF01012125.
  2093. Jump up ^ Stafford CT (1996). "Hypersensitivity to fire ant venom". Annals of Allergy, Asthma & Immunology. 77 (2): 87-99. doi:10.1016/S1081-1206(10)63493-X. PMID 8760773.
  2094. ^ Jump up to: a b c Patek SN, Baio JE, Fisher BL, Suarez AV (22 August 2006). "Multifunctionality and mechanical origins: Ballistic jaw propulsion in trap-jaw ants". Proceedings of the National Academy of Sciences. 103 (34): 12787-12792. Bibcode:2006PNAS..10312787P. doi:10.1073/pnas.0604290103. PMC 1568925free to read. PMID 16924120.
  2095. Jump up ^ Gronenberg W (1996). "The trap-jaw mechanism in the Dacetine ant Daceton armigerum and Strumigenys sp" (PDF). The Journal of Experimental Biology. 199 (9): 2021-2033.
  2096. Jump up ^ Jones, T.H.; Clark, D.A.; Edwards, A.A.; Davidson, D.W.; Spande, T.F.; Snelling, Roy R. (2004). "The Chemistry of Exploding Ants, Camponotus spp. (Cylindricus complex)". Journal of Chemical Ecology. 30 (8): 1479-1492. doi:10.1023/B:JOEC.0000042063.01424.28. PMID 15537154.
  2097. Jump up ^ Tofilski,Adam; Couvillon, MJ; Evison, SEF; Helantera, H; Robinson, EJH; Ratnieks, FLW (2008). "Preemptive Defensive Self-Sacrifice by Ant Workers" (PDF). The American Naturalist. 172 (5): E239-E243. doi:10.1086/591688. PMID 18928332.
  2098. Jump up ^ Julian GE, Cahan S (1999). "Undertaking specialization in the desert leaf-cutter ant Acromyrmex versicolor". Animal Behaviour. 58 (2): 437-442. doi:10.1006/anbe.1999.1184. PMID 10458895.
  2099. Jump up ^ López-Riquelme GO, Malo EA, Cruz-López L, Fanjul-Moles ML (2006). "Antennal olfactory sensitivity in response to task-related odours of three castes of the ant Atta mexicana (hymenoptera: formicidae)". Physiological Entomology. 31 (4): 353-360. doi:10.1111/j.1365-3032.2006.00526.x.
  2100. Jump up ^ Choe, Dong-Hwan; Millar JG; Rust MK (2009). "Chemical signals associated with life inhibit necrophoresis in Argentine ants". Proceedings of the National Academy of Sciences of the United States of America. 106 (20): 8251-8255. Bibcode:2009PNAS..106.8251C. doi:10.1073/pnas.0901270106. PMC 2688878free to read. PMID 19416815.
  2101. Jump up ^ Tschinkel WR (2004). "The nest architecture of the Florida harvester ant, Pogonomyrmex badius". Journal of Insect Science. 4 (21): 1-19. PMC 528881free to read. PMID 15861237.
  2102. Jump up ^ Peeters C; Hölldobler B; Moffett M; Musthak Ali TM (1994). ""Wall-papering" and elaborate nest architecture in the ponerine ant Harpegnathos saltator". Insectes Sociaux. 41 (2): 211-218. doi:10.1007/BF01240479.
  2103. Jump up ^ Maschwitz U, Moog J (2000). "Communal peeing: a new mode of flood control in ants". Naturwissenschaften. 87 (12): 563-565. Bibcode:2000NW.....87..563M. doi:10.1007/s001140050780. PMID 11198200.
  2104. Jump up ^ Nielsen MG, Christian KA (2007). "The mangrove ant, Camponotus anderseni switches to anaerobic respiration in response to elevated CO2 levels". Journal of Insect Physiology. 53 (5): 505-508. doi:10.1016/j.jinsphys.2007.02.002. PMID 17382956.
  2105. Jump up ^ Franks NR, Richardson T (2006). "Teaching in tandem-running ants". Nature. 439 (7073): 153. Bibcode:2006Natur.439..153F. doi:10.1038/439153a. PMID 16407943.
  2106. Jump up ^ Ravary F, Lecoutey E, Kaminski G, Châline N, Jaisson P (2007). "Individual experience alone can generate lasting division of labor in ants". Current Biology. 17 (15): 1308-1312. doi:10.1016/j.cub.2007.06.047. PMID 17629482.
  2107. Jump up ^ Franks NR, Hooper J, Webb C, Dornhaus A (2005). "Tomb evaders: house-hunting hygiene in ants". Biology Letters. 1 (2): 190-192. doi:10.1098/rsbl.2005.0302. PMC 1626204free to read. PMID 17148163.
  2108. Jump up ^ Hölldobler & Wilson (1990), p. 573
  2109. Jump up ^ Robson SK, Kohout RJ (2005). "Evolution of nest-weaving behaviour in arboreal nesting ants of the genus Polyrhachis Fr. Smith (Hymenoptera: Formicidae)". Australian Journal of Entomology. 44 (2): 164-169. doi:10.1111/j.1440-6055.2005.00462.x.
  2110. Jump up ^ Frouz, J. (2000). "The Effect of Nest Moisture on Daily Temperature Regime in the Nests of Formica polyctena Wood Ants.". Insectes Sociaux. 47: 229-235. doi:10.1007/PL00001708.
  2111. Jump up ^ Carpintero, Soledad; Reyes-López, Joaquın; de Reynac, Luis Arias (2004). "Impact of human dwellings on the distribution of the exotic Argentine ant: a case study in the Doñana National Park, Spain". Biological Conservation. 115 (2): 279-289. doi:10.1016/S0006-3207(03)00147-2.
  2112. Jump up ^ Friedrich, Russell; Philpott, Stacy M. (2009). "Nest-site Limitation and Nesting Resources of Ants (Hymenoptera: Formicidae) in Urban Green Spaces". Environmental Entomology. 38 (3): 600-607. doi:10.1603/022.038.0311.
  2113. Jump up ^ Anderson, K.E.; Russell, J.A.; Moreau, C.S.; Kautz, S.; Sullam, K.E.; Hu, Y.; Basinger, U.; Mott, B.M.; Buck, N.; Wheeler, D.E. (2012). "Highly similar microbial communities are shared among related and trophically similar ant species". Molecular Ecology. 21: 2282-2296. doi:10.1111/j.1365-294x.2011.05464.x.
  2114. Jump up ^ Feldhaar, H.; Straka, J.; Krischke, M.; Berthold, K.; Stoll, S.; Mueller, M.J.; Gross, R. (2007). "Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia". BMC Biology. 5: 48. doi:10.1186/1741-7007-5-48. PMC 2206011free to read. PMID 17971224.
  2115. Jump up ^ Russell, J.A.; Moreau, C.S.; Goldman-Huertas, B.; Fujiwara, M.; Lohman, D.J.; Pierce, N.E. (2009). "Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants". PNAS. 106: 21236-21241. Bibcode:2009PNAS..10621236R. doi:10.1073/pnas.0907926106.
  2116. Jump up ^ Schultz TR (1999). "Ants, plants and antibiotics" (PDF). Nature. 398 (6730): 747-748. Bibcode:1999Natur.398..747S. doi:10.1038/19619.
  2117. ^ Jump up to: a b c Carrol CR, Janzen DH (1973). "Ecology of foraging by ants". Annual Review of Ecology and Systematics. 4: 231-257. doi:10.1146/annurev.es.04.110173.001311.
  2118. Jump up ^ Wittlinger M, Wehner R, Wolf H (2006). "The Ant Odometer: Stepping on Stilts and Stumps" (PDF). Science. 312 (5782): 1965-7. Bibcode:2006Sci...312.1965W. doi:10.1126/science.1126912. PMID 16809544.
  2119. Jump up ^ Ronacher B, Werner R (1995). "Desert ants Cataglyphis fortis use self-induced optic flow to measure distances travelled" (PDF). Journal of Comparative Physiology A. 177. doi:10.1007/BF00243395.
  2120. Jump up ^ Werner R (2003). "Desert ant navigation: how miniature brains solve complex tasks" (PDF). Journal of Comparative Physiology. 189 (8): 579-588. doi:10.1007/s00359-003-0431-1. PMID 12879352.
  2121. Jump up ^ Sommer S, Wehner R (2004). "The ant's estimation of distance travelled: experiments with desert ants, Cataglyphis fortis". Journal of Comparative Physiology. 190 (1): 1-6. doi:10.1007/s00359-003-0465-4. PMID 14614570.
  2122. Jump up ^ Åkesson S, Wehner R (2002). "Visual navigation in desert ants Cataglyphis fortis: are snapshots coupled to a celestial system of reference?" (PDF). Journal of Experimental Biology. 205 (14): 1971-1978.
  2123. Jump up ^ Steck K, Hansson B, Knaden M (2009). "Smells like home: Desert ants, Cataglyphis fortis, use olfactory landmarks to pinpoint the nest" (PDF). Frontiers in Zoology. 6: 5. doi:10.1186/1742-9994-6-5. PMC 2651142free to read. PMID 19250516.
  2124. Jump up ^ Seidl T, Wehner R (2006). "Visual and tactile learning of ground structures in desert ants" (PDF). Journal of Experimental Biology. 209 (Pt 17): 3336-44. doi:10.1242/jeb.02364. PMID 16916970.
  2125. Jump up ^ Banks AN, Srygley RB (2003). "Orientation by magnetic field in leaf-cutter ants, Atta colombica (Hymenoptera: Formicidae)". Ethology. 109 (10): 835-846. doi:10.1046/j.0179-1613.2003.00927.x.
  2126. Jump up ^ Fukushi T (15 June 2001). "Homing in wood ants, Formica japonica: use of the skyline panorama". Journal of Experimental Biology. 204 (12): 2063-2072. PMID 11441048.
  2127. Jump up ^ Wehner R, Menzel R (1969). "Homing in the ant Cataglyphis bicolor". Science. 164 (3876): 192-194. Bibcode:1969Sci...164..192W. doi:10.1126/science.164.3876.192. PMID 5774195.
  2128. Jump up ^ Chapman, Reginald Frederick (1998). The Insects: Structure and Function (4 ed.). Cambridge University Press. p. 600. ISBN 0-521-57890-6.
  2129. Jump up ^ Delsuc F (2003). "Army Ants Trapped by Their Evolutionary History". PLoS Biol. 1 (2): E37. doi:10.1371/journal.pbio.0000037. PMC 261877free to read. PMID 14624241.
  2130. Jump up ^ Baroni-Urbani C, Boyan GS, Blarer A, Billen J, Musthak Ali TM (1994). "A novel mechanism for jumping in the Indian ant Harpegnathos saltator (Jerdon) (Formicidae, Ponerinae)". Experientia. 50: 63-71. doi:10.1007/BF01992052.
  2131. Jump up ^ Yanoviak SP, Dudley R, Kaspari M (2005). "Directed aerial descent in canopy ants" (PDF). Nature. 433 (7026): 624-626. Bibcode:2005Natur.433..624Y. doi:10.1038/nature03254. PMID 15703745.
  2132. Jump up ^ Mlot, N.J., Tovey, C.A. and Hu, D.L. (2011). "Fire ants self-assemble into waterproof rafts to survive floods". Proceedings of the National Academy of Sciences. 108 (19): 7669-7673. doi:10.1073/pnas.1016658108.
  2133. Jump up ^ Morrison LW (1998). "A review of Bahamian ant (Hymenoptera: Formicidae) biogeography". Journal of Biogeography. 25 (3): 561-571. doi:10.1046/j.1365-2699.1998.2530561.x.
  2134. Jump up ^ Clay RE, Andersen AN (1996). "Ant fauna of a mangrove community in the Australian seasonal tropics, with particular reference to zonation". Australian Journal of Zoology. 44 (5): 521-533. doi:10.1071/ZO9960521.
  2135. Jump up ^ Crosland MWJ; Crozier RH; Jefferson E (1988). "Aspects of the biology of the primitive ant genus Myrmecia F. (Hymenoptera: Formicidae)". Australian Journal of Entomology. 27 (4): 305-309. doi:10.1111/j.1440-6055.1988.tb01179.x.
  2136. Jump up ^ Diehl E; Junqueira LK; Berti-Filho E (2005). "Ant and termite mound coinhabitants in the wetlands of Santo Antonio da Patrulha, Rio Grande do Sul, Brazil". Brazilian Journal of Biology. 65 (3): 431-437. doi:10.1590/S1519-69842005000300008.
  2137. Jump up ^ Achenbach, A; Foitzik, Susanne (2009). "First evidence for slave rebellion: enslaved ant workers systematically kill the brood of their social parasite Protomognathus americanus". Evolution. 63 (4): 1068-1075. doi:10.1111/j.1558-5646.2009.00591.x. PMID 19243573. See also New Scientist, April 9, 2009
  2138. Jump up ^ Henderson G, Andersen JF, Phillips JK, Jeanne RL (2005). "Internest aggression and identification of possible nestmate discrimination pheromones in polygynous ant Formica montana". Journal of Chemical Ecology. 16 (7): 2217-2228. doi:10.1007/BF01026932.
  2139. Jump up ^ Ward PS (1996). "A new workerless social parasite in the ant genus Pseudomyrmex (Hymenoptera: Formicidae), with a discussion of the origin of social parasitism in ants". Systematic Entomology. 21 (3): 253-263. doi:10.1046/j.1365-3113.1996.d01-12.x.
  2140. Jump up ^ Taylor RW (1968). "The Australian workerless inquiline ant, Strumigenys xenos Brown (Hymenoptera-Formicidae) recorded from New Zealand". New Zealand Entomologist. 4 (1): 47-49. doi:10.1080/00779962.1968.9722888.
