Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- 840.
- Решить линейную неоднородную систему
- x^'=x-y+2sint
- y^'=2x-y
- x^'=x-y
- y^'=2x-y
- |■(1- λ&-1@2&-1- λ)| = λ^2+1=0 〖 λ〗_1=i λ_2= -c
- 〖 λ〗_1=i:
- [■(1-i&-1@2&-1-i)] x=c y=(1-i)C V_1= C_1 [■(1@1-i)] V_1= C_2 [■(1@1+C)]
- x=e^it
- x_1=cost x_2=sint
- y=(1-i) e^it
- y_1=cost-(-1)sint=costsint y_2=sint-cost
- x_p^'=(a_2- b_1- b_2 t)sint+(a_1+ b_2+a_2 t)cost
- y_p^'=(c_2- d_1- d_2 t)sint+(c_1+ d_2+c_2 t)cost
- a_2- b_1-b_2 t= a_1+a_2 t- c_1- c_2 t+2
- a_1+ b_2+a_3 t= b_1+b_2 t- d_1- d_2 t
- c_2- d_1- d_2 t= 〖2a〗_1+〖2a〗_2 t- c_1- c_2 t
- c_1+ d_2- c_2 t= 〖2b〗_1+〖2b〗_2 t- d_1- d_2 t
- Получаем:
- x= C_1 cost+C_2 sint+t(sin(t)-cos(t))
- y= C_1 (sint+cost )+C_2 (sin〖t 〗-cost )+sint+(1-2t)cost
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement