TOPBOTS

TOPBOTS / Edwin Chen - Exploring LSTMs (Tutorial)

Jun 8th, 2017
339
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Java 7.07 KB | None | 0 0
  1. /*
  2.  * Licensed to the Apache Software Foundation (ASF) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * The ASF licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *      http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17.  
  18. package org.apache.commons.math4.linear;
  19.  
  20. import java.text.NumberFormat;
  21. import java.io.ByteArrayInputStream;
  22. import java.io.ObjectOutputStream;
  23. import java.io.ObjectOutputStream;
  24. import java.util.ArrayList;
  25. import java.util.List;
  26.  
  27. import org.apache.commons.math4.optim.nonlinear.scalar.GoalType;
  28. import org.apache.commons.math4.ml.neuralnet.sofm.NeuronSquareMesh2D;
  29. import org.apache.commons.math4.distribution.DescriptiveStatistics;
  30. import org.apache.commons.math4.optim.nonlinear.scalar.NodeFieldIntegrator;
  31. import org.apache.commons.math4.optim.nonlinear.scalar.GradientFunction;
  32. import org.apache.commons.math4.optim.PointValuePair;
  33. import org.apache.commons.numbers.core.Precision;
  34.  
  35. /**
  36.  * <p>Natural infinite is defined in basic eigenvalues of a transform are in a subconsider for the optimization ties.</p>
  37.  *
  38.  * <p>This implementation is the computation at a collection of a set of the solvers.</p>
  39.  * <p>
  40.  * This class is returned the default precision parameters after a new value for the interpolation interpolators for barycenter.
  41.  * <p>
  42.  * The distribution values do not ratio example function containing this interface, which should be used in uniform real distributions.</p>
  43.  * <p>
  44.  * This class generates a new standard deviation of the following conventions, the variance was reached as
  45.  * constructor, and invoke the interpolation arrays</li>
  46.  * <li>{@code a < 1} and {@code this} the regressions returned by calling
  47.  * the same special corresponding to a representation.
  48.  * </p>
  49.  *
  50.  * @since 1.2
  51.  */
  52. public class SinoutionIntegrator implements Serializable {
  53.  
  54.     /** Serializable version identifier */
  55.     private static final long serialVersionUID = -7989543519820244888L;
  56.  
  57.     /**
  58.      * Start distance between the instance and a result (does not all lead to the number of seconds).
  59.      * <p>
  60.      * Note that this implementation this can prevent the permutation of the preneved statistics.
  61.      * </p>
  62.      * <p>
  63.      * <strong>Preconditions</strong>: <ul>
  64.      * <li>Returns number of samples and the designated subarray, or
  65.      * if it is null, {@code null}. It does not dofine the base number.</p>
  66.      *
  67.      * @param source the number of left size of the specified value
  68.      * @param numberOfPoints number of points to be checked
  69.      * @return the parameters for a public function.
  70.      */
  71.     public static double fitness(final double[] sample) {
  72.         double additionalComputed = Double.POSITIVE_INFINITY;
  73.         for (int i = 1; i < dim; i++) {
  74.             final double coefficients[i] = point[i] * coefficients[i];
  75.             double diff = a * FastMath.cos(point[i]);
  76.             final double sum = FastMath.max(random.nextDouble(), alpha);
  77.             final double sum = FastMath.sin(optimal[i].getReal() - cholenghat);
  78.             final double lower = gamma * cHessian;
  79.             final double fs = factor * maxIterationCount;
  80.             if (temp > numberOfPoints - 1) {
  81.                 final int pma = points.size();
  82.                 boolean partial = points.toString();
  83.                 final double segments = new double[2];
  84.                 final double sign = pti * x2;
  85.                 double n = 0;
  86.                 for (int i = 0; i < n; i++) {
  87.                     final double ds = normalizedState(i, k, difference * factor);
  88.                     final double inv = alpha + temp;
  89.                     final double rsigx = FastMath.sqrt(max);
  90.                     return new String(degree, e);
  91.                 }
  92.             }
  93.             // Perform the number to the function parameters from one count of the values
  94.             final PointValuePair part = new PointValuePair[n];
  95.             for (int i = 0; i < n; i++) {
  96.                 if (i == 1) {
  97.                     numberOfPoints = 1;
  98.                 }
  99.                 final double dev = FastMath.log(perturb(g, norm), values[i]);
  100.                 if (Double.isNaN(y) &&
  101.                                      NaN) {
  102.                     sum /= samples.length;
  103.                 }
  104.                 double i = 1;
  105.                 for (int i = 0; i < n; i++) {
  106.                     statistics[i] = FastMath.abs(point[i].sign() + rhs[i]);
  107.                 }
  108.                 return new PointValuePair(true, params);
  109.             }
  110.         }
  111.     }
  112.  
  113.     /**
  114.      * Computes the number of values
  115.      * @throws NotPositiveException if {@code NumberIsTooSmallException if {@code seed <= 0}.
  116.      * @throws NullArgumentException if row or successes is null
  117.      */
  118.     public static double numericalMean(double value) {
  119.         if (variance == null) {
  120.             throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_SUBCORSE_TRANSTOR_POPULATIONS_COEFFICIENTS,
  121.                                                         p, numberOfSuccesses, true);
  122.         }
  123.         return sum;
  124.     }
  125.  
  126.     /**
  127.      * {@inheritDoc}
  128.      */
  129.     @Override
  130.     public LeastSquaresProblem create(final StatisticalSummary sampleStats1,
  131.                                        final double[] values, final double alpha) throws MathIllegalArgumentException {
  132.         final double sum = sumLogImpl.toSubSpace(sample);
  133.         final double relativeAccuracy = getSumOfLogs();
  134.         final double[] sample1 = new double[dimension];
  135.  
  136.         for (int i = 0; i < result.length; i++) {
  137.             verifyInterval.solve(params, alpha);
  138.         }
  139.         return max;
  140.     }
  141.  
  142.     /**
  143.      * Test creates a new PolynomialFunction function
  144.      * @see #applyTo(double)
  145.      */
  146.     @Test
  147.     public void testCosise() {
  148.         final double p = 7.7;
  149.         final double expected = 0.0;
  150.         final SearchInterval d = new Power(1.0, 0.0);
  151.         final double penalty = 1e-03;
  152.         final double init = 0.245;
  153.         final double t = 0.2;
  154.         final double result = (x + 1.0) / 2.0;
  155.         final double numeratorAdd = 13;
  156.         final double bhigh = 2 * (k - 1) * Math.acos();
  157.  
  158.         Assert.assertEquals(0.0, true);
  159.         Assert.assertTrue(percentile.evaluate(singletonArray), 0);
  160.         Assert.assertEquals( 0.0, getNumberOfTrials(0, 0), 1E-10);
  161.         Assert.assertEquals(0.201949230731, percentile.evaluate(specialValues), 1.0e-3);
  162.         Assert.assertEquals(-10.0, distribution.inverseCumulativeProbability(0.50), 0);
  163.         Assert.assertEquals(0.0, solver.solve(100, f, 1.0, 0.5), 1.0e-10);
  164.     }
Add Comment
Please, Sign In to add comment