  2141. Jump up ^ Hölldobler & Wilson (1990), pp. 436-448
  2142. Jump up ^ Fournier, D; Estoup A, Orivel J; Foucaud J, Jourdan H; Le Breton J, Keller L (2005). "Clonal reproduction by males and females in the little fire ant". Nature. 435 (7046): 1230-1234. Bibcode:2005Natur.435.1230F. doi:10.1038/nature03705. PMID 15988525.
  2143. Jump up ^ Reiskind J (1977). "Ant-mimicry in Panamanian clubionid and salticid spiders (Araneae: Clubionidae, Salticidae)". Biotropica. 9 (1): 1-8. doi:10.2307/2387854. JSTOR 2387854.
  2144. Jump up ^ Cushing PE (1997). "Myrmecomorphy and myrmecophily in spiders: A Review" (PDF). The Florida Entomologist. 80 (2): 165-193. doi:10.2307/3495552. JSTOR 3495552.
  2145. Jump up ^ Styrsky JD, Eubanks MD (January 2007). "Ecological consequences of interactions between ants and honeydew-producing insects". Proc. Biol. Sci. 274 (1607): 151-164. doi:10.1098/rspb.2006.3701. PMC 1685857free to read. PMID 17148245.
  2146. Jump up ^ Jahn GC, Beardsley JW (1996). "Effects of Pheidole megacephala (Hymenoptera: Formicidae) on survival and dispersal of Dysmicoccus neobrevipes (Homoptera: Pseudococcidae)". Journal of Economic Entomology. 89: 1124-1129.
  2147. Jump up ^ DeVries PJ (1992). "Singing caterpillars, ants and symbiosis". Scientific American. 267 (4): 76-82. doi:10.1038/scientificamerican1092-76.
  2148. Jump up ^ Pierce NE, Braby MF, Heath A (2002). "The ecology and evolution of ant association in the Lycaenidae (Lepidoptera)". Annual Review of Entomology. 47: 733-771. doi:10.1146/annurev.ento.47.091201.145257. PMID 11729090.
  2149. Jump up ^ Dejean A, Solano PJ, Ayroles J, Corbara B, Orivel J (2005). "Arboreal ants build traps to capture prey". Nature. 434 (7036): 973. Bibcode:2005Natur.434..973D. doi:10.1038/434973a. PMID 15846335.
  2150. Jump up ^ Frederickson ME, Gordon DM (2007). "The devil to pay: a cost of mutualism with Myrmelachista schumanni ants in 'devil's gardens' is increased herbivory on Duroia hirsuta trees". Proceedings of the Royal Society B. 274 (1613): 1117-1123. doi:10.1098/rspb.2006.0415. PMC 2124481free to read. PMID 17301016.
  2151. Jump up ^ Beattie, Andrew J.; Turnbull, Christine; Knox, R. B.; Williams, E. G. (1984). "Ant Inhibition of Pollen Function: A Possible Reason Why Ant Pollination is Rare". American Journal of Botany. 71 (3): 421-426. doi:10.2307/2443499.
  2152. Jump up ^ Katayama N, Suzuki N (2004). "Role of extrafloral nectaries of Vicia faba in attraction of ants and herbivore exclusion by ants". Entomological Science. 7 (2): 119-124. doi:10.1111/j.1479-8298.2004.00057.x.
  2153. Jump up ^ Fischer RC, Wanek W, Richter A, Mayer V (2003). "Do ants feed plants? A 15N labelling study of nitrogen fluxes from ants to plants in the mutualism of Pheidole and Piper". Journal of Ecology. 91: 126-134. doi:10.1046/j.1365-2745.2003.00747.x.
  2154. Jump up ^ Hanzawa FM, Beattie AJ, Culver DC (1988). "Directed dispersal: demographic analysis of an ant-seed mutualism". American Naturalist. 131 (1): 1-13. doi:10.1086/284769.
  2155. Jump up ^ Giladi I (2006). "Choosing benefits or partners: a review of the evidence for the evolution of myrmecochory". Oikos. 112 (3): 481-492. doi:10.1111/j.0030-1299.2006.14258.x.
  2156. Jump up ^ Lengyel, Szabolcs; Aaron D. Gove; Andrew M. Latimer; Jonathan D. Majer; Robert R. Dunn (2010). "Convergent evolution of seed dispersal by ants, and phylogeny and biogeography in flowering plants: A global survey". Perspectives in Plant Ecology, Evolution and Systematics. 12: 43-55. doi:10.1016/j.ppees.2009.08.001.
  2157. Jump up ^ Fischer RC, Ölzant SM, Wanek W, Mayer V (2005). "The fate of Corydalis cava elaiosomes within an ant colony of Myrmica rubra: elaiosomes are preferentially fed to larvae". Insectes Sociaux. 52 (1): 55-62. doi:10.1007/s00040-004-0773-x.
  2158. Jump up ^ Hughes L, Westoby M (1 January 1992). "Capitula on stick insect eggs and elaiosomes on seeds: convergent adaptations for burial by ants". Functional Ecology. 6 (6): 642-648. doi:10.2307/2389958. ISSN 0269-8463. JSTOR 2389958.
  2159. Jump up ^ Quinet Y, Tekule N, de Biseau JC (2005). "Behavioural Interactions Between Crematogaster brevispinosa rochai Forel (Hymenoptera: Formicidae) and Two Nasutitermes Species (Isoptera: Termitidae)". Journal of Insect Behavior. 18 (1): 1-17. doi:10.1007/s10905-005-9343-y.
  2160. Jump up ^ Jeanne, RL (1972). "Social biology of the neotropical wasp Mischocyttarus drewseni". Bull. Mus. Comp. Zool. 144: 63-150.
  2161. Jump up ^ Jeanne, Robert (July 1995). "Foraging in Social Wasps: Agelaia lacks recruitment to food (Hymenoptera: Vespidae)". Journal of the Kansas Entomological Society.
  2162. ^ Jump up to: a b Sivinski J, Marshall S, Petersson E (1999). "Kleptoparasitism and phoresy in the Diptera" (PDF). Florida Entomologist. 82 (2): 179-197. doi:10.2307/3496570. JSTOR 3496570.
  2163. Jump up ^ Schaechter E (2000). "Some weird and wonderful fungi". Microbiology Today. 27 (3): 116-117.
  2164. Jump up ^ Sandra B. Andersen; Sylvia Gerritsma; Kalsum M. Yusah; David Mayntz; Nigel L. Hywel-Jones; Johan Billen; Jacobus J. Boomsma; David P. Hughes (2009). "The Life of a Dead Ant: The Expression of an Adaptive Extended Phenotype". The American Naturalist. 174 (3): 424-433. doi:10.1086/603640. PMID 19627240.
  2165. Jump up ^ Wojcik DP (1989). "Behavioral interactions between ants and their parasites". The Florida Entomologist. 72 (1): 43-51. doi:10.2307/3494966. JSTOR 3494966.
  2166. Jump up ^ Poinar G Jr.; Yanoviak SP (2008). "Myrmeconema neotropicum n. g., n. sp., a new tetradonematid nematode parasitising South American populations of Cephalotes atratus (Hymenoptera: Formicidae), with the discovery of an apparent parasite-induced host morph" (PDF). Systematic Parasitology. 69 (2): 145-153. doi:10.1007/s11230-007-9125-3. PMID 18038201.
  2167. Jump up ^ Caldwell JP (1996). "The evolution of myrmecophagy and its correlates in poison frogs (Family Dendrobatidae)". Journal of Zoology. 240 (1): 75-101. doi:10.1111/j.1469-7998.1996.tb05487.x.
  2168. Jump up ^ Willis, E.; Y. Oniki (1978). "Birds and Army Ants". Annual Review of Ecology and Systematics. 9: 243-263. doi:10.1146/annurev.es.09.110178.001331.
  2169. Jump up ^ Vellely AC (2001). "Foraging at army ant swarms by fifty bird species in the highlands of Costa Rica" (PDF). Ornitologia Neotropical. 12: 271-275. Retrieved 8 June 2008.
  2170. Jump up ^ Inzunza, Ernesto Ruelas; Martínez-Leyva, J. Eduardo; Valenzuela-González, Jorge E. "Doves kleptoparasitize ants". The Southwestern Naturalist. 60 (1): 103-106. doi:10.1894/msh-03.1.
  2171. Jump up ^ Wrege PH; Wikelski, Martin; Mandel, James T.; Rassweiler, Thomas; Couzin, Iain D. (2005). "Antbirds parasitize foraging army ants". Ecology. 86 (3): 555-559. doi:10.1890/04-1133.
  2172. Jump up ^ Swenson JE, Jansson A, Riig R, Sandegren R (1999). "Bears and ants: myrmecophagy by brown bears in central Scandinavia". Canadian Journal of Zoology. 77 (4): 551-561. doi:10.1139/cjz-77-4-551.
  2173. Jump up ^ Gottrup F, Leaper D (2004). "Wound healing: Historical aspects" (PDF). EWMA Journal. 4 (2): 5. Archived from the original (PDF) on 2007-06-16.
  2174. Jump up ^ Gudger EW (1925). "Stitching wounds with the mandibles of ants and beetles". Journal of the American Medical Association. 84 (24): 1861-1864. doi:10.1001/jama.1925.02660500069048.
  2175. Jump up ^ Sapolsky, Robert M. (2001). A Primate's Memoir: A Neuroscientist's Unconventional Life Among the Baboons. Simon and Schuster. p. 156. ISBN 0-7432-0241-4.
  2176. Jump up ^ Wheeler, William M. (1910). Ants: Their Structure, Development and Behavior. Columbia University Biological Series. 9. Columbia University Press. p. 10. doi:10.5962/bhl.title.1937. ISBN 978-0-231-00121-2. ISSN 0069-6285. LCCN 10008253//r88. OCLC 560205.
  2177. Jump up ^ Haddad Jr. V; Cardoso JLC; Moraes RHP (2005). "Description of an injury in a human caused by a false tocandira (Dinoponera gigantea, Perty, 1833) with a revision on folkloric, pharmacological and clinical aspects of the giant ants of the genera Paraponera and Dinoponera (sub-family Ponerinae)" (PDF). Revista do Instituto de Medicina Tropical de São Paulo. 47 (4): 235-238. doi:10.1590/S0036-46652005000400012.
  2178. Jump up ^ McGain F, Winkel KD (2002). "Ant sting mortality in Australia". Toxicon. 40 (8): 1095-1100. doi:10.1016/S0041-0101(02)00097-1. PMID 12165310.
  2179. Jump up ^ Downes D, Laird SA (1999). "Innovative mechanisms for sharing benefits of biodiversity and related knowledge" (PDF). The Center for International Environmental Law. Archived (PDF) from the original on 23 April 2008. Retrieved 8 June 2008.
  2180. Jump up ^ Cheney RH, Scholtz E (1963). "Rooibos tea, a South African contribution to world beverages". Economic Botany. 17 (3): 186-194. doi:10.1007/BF02859435.
  2181. Jump up ^ Chapman, RE; Bourke, Andrew FG (2001). "The influence of sociality on the conservation biology of social insects" (PDF). Ecology Letters. 4 (6): 650-662. doi:10.1046/j.1461-0248.2001.00253.x.
  2182. Jump up ^ Holldobler, B; E. O. Wilson (2009). The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies. New York: W. W. Norton. p. 5. ISBN 0-393-06704-1.
  2183. Jump up ^ "How many ants are there for every one person on earth?". info.com. Retrieved 27 July 2013.
  2184. Jump up ^ DeFoliart GR (1999). "Insects as food: Why the western attitude is important". Annual Review of Entomology. 44: 21-50. doi:10.1146/annurev.ento.44.1.21. PMID 9990715.
  2185. Jump up ^ Bingham CT (1903). Fauna of British India. Hymenoptera Volume 3. p. 311.
  2186. ^ Jump up to: a b Bequaert J (1921). "Insects as food: How they have augmented the food supply of mankind in early and recent times". Natural History Journal. 21: 191-200.
  2187. Jump up ^ Lubbock, J. (1881). "Observations on ants, bees, and wasps. IX. Color of flowers as an attraction to bees: Experiments and considerations thereon". J. Linn. Soc. Lond. (Zool.). 16 (90): 110-112. doi:10.1111/j.1096-3642.1882.tb02275.x.
  2188. Jump up ^ Stadler B, Dixon AF (2008). Mutualism: Ants and their insect partners. Cambridge University Press. ISBN 978-0-521-86035-2.
  2189. Jump up ^ Kennedy CH (1951). "Myrmecological technique. IV. Collecting ants by rearing pupae". The Ohio Journal of Science. 51 (1): 17-20.
  2190. Jump up ^ Wojcik DP, Burges RJ, Blanton CM, Focks DA (2000). "An improved and quantified technique for marking individual fire ants (Hymenoptera: Formicidae)" (PDF). The Florida Entomologist. 83 (1): 74-78. doi:10.2307/3496231. JSTOR 3496231.
  2191. Jump up ^ "27:18-19". Quran.
  2192. Jump up ^ "Vol 4, Book 54, Number 536". Sahih Bukhari.
  2193. Jump up ^ Deen, Mawil Y. Izzi (1990). "Islamic Environmental Ethics, Law, and Society". In Engel JR; JG Engel. Ethics of Environment and Development (PDF). Bellhaven Press, London.
  2194. Jump up ^ Balee WL (2000). "Antiquity of traditional ethnobiological knowledge in Amazonia: The Tupi-Guarani family and time". Ethnohistory. 47 (2): 399-422. doi:10.1215/00141801-47-2-399.
  2195. Jump up ^ Cesard N, Deturche J, Erikson P (2003). "Les Insectes dans les pratiques médicinales et rituelles d'Amazonie indigène". In Motte-Florac, E., J. M. C. Thomas. Les insectes dans la tradition orale (in French). Peeters-Selaf, Paris. pp. 395-406.
  2196. Jump up ^ Schmidt RJ (1985). "The super-nettles: a dermatologist's guide to ants in the plants". International Journal of Dermatology. 24 (4): 204-210. doi:10.1111/j.1365-4362.1985.tb05760.x. PMID 3891647.
  2197. Jump up ^ Twain, Mark (1880). "22 The Black Forest and Its Treasures". A Tramp Abroad. New York: Oxford University Press. ISBN 0-19-510137-5. Retrieved 2015-12-13.
  2198. Jump up ^ Wilson, EO (25 January 2010). "Trailhead". The New Yorker. pp. 56-62.
  2199. Jump up ^ Guri, Assaf (8 September 1998). "Habitat media for ants and other invertebrates (US Patent 5803014)". United States Patent and Trademark Office.
  2200. Jump up ^ "1992 Excellence in Software Awards Winners". Software & Information Industry Association. Archived from the original on 2009-06-11. Retrieved 3 April 2008.
  2201. Jump up ^ Sharkey AJC (2006). "Robots, insects and swarm intelligence". Artificial Intelligence Review. 26 (4): 255-268. doi:10.1007/s10462-007-9057-y.
  2202. Cited texts
  2203. Borror DJ, Triplehorn CA, Delong DM (1989). Introduction to the Study of Insects, 6th Edition. Saunders College Publishing. ISBN 0-03-025397-7.
  2204. Hölldobler B, Wilson EO (1990). The Ants. Harvard University Press. ISBN 0-674-04075-9.
  2205. Further reading
  2206. Bolton, Barry (1995). A New General Catalogue of the Ants of the World. Harvard University Press. ISBN 978-0-674-61514-4.
  2207. Hölldobler B, Wilson EO (1998). Journey to the Ants: A Story of Scientific Exploration. Belknap Press. ISBN 0-674-48526-2.
  2208. Hölldobler B, Wilson EO (2009). The Superorganism: The Beauty, Elegance and Strangeness of Insect Societies. Norton & Co. ISBN 978-0-393-06704-0.
  2209. External links
  2210. Wikiquote has quotations related to: Ant
  2211. Wikimedia Commons has media related to Formicidae.
  2212. Wikispecies has information related to: Formicidae
  2213. AntWeb from The California Academy of Sciences
  2214. AntBase - a taxonomic database with literature sources
  2215. AntWiki - Bringing Ants to the World
  2216. Ant Species Fact Sheets from the National Pest Management Association on Argentine, Carpenter, Pharaoh, Odorous, and other ant species
  2217. Ant Genera of the World - distribution maps
  2218. The super-nettles. A dermatologist's guide to ants-in-the-plants
  2219. [show] v t e
  2220. Extant Hymenopteran families
  2221. [show] v t e
  2222. Ant taxonomy
  2223. [show] v t e
  2224. Eusociality
  2225. Taxon Identifiers
  2226. EoL: 699 GBIF: 4342 ITIS: 154193 NCBI: 36668 Fossilworks: 70728 WoRMS: 425369 Fauna Europaea: 11356
  2227. Authority control
  2228. NDL: 00560320
  2229. Categories: AntsSymbiosisExtant Albian first appearancesMagnetoreceptive animals
  2230. Navigation menu
  2231. Not logged inTalkContributionsCreate accountLog inArticleTalkReadView sourceView historySearch
  2232.  
  2233. Search
  2234. Go
  2235. Main page
  2236. Contents
  2237. Featured content
  2238. Current events
  2239. Random article
  2240. Donate to Wikipedia
  2241. Wikipedia store
  2242. Interaction
  2243. Help
  2244. About Wikipedia
  2245. Community portal
  2246. Recent changes
  2247. Contact page
  2248. Tools
  2249. What links here
  2250. Related changes
  2251. Upload file
  2252. Special pages
  2253. Permanent link
  2254. Page information
  2255. Wikidata item
  2256. Cite this page
  2257. Print/export
  2258. Create a book
  2259. Download as PDF
  2260. Printable version
  2261. In other projects
  2262. Wikimedia Commons
  2263. Wikispecies
  2264. Wikinews
  2265. Wikiquote
  2266. Languages
  2267. Afrikaans
  2268. Alemannisch
  2269. አማርኛ
  2270. Ænglisc
  2271. العربية
  2272. Aragonés
  2273. ܐܪܡܝܐ
  2274. Armãneashti
  2275. অসময
  2276. Asturianu
  2277. Avañe'ẽ
  2278. Aymar aru
  2279. Azərbaycanca
  2280. Bamanankan
  2281. বল
  2282. Bahasa Banjar
  2283. Bân-lâm-gú
  2284. Basa Banyumasan
  2285. Башҡортса
  2286. Беларуская
  2287. Беларуская (тарашкевіца)
  2288. Български
  2289. བད་ཡག
  2290. Bosanski
  2291. Brezhoneg
  2292. Буряад
  2293. Català
  2294. Cebuano
  2295. Čeština
  2296. Cymraeg
  2297. Dansk
  2298. Deutsch
  2299. Diné bizaad
  2300. Eesti
  2301. Ελληνικά
  2302. Emiliàn e rumagnòl
  2303. Español
  2304. Esperanto
  2305. Euskara
  2306. فارسی
  2307. Fiji Hindi
  2308. Français
  2309. Gaeilge
  2310. Galego
  2311. ગજરત
  2312. 客家語/Hak-kâ-ngî
  2313. Хальмг
  2314. 한국어
  2315. Հայերեն
  2316. हनद
  2317. Hrvatski
  2318. Ido
  2319. Ilokano
  2320. Bahasa Indonesia
  2321. Interlingua
  2322. Íslenska
  2323. Italiano
  2324. ebris
  2325. Basa Jawa
  2326. ಕನನಡ
  2327. Kapampangan
  2328. ქართული
  2329. कशर / کٲشر
  2330. Қазақша
  2331. Kiswahili
  2332. Коми
  2333. Kongo
  2334. Kreyòl ayisyen
  2335. Kurdî
  2336. Кыргызча
  2337. Кырык мары
  2338. Лакку
  2339. Лезги
  2340. Latina
  2341. Latviešu
  2342. Lëtzebuergesch
  2343. Lietuvių
  2344. Limburgs
  2345. Magyar
  2346. Македонски
  2347. Malagasy
  2348. മലയള
  2349. मरठ
  2350. مازرونی
  2351. Bahasa Melayu
  2352. Mìng-dĕng-ngṳ
  2353. Монгол
  2354. မနမဘသ
  2355. Nāhuatl
  2356. Na Vosa Vakaviti
  2357. Nederlands
  2358. Nedersaksies
  2359. नपल
  2360. नपल भष
  2361. 日本語
  2362. Nordfriisk
  2363. Norsk bokmål
  2364. Norsk nynorsk
  2365. Occitan
  2366. Олык марий
  2367. O'zbekcha/ўзбекча
  2368. ਪਜਬ
  2369. Pälzisch
  2370. پنجابی
  2371. پښتو
  2372. Перем Коми
  2373. Plattdüütsch
  2374. Polski
  2375. Português
  2376. Ripoarisch
  2377. Română
  2378. Rumantsch
  2379. Runa Simi
  2380. Русиньскый
  2381. Русский
  2382. Саха тыла
  2383. Sardu
  2384. Scots
  2385. Sicilianu
  2386. සහල
  2387. Simple English
  2388. Slovenčina
  2389. Slovenščina
  2390. Ślůnski
  2391. Soomaaliga
  2392. کوردیی ناوەندی
  2393. Српски / srpski
  2394. Srpskohrvatski / српскохрватски
  2395. Basa Sunda
  2396. Suomi
  2397. Svenska
  2398. Tagalog
  2399. தமழ
  2400. Татарча/tatarça
  2401. తలగ
  2402. ไทย
  2403. Тоҷикӣ
  2404. ᏣᎳᎩ
  2405. Türkçe
  2406. Удмурт
  2407. Українська
  2408. اردو
  2409. ئۇيغۇرچە / Uyghurche
  2410. Vahcuengh
  2411. Tiếng Việt
  2412. West-Vlams
  2413. Winaray
  2414. Wolof
  2415. 吴语
  2416. eydish
  2417. 粵語
  2418. Zazaki
  2419. Žemaitėška
  2420. 中文
  2421. Edit links
  2422. This page was last modified on 1 September 2016, at 17:04.
  2423. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.
  2424. Privacy policyAbout WikipediaDisclaimersContact WikipediaDevelopersCookie statementMobile viewWikimedia Foundation Powered by MediaWiki
  2425. Google Translate for Business:Translator ToolkitWebsite TranslatorGlobal Market Finder
  2426. About Google TranslateCommunityMobileAbout GooglePrivacy & TermsHelpSend feedback
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement