Advertisement
Guest User

hydrogen fluoride sto3g

a guest
Aug 25th, 2022
130
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 49.42 KB | None | 0 0
  1.  
  2. *****************
  3. * O R C A *
  4. *****************
  5.  
  6. #,
  7. ###
  8. ####
  9. #####
  10. ######
  11. ########,
  12. ,,################,,,,,
  13. ,,#################################,,
  14. ,,##########################################,,
  15. ,#########################################, ''#####,
  16. ,#############################################,, '####,
  17. ,##################################################,,,,####,
  18. ,###########'''' ''''###############################
  19. ,#####'' ,,,,##########,,,, '''####''' '####
  20. ,##' ,,,,###########################,,, '##
  21. ' ,,###'''' '''############,,,
  22. ,,##'' '''############,,,, ,,,,,,###''
  23. ,#'' '''#######################'''
  24. ' ''''####''''
  25. ,#######, #######, ,#######, ##
  26. ,#' '#, ## ## ,#' '#, #''# ###### ,####,
  27. ## ## ## ,#' ## #' '# # #' '#
  28. ## ## ####### ## ,######, #####, # #
  29. '#, ,#' ## ## '#, ,#' ,# #, ## #, ,#
  30. '#######' ## ## '#######' #' '# #####' # '####'
  31.  
  32.  
  33.  
  34. #######################################################
  35. # -***- #
  36. # Department of theory and spectroscopy #
  37. # Directorship and core code : Frank Neese #
  38. # Max Planck Institute fuer Kohlenforschung #
  39. # Kaiser Wilhelm Platz 1 #
  40. # D-45470 Muelheim/Ruhr #
  41. # Germany #
  42. # #
  43. # All rights reserved #
  44. # -***- #
  45. #######################################################
  46.  
  47.  
  48. Program Version 5.0.3 - RELEASE -
  49.  
  50.  
  51. With contributions from (in alphabetic order):
  52. Daniel Aravena : Magnetic Suceptibility
  53. Michael Atanasov : Ab Initio Ligand Field Theory (pilot matlab implementation)
  54. Alexander A. Auer : GIAO ZORA, VPT2 properties, NMR spectrum
  55. Ute Becker : Parallelization
  56. Giovanni Bistoni : ED, misc. LED, open-shell LED, HFLD
  57. Martin Brehm : Molecular dynamics
  58. Dmytro Bykov : SCF Hessian
  59. Vijay G. Chilkuri : MRCI spin determinant printing, contributions to CSF-ICE
  60. Dipayan Datta : RHF DLPNO-CCSD density
  61. Achintya Kumar Dutta : EOM-CC, STEOM-CC
  62. Dmitry Ganyushin : Spin-Orbit,Spin-Spin,Magnetic field MRCI
  63. Miquel Garcia : C-PCM and meta-GGA Hessian, CC/C-PCM, Gaussian charge scheme
  64. Yang Guo : DLPNO-NEVPT2, F12-NEVPT2, CIM, IAO-localization
  65. Andreas Hansen : Spin unrestricted coupled pair/coupled cluster methods
  66. Benjamin Helmich-Paris : MC-RPA, TRAH-SCF, COSX integrals
  67. Lee Huntington : MR-EOM, pCC
  68. Robert Izsak : Overlap fitted RIJCOSX, COSX-SCS-MP3, EOM
  69. Marcus Kettner : VPT2
  70. Christian Kollmar : KDIIS, OOCD, Brueckner-CCSD(T), CCSD density, CASPT2, CASPT2-K
  71. Simone Kossmann : Meta GGA functionals, TD-DFT gradient, OOMP2, MP2 Hessian
  72. Martin Krupicka : Initial AUTO-CI
  73. Lucas Lang : DCDCAS
  74. Marvin Lechner : AUTO-CI (C++ implementation), FIC-MRCC
  75. Dagmar Lenk : GEPOL surface, SMD
  76. Dimitrios Liakos : Extrapolation schemes; Compound Job, initial MDCI parallelization
  77. Dimitrios Manganas : Further ROCIS development; embedding schemes
  78. Dimitrios Pantazis : SARC Basis sets
  79. Anastasios Papadopoulos: AUTO-CI, single reference methods and gradients
  80. Taras Petrenko : DFT Hessian,TD-DFT gradient, ASA, ECA, R-Raman, ABS, FL, XAS/XES, NRVS
  81. Peter Pinski : DLPNO-MP2, DLPNO-MP2 Gradient
  82. Christoph Reimann : Effective Core Potentials
  83. Marius Retegan : Local ZFS, SOC
  84. Christoph Riplinger : Optimizer, TS searches, QM/MM, DLPNO-CCSD(T), (RO)-DLPNO pert. Triples
  85. Tobias Risthaus : Range-separated hybrids, TD-DFT gradient, RPA, STAB
  86. Michael Roemelt : Original ROCIS implementation
  87. Masaaki Saitow : Open-shell DLPNO-CCSD energy and density
  88. Barbara Sandhoefer : DKH picture change effects
  89. Avijit Sen : IP-ROCIS
  90. Kantharuban Sivalingam : CASSCF convergence, NEVPT2, FIC-MRCI
  91. Bernardo de Souza : ESD, SOC TD-DFT
  92. Georgi Stoychev : AutoAux, RI-MP2 NMR, DLPNO-MP2 response
  93. Willem Van den Heuvel : Paramagnetic NMR
  94. Boris Wezisla : Elementary symmetry handling
  95. Frank Wennmohs : Technical directorship
  96.  
  97.  
  98. We gratefully acknowledge several colleagues who have allowed us to
  99. interface, adapt or use parts of their codes:
  100. Stefan Grimme, W. Hujo, H. Kruse, P. Pracht, : VdW corrections, initial TS optimization,
  101. C. Bannwarth, S. Ehlert DFT functionals, gCP, sTDA/sTD-DF
  102. Ed Valeev, F. Pavosevic, A. Kumar : LibInt (2-el integral package), F12 methods
  103. Garnet Chan, S. Sharma, J. Yang, R. Olivares : DMRG
  104. Ulf Ekstrom : XCFun DFT Library
  105. Mihaly Kallay : mrcc (arbitrary order and MRCC methods)
  106. Jiri Pittner, Ondrej Demel : Mk-CCSD
  107. Frank Weinhold : gennbo (NPA and NBO analysis)
  108. Christopher J. Cramer and Donald G. Truhlar : smd solvation model
  109. Lars Goerigk : TD-DFT with DH, B97 family of functionals
  110. V. Asgeirsson, H. Jonsson : NEB implementation
  111. FAccTs GmbH : IRC, NEB, NEB-TS, DLPNO-Multilevel, CI-OPT
  112. MM, QMMM, 2- and 3-layer-ONIOM, Crystal-QMMM,
  113. LR-CPCM, SF, NACMEs, symmetry and pop. for TD-DFT,
  114. nearIR, NL-DFT gradient (VV10), updates on ESD,
  115. ML-optimized integration grids
  116. S Lehtola, MJT Oliveira, MAL Marques : LibXC Library
  117. Liviu Ungur et al : ANISO software
  118.  
  119.  
  120. Your calculation uses the libint2 library for the computation of 2-el integrals
  121. For citations please refer to: http://libint.valeyev.net
  122.  
  123. Your ORCA version has been built with support for libXC version: 5.1.0
  124. For citations please refer to: https://tddft.org/programs/libxc/
  125.  
  126. This ORCA versions uses:
  127. CBLAS interface : Fast vector & matrix operations
  128. LAPACKE interface : Fast linear algebra routines
  129. SCALAPACK package : Parallel linear algebra routines
  130. Shared memory : Shared parallel matrices
  131. BLAS/LAPACK : OpenBLAS 0.3.19 NO_AFFINITY VORTEX SINGLE_THREADED
  132. Core in use : VORTEX
  133. Copyright (c) 2011-2014, The OpenBLAS Project
  134.  
  135.  
  136. XCFun DFT library Copyright 2009-2010 Ulf Ekstrom and contributors.
  137. See http://admol.org/xcfun for more information.
  138. This is free software; see the source code for copying conditions.
  139. There is ABSOLUTELY NO WARRANTY; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  140. For details see the documentation.
  141. Scientific users of this library should cite U. Ekstrom, L. Visscher, R. Bast, A. J. Thorvaldsen and K. Ruud;
  142. J.Chem.Theor.Comp. 2010, DOI: 10.1021/ct100117s
  143. XCFun Version 0.99
  144.  
  145. ================================================================================
  146.  
  147. ----- Orbital basis set information -----
  148. Your calculation utilizes the basis: STO-3G
  149. H-Ne : W. J. Hehre, R. F. Stewart and J. A. Pople, J. Chem. Phys. 2657 (1969).
  150. Na-Ar : W. J. Hehre, R. Ditchfield, R. F. Stewart and J. A. Pople, J. Chem. Phys. 2769 (1970).
  151. K,Ca,Ga-Kr : W. J. Pietro, B. A. Levy, W. J. Hehre and R. F. Stewart, J. Am. Chem. Soc. 19, 2225 (1980).
  152. Sc-Zn,Y-Cd : W. J. Pietro and W. J. Hehre, J. Comp. Chem. 4, 241 (1983).
  153.  
  154. ----- AuxJ basis set information -----
  155. Your calculation utilizes the auxiliary basis: def2/J
  156. F. Weigend, Phys. Chem. Chem. Phys. 8, 1057 (2006).
  157.  
  158. ================================================================================
  159. WARNINGS
  160. Please study these warnings very carefully!
  161. ================================================================================
  162.  
  163.  
  164. WARNING: Minnesota functionals are quite sensitive to the integration grid.
  165. see SE Wheeler, KN Houk, JCTC 2010, 6, 395,
  166. N Mardirossian, M Head-Gordon, JCTC 2016, 12, 4303.
  167. DEFGRID3 seems to be a minimum grid for reliable results with these functionals!
  168. ===> : Please increase the integration grid!
  169.  
  170.  
  171. INFO : the flag for use of the SHARK integral package has been found!
  172.  
  173. ================================================================================
  174. INPUT FILE
  175. ================================================================================
  176. NAME = en.inp
  177. | 1> ! m062x STO-3G PAL8 PrintMOs PrintBasis Freq
  178. | 2>
  179. | 3> * xyz 0 1
  180. | 4> F -2.92273910742335 1.36469000000000 0.00000000000000
  181. | 5> H -2.00034089257665 1.36469000000000 0.00000000000000
  182. | 6> *
  183. | 7>
  184. | 8> ****END OF INPUT****
  185. ================================================================================
  186.  
  187. ****************************
  188. * Single Point Calculation *
  189. ****************************
  190.  
  191. ---------------------------------
  192. CARTESIAN COORDINATES (ANGSTROEM)
  193. ---------------------------------
  194. F -2.922739 1.364690 0.000000
  195. H -2.000341 1.364690 0.000000
  196.  
  197. ----------------------------
  198. CARTESIAN COORDINATES (A.U.)
  199. ----------------------------
  200. NO LB ZA FRAG MASS X Y Z
  201. 0 F 9.0000 0 18.998 -5.523176 2.578890 0.000000
  202. 1 H 1.0000 0 1.008 -3.780096 2.578890 0.000000
  203.  
  204. --------------------------------
  205. INTERNAL COORDINATES (ANGSTROEM)
  206. --------------------------------
  207. F 0 0 0 0.000000000000 0.00000000 0.00000000
  208. H 1 0 0 0.922398214847 0.00000000 0.00000000
  209.  
  210. ---------------------------
  211. INTERNAL COORDINATES (A.U.)
  212. ---------------------------
  213. F 0 0 0 0.000000000000 0.00000000 0.00000000
  214. H 1 0 0 1.743080012478 0.00000000 0.00000000
  215.  
  216. ---------------------
  217. BASIS SET INFORMATION
  218. ---------------------
  219. There are 2 groups of distinct atoms
  220.  
  221. Group 1 Type F : 6s3p contracted to 2s1p pattern {33/3}
  222. Group 2 Type H : 3s contracted to 1s pattern {3}
  223.  
  224. Atom 0F basis set group => 1
  225. Atom 1H basis set group => 2
  226.  
  227. -------------------------
  228. BASIS SET IN INPUT FORMAT
  229. -------------------------
  230.  
  231. # Basis set for element : H
  232. NewGTO H
  233. S 3
  234. 1 3.4252509100 0.1543289707
  235. 2 0.6239137300 0.5353281424
  236. 3 0.1688554000 0.4446345420
  237. end;
  238.  
  239. # Basis set for element : F
  240. NewGTO F
  241. S 3
  242. 1 166.6791300000 0.1543289701
  243. 2 30.3608120000 0.5353281404
  244. 3 8.2168207000 0.4446345403
  245. S 3
  246. 1 6.4648032000 -0.0999672291
  247. 2 1.5022812000 0.3995128265
  248. 3 0.4885885000 0.7001154638
  249. P 3
  250. 1 6.4648032000 0.1559162698
  251. 2 1.5022812000 0.6076837191
  252. 3 0.4885885000 0.3919573894
  253. end;
  254.  
  255. ---------------------------------
  256. AUXILIARY/J BASIS SET INFORMATION
  257. ---------------------------------
  258. There are 2 groups of distinct atoms
  259.  
  260. Group 1 Type F : 12s5p4d2f1g contracted to 6s4p3d1f1g pattern {711111/2111/211/2/1}
  261. Group 2 Type H : 5s2p1d contracted to 3s1p1d pattern {311/2/1}
  262.  
  263. Atom 0F basis set group => 1
  264. Atom 1H basis set group => 2
  265.  
  266. -------------------------------------
  267. AUXILIARY/J BASIS SET IN INPUT FORMAT
  268. -------------------------------------
  269.  
  270. # Auxiliary/J basis set for element : H
  271. NewAuxJGTO H
  272. S 3
  273. 1 15.6752927000 0.1007184237
  274. 2 3.6063578000 0.3404257499
  275. 3 1.2080016000 0.6491996172
  276. S 1
  277. 1 0.4726794000 1.0000000000
  278. S 1
  279. 1 0.2018100000 1.0000000000
  280. P 2
  281. 1 2.0281365000 0.5596620919
  282. 2 0.5358730000 0.5596620919
  283. D 1
  284. 1 2.2165124000 1.0000000000
  285. end;
  286.  
  287. # Auxiliary/J basis set for element : F
  288. NewAuxJGTO F
  289. S 7
  290. 1 3514.9201549000 0.0176189594
  291. 2 1231.2458815000 0.0358663858
  292. 3 454.1367336000 0.1239867649
  293. 4 175.8376258000 0.2758620517
  294. 5 71.2081775000 0.4252764982
  295. 6 30.0316883000 0.2651963387
  296. 7 13.1259023000 -0.0078514564
  297. S 1
  298. 1 5.9126861000 -1.0000000000
  299. S 1
  300. 1 2.7284431000 1.0000000000
  301. S 1
  302. 1 1.2813993000 1.0000000000
  303. S 1
  304. 1 0.6082793000 1.0000000000
  305. S 1
  306. 1 0.2897894000 1.0000000000
  307. P 2
  308. 1 49.3740409000 -0.8404235528
  309. 2 13.4874956000 -0.2331250081
  310. P 1
  311. 1 3.9664900000 1.0000000000
  312. P 1
  313. 1 1.2226629000 -1.0000000000
  314. P 1
  315. 1 0.3830317000 1.0000000000
  316. D 2
  317. 1 29.9719140000 -0.2160273306
  318. 2 6.7860915000 -0.8915140390
  319. D 1
  320. 1 1.8137313000 -1.0000000000
  321. D 1
  322. 1 0.5157840000 -1.0000000000
  323. F 2
  324. 1 2.8301877000 0.5762078303
  325. 2 0.9155962000 0.5762078303
  326. G 1
  327. 1 1.6097500000 -1.0000000000
  328. end;
  329.  
  330.  
  331.  
  332. ************************************************************
  333. * Program running with 8 parallel MPI-processes *
  334. * working on a common directory *
  335. ************************************************************
  336. ------------------------------------------------------------------------------
  337. ORCA GTO INTEGRAL CALCULATION
  338. -- RI-GTO INTEGRALS CHOSEN --
  339. ------------------------------------------------------------------------------
  340. ------------------------------------------------------------------------------
  341. ___
  342. / \ - P O W E R E D B Y -
  343. / \
  344. | | | _ _ __ _____ __ __
  345. | | | | | | | / \ | _ \ | | / |
  346. \ \/ | | | | / \ | | | | | | / /
  347. / \ \ | |__| | / /\ \ | |_| | | |/ /
  348. | | | | __ | / /__\ \ | / | \
  349. | | | | | | | | __ | | \ | |\ \
  350. \ / | | | | | | | | | |\ \ | | \ \
  351. \___/ |_| |_| |__| |__| |_| \__\ |__| \__/
  352.  
  353. - O R C A' S B I G F R I E N D -
  354. &
  355. - I N T E G R A L F E E D E R -
  356.  
  357. v1 FN, 2020, v2 2021
  358. ------------------------------------------------------------------------------
  359.  
  360.  
  361. Reading SHARK input file en.SHARKINP.tmp ... ok
  362. ----------------------
  363. SHARK INTEGRAL PACKAGE
  364. ----------------------
  365.  
  366. Number of atoms ... 2
  367. Number of basis functions ... 6
  368. Number of shells ... 4
  369. Maximum angular momentum ... 1
  370. Integral batch strategy ... SHARK/LIBINT Hybrid
  371. RI-J (if used) integral strategy ... SPLIT-RIJ (Revised 2003 algorithm where possible)
  372. Printlevel ... 1
  373. Contraction scheme used ... SEGMENTED contraction
  374. Coulomb Range Separation ... NOT USED
  375. Exchange Range Separation ... NOT USED
  376. Finite Nucleus Model ... NOT USED
  377. Auxiliary Coulomb fitting basis ... AVAILABLE
  378. # of basis functions in Aux-J ... 60
  379. # of shells in Aux-J ... 20
  380. Maximum angular momentum in Aux-J ... 4
  381. Auxiliary J/K fitting basis ... NOT available
  382. Auxiliary Correlation fitting basis ... NOT available
  383. Auxiliary 'external' fitting basis ... NOT available
  384. Integral threshold ... 1.000000e-10
  385. Primitive cut-off ... 1.000000e-11
  386. Primitive pair pre-selection threshold ... 1.000000e-11
  387.  
  388. Calculating pre-screening integrals ... done ( 0.0 sec) Dimension = 4
  389. Organizing shell pair data ... done ( 0.0 sec)
  390. Shell pair information
  391. Total number of shell pairs ... 10
  392. Shell pairs after pre-screening ... 10
  393. Total number of primitive shell pairs ... 90
  394. Primitive shell pairs kept ... 90
  395. la=0 lb=0: 6 shell pairs
  396. la=1 lb=0: 3 shell pairs
  397. la=1 lb=1: 1 shell pairs
  398.  
  399. Calculating one electron integrals ... done ( 0.0 sec)
  400. Calculating RI/J V-Matrix + Cholesky decomp.... done ( 0.0 sec)
  401. Calculating Nuclear repulsion ... done ( 0.0 sec) ENN= 5.163274167320 Eh
  402.  
  403. SHARK setup successfully completed in 0.0 seconds
  404.  
  405. Maximum memory used throughout the entire GTOINT-calculation: 6.2 MB
  406.  
  407.  
  408. ************************************************************
  409. * Program running with 8 parallel MPI-processes *
  410. * working on a common directory *
  411. ************************************************************
  412. -------------------------------------------------------------------------------
  413. ORCA SCF
  414. -------------------------------------------------------------------------------
  415.  
  416. ------------
  417. SCF SETTINGS
  418. ------------
  419. Hamiltonian:
  420. Density Functional Method .... DFT(GTOs)
  421. Exchange Functional Exchange .... M062X
  422. Correlation Functional Correlation .... M062X
  423. Gradients option PostSCFGGA .... off
  424. Hybrid DFT is turned on
  425. Fraction HF Exchange ScalHFX .... 0.540000
  426. Scaling of DF-GGA-X ScalDFX .... 0.460000
  427. Scaling of DF-GGA-C ScalDFC .... 1.000000
  428. Scaling of DF-LDA-C ScalLDAC .... 1.000000
  429. Perturbative correction .... 0.000000
  430. Density functional embedding theory .... OFF
  431. RI-approximation to the Coulomb term is turned on
  432. Number of AuxJ basis functions .... 60
  433. RIJ-COSX (HFX calculated with COS-X)).... on
  434.  
  435.  
  436. General Settings:
  437. Integral files IntName .... en
  438. Hartree-Fock type HFTyp .... RHF
  439. Total Charge Charge .... 0
  440. Multiplicity Mult .... 1
  441. Number of Electrons NEL .... 10
  442. Basis Dimension Dim .... 6
  443. Nuclear Repulsion ENuc .... 5.1632741673 Eh
  444.  
  445. Convergence Acceleration:
  446. DIIS CNVDIIS .... on
  447. Start iteration DIISMaxIt .... 12
  448. Startup error DIISStart .... 0.200000
  449. # of expansion vecs DIISMaxEq .... 5
  450. Bias factor DIISBfac .... 1.050
  451. Max. coefficient DIISMaxC .... 10.000
  452. Trust-Rad. Augm. Hess. CNVTRAH .... auto
  453. Auto Start mean grad. ratio tolernc. .... 1.125000
  454. Auto Start start iteration .... 20
  455. Auto Start num. interpolation iter. .... 10
  456. Max. Number of Micro iterations .... 16
  457. Max. Number of Macro iterations .... Maxiter - #DIIS iter
  458. Number of Davidson start vectors .... 2
  459. Converg. threshold I (grad. norm) .... 5.000e-05
  460. Converg. threshold II (energy diff.) .... 1.000e-06
  461. Grad. Scal. Fac. for Micro threshold .... 0.100
  462. Minimum threshold for Micro iter. .... 0.010
  463. NR start threshold (gradient norm) .... 0.001
  464. Initial trust radius .... 0.400
  465. Minimum AH scaling param. (alpha) .... 1.000
  466. Maximum AH scaling param. (alpha) .... 1000.000
  467. Orbital update algorithm .... Taylor
  468. White noise on init. David. guess .... on
  469. Maximum white noise .... 0.010
  470. Quad. conv. algorithm .... NR
  471. SOSCF CNVSOSCF .... on
  472. Start iteration SOSCFMaxIt .... 150
  473. Startup grad/error SOSCFStart .... 0.003300
  474. Level Shifting CNVShift .... on
  475. Level shift para. LevelShift .... 0.2500
  476. Turn off err/grad. ShiftErr .... 0.0010
  477. Zerner damping CNVZerner .... off
  478. Static damping CNVDamp .... on
  479. Fraction old density DampFac .... 0.7000
  480. Max. Damping (<1) DampMax .... 0.9800
  481. Min. Damping (>=0) DampMin .... 0.0000
  482. Turn off err/grad. DampErr .... 0.1000
  483. Fernandez-Rico CNVRico .... off
  484.  
  485. SCF Procedure:
  486. Maximum # iterations MaxIter .... 125
  487. SCF integral mode SCFMode .... Direct
  488. Integral package .... SHARK and LIBINT hybrid scheme
  489. Reset frequency DirectResetFreq .... 20
  490. Integral Threshold Thresh .... 1.000e-10 Eh
  491. Primitive CutOff TCut .... 1.000e-11 Eh
  492.  
  493. Convergence Tolerance:
  494. Convergence Check Mode ConvCheckMode .... Total+1el-Energy
  495. Convergence forced ConvForced .... 0
  496. Energy Change TolE .... 1.000e-06 Eh
  497. 1-El. energy change .... 1.000e-03 Eh
  498. Orbital Gradient TolG .... 5.000e-05
  499. Orbital Rotation angle TolX .... 5.000e-05
  500. DIIS Error TolErr .... 1.000e-06
  501.  
  502.  
  503. Diagonalization of the overlap matrix:
  504. Smallest eigenvalue ... 4.168e-01
  505. Time for diagonalization ... 0.001 sec
  506. Threshold for overlap eigenvalues ... 1.000e-08
  507. Number of eigenvalues below threshold ... 0
  508. Time for construction of square roots ... 0.001 sec
  509. Total time needed ... 0.004 sec
  510.  
  511. Time for model grid setup = 0.008 sec
  512.  
  513. ------------------------------
  514. INITIAL GUESS: MODEL POTENTIAL
  515. ------------------------------
  516. Loading Hartree-Fock densities ... done
  517. Calculating cut-offs ... done
  518. Initializing the effective Hamiltonian ... done
  519. Setting up the integral package (SHARK) ... done
  520. Starting the Coulomb interaction ... done ( 0.0 sec)
  521. Reading the grid ... done
  522. Mapping shells ... done
  523. Starting the XC term evaluation ... done ( 0.0 sec)
  524. promolecular density results
  525. # of electrons = 9.999296584
  526. EX = -10.276158856
  527. EC = -0.330468699
  528. EX+EC = -10.606627555
  529. Transforming the Hamiltonian ... done ( 0.0 sec)
  530. Diagonalizing the Hamiltonian ... done ( 0.0 sec)
  531. Back transforming the eigenvectors ... done ( 0.0 sec)
  532. Now organizing SCF variables ... done
  533. ------------------
  534. INITIAL GUESS DONE ( 0.0 sec)
  535. ------------------
  536. -------------------
  537. DFT GRID GENERATION
  538. -------------------
  539.  
  540. General Integration Accuracy IntAcc ... 4.388
  541. Radial Grid Type RadialGrid ... OptM3 with GC (2021)
  542. Angular Grid (max. ang.) AngularGrid ... 4 (Lebedev-302)
  543. Angular grid pruning method GridPruning ... 4 (adaptive)
  544. Weight generation scheme WeightScheme... Becke
  545. Basis function cutoff BFCut ... 1.0000e-10
  546. Integration weight cutoff WCut ... 1.0000e-14
  547. Angular grids for H and He will be reduced by one unit
  548. Partially contracted basis set ... off
  549. Rotationally invariant grid construction ... off
  550.  
  551. Total number of grid points ... 9454
  552. Total number of batches ... 149
  553. Average number of points per batch ... 63
  554. Average number of grid points per atom ... 4727
  555. Time for grid setup = 0.031 sec
  556.  
  557. --------------------
  558. COSX GRID GENERATION
  559. --------------------
  560.  
  561. GRIDX 1
  562. -------
  563. General Integration Accuracy IntAcc ... 3.816
  564. Radial Grid Type RadialGrid ... OptM3 with GC (2021)
  565. Angular Grid (max. ang.) AngularGrid ... 1 (Lebedev-50)
  566. Angular grid pruning method GridPruning ... 4 (adaptive)
  567. Weight generation scheme WeightScheme... Becke
  568. Basis function cutoff BFCut ... 1.0000e-10
  569. Integration weight cutoff WCut ... 1.0000e-14
  570. Angular grids for H and He will be reduced by one unit
  571. Partially contracted basis set ... on
  572. Rotationally invariant grid construction ... off
  573.  
  574. Total number of grid points ... 1210
  575. Total number of batches ... 20
  576. Average number of points per batch ... 60
  577. Average number of grid points per atom ... 605
  578. UseSFitting ... on
  579.  
  580. GRIDX 2
  581. -------
  582. General Integration Accuracy IntAcc ... 4.020
  583. Radial Grid Type RadialGrid ... OptM3 with GC (2021)
  584. Angular Grid (max. ang.) AngularGrid ... 2 (Lebedev-110)
  585. Angular grid pruning method GridPruning ... 4 (adaptive)
  586. Weight generation scheme WeightScheme... Becke
  587. Basis function cutoff BFCut ... 1.0000e-10
  588. Integration weight cutoff WCut ... 1.0000e-14
  589. Angular grids for H and He will be reduced by one unit
  590. Partially contracted basis set ... on
  591. Rotationally invariant grid construction ... off
  592.  
  593. Total number of grid points ... 2693
  594. Total number of batches ... 43
  595. Average number of points per batch ... 62
  596. Average number of grid points per atom ... 1346
  597. UseSFitting ... on
  598.  
  599. GRIDX 3
  600. -------
  601. General Integration Accuracy IntAcc ... 4.338
  602. Radial Grid Type RadialGrid ... OptM3 with GC (2021)
  603. Angular Grid (max. ang.) AngularGrid ... 3 (Lebedev-194)
  604. Angular grid pruning method GridPruning ... 4 (adaptive)
  605. Weight generation scheme WeightScheme... Becke
  606. Basis function cutoff BFCut ... 1.0000e-10
  607. Integration weight cutoff WCut ... 1.0000e-14
  608. Angular grids for H and He will be reduced by one unit
  609. Partially contracted basis set ... on
  610. Rotationally invariant grid construction ... off
  611.  
  612. Total number of grid points ... 6003
  613. Total number of batches ... 95
  614. Average number of points per batch ... 63
  615. Average number of grid points per atom ... 3002
  616. UseSFitting ... on
  617.  
  618. Time for X-Grid setup = 0.022 sec
  619.  
  620. --------------
  621. SCF ITERATIONS
  622. --------------
  623. ITER Energy Delta-E Max-DP RMS-DP [F,P] Damp
  624. *** Starting incremental Fock matrix formation ***
  625. 0 -98.9088085073 0.000000000000 0.07050674 0.01640221 0.1953843 0.7000
  626. 1 -98.9171080261 -0.008299518831 0.06089516 0.01431967 0.1389558 0.7000
  627. ***Turning on DIIS***
  628. 2 -98.9226417645 -0.005533738415 0.14024293 0.03309291 0.0902280 0.0000
  629. 3 -98.9335415036 -0.010899739110 0.02082397 0.00466988 0.0228956 0.0000
  630. 4 -98.9338134775 -0.000271973818 0.00411635 0.00094162 0.0044111 0.0000
  631. *** Initiating the SOSCF procedure ***
  632. *** Shutting down DIIS ***
  633. *** Re-Reading the Fockian ***
  634. *** Removing any level shift ***
  635. ITER Energy Delta-E Grad Rot Max-DP RMS-DP
  636. 5 -98.93382218 -0.0000087001 0.000387 0.000387 0.001039 0.000248
  637. *** Restarting incremental Fock matrix formation ***
  638. 6 -98.93372388 0.0000982962 0.000071 0.000053 0.000154 0.000035
  639. **** Energy Check signals convergence ****
  640. ***Rediagonalizing the Fockian in SOSCF/NRSCF***
  641.  
  642. *****************************************************
  643. * SUCCESS *
  644. * SCF CONVERGED AFTER 7 CYCLES *
  645. *****************************************************
  646.  
  647. Old exchange energy = -5.745884802 Eh
  648. New exchange energy = -5.746089493 Eh
  649. Exchange energy change after final integration = -0.000204691 Eh
  650. Total energy after final integration = -98.933928582 Eh
  651. Final COS-X integration done in = 0.011 sec
  652.  
  653. ----------------
  654. TOTAL SCF ENERGY
  655. ----------------
  656.  
  657. Total Energy : -98.93392858 Eh -2692.12906 eV
  658.  
  659. Components:
  660. Nuclear Repulsion : 5.16327417 Eh 140.49983 eV
  661. Electronic Energy : -104.09720275 Eh -2832.62889 eV
  662. One Electron Energy: -149.67869597 Eh -4072.96438 eV
  663. Two Electron Energy: 45.58149322 Eh 1240.33549 eV
  664. Max COSX asymmetry : 0.00000174 Eh 0.00005 eV
  665.  
  666. Virial components:
  667. Potential Energy : -196.69719938 Eh -5352.40291 eV
  668. Kinetic Energy : 97.76327080 Eh 2660.27384 eV
  669. Virial Ratio : 2.01197441
  670.  
  671.  
  672. DFT components:
  673. N(Alpha) : 4.999999355858 electrons
  674. N(Beta) : 4.999999355858 electrons
  675. N(Total) : 9.999998711716 electrons
  676. E(XC) : -5.256638287626 Eh
  677. DFET-embed. en. : 0.000000000000 Eh
  678.  
  679. ---------------
  680. SCF CONVERGENCE
  681. ---------------
  682.  
  683. Last Energy change ... -1.0028e-08 Tolerance : 1.0000e-06
  684. Last MAX-Density change ... 1.5543e-15 Tolerance : 1.0000e-05
  685. Last RMS-Density change ... 3.9422e-16 Tolerance : 1.0000e-06
  686. Last Orbital Gradient ... 1.5388e-05 Tolerance : 5.0000e-05
  687. Last Orbital Rotation ... 1.3800e-05 Tolerance : 5.0000e-05
  688.  
  689. **** THE GBW FILE WAS UPDATED (en.gbw) ****
  690. **** DENSITY en.scfp WAS UPDATED ****
  691. **** ENERGY FILE WAS UPDATED (en.en.tmp) ****
  692. **** THE GBW FILE WAS UPDATED (en.gbw) ****
  693. **** DENSITY en.scfp WAS UPDATED ****
  694. ----------------
  695. ORBITAL ENERGIES
  696. ----------------
  697.  
  698. NO OCC E(Eh) E(eV)
  699. 0 2.0000 -24.870168 -676.7517
  700. 1 2.0000 -1.200143 -32.6575
  701. 2 2.0000 -0.452147 -12.3036
  702. 3 2.0000 -0.286164 -7.7869
  703. 4 2.0000 -0.286164 -7.7869
  704. 5 0.0000 0.449015 12.2183
  705. ------------------
  706. MOLECULAR ORBITALS
  707. ------------------
  708. 0 1 2 3 4 5
  709. -24.87017 -1.20014 -0.45215 -0.28616 -0.28616 0.44902
  710. 2.00000 2.00000 2.00000 2.00000 2.00000 0.00000
  711. -------- -------- -------- -------- -------- --------
  712. 0F 1s 0.994638 -0.245080 0.095375 0.000000 -0.000000 -0.083573
  713. 0F 2s 0.022921 0.915097 -0.482529 -0.000000 0.000000 0.548727
  714. 0F 1pz 0.000000 -0.000000 0.000000 -0.259678 0.965695 0.000000
  715. 0F 1px 0.003069 0.126279 0.691623 0.000000 -0.000000 0.826914
  716. 0F 1py 0.000000 -0.000000 0.000000 -0.965695 -0.259678 0.000000
  717. 1H 1s -0.006088 0.182232 0.519968 0.000000 -0.000000 -1.082661
  718.  
  719.  
  720.  
  721. ********************************
  722. * MULLIKEN POPULATION ANALYSIS *
  723. ********************************
  724.  
  725. -----------------------
  726. MULLIKEN ATOMIC CHARGES
  727. -----------------------
  728. 0 F : -0.202111
  729. 1 H : 0.202111
  730. Sum of atomic charges: -0.0000000
  731.  
  732. --------------------------------
  733. MULLIKEN REDUCED ORBITAL CHARGES
  734. --------------------------------
  735. 0 F s : 3.947688 s : 3.947688
  736. pz : 2.000000 p : 5.254423
  737. px : 1.254423
  738. py : 2.000000
  739. 1 H s : 0.797889 s : 0.797889
  740.  
  741.  
  742. *******************************
  743. * LOEWDIN POPULATION ANALYSIS *
  744. *******************************
  745.  
  746. ----------------------
  747. LOEWDIN ATOMIC CHARGES
  748. ----------------------
  749. 0 F : -0.144987
  750. 1 H : 0.144987
  751.  
  752. -------------------------------
  753. LOEWDIN REDUCED ORBITAL CHARGES
  754. -------------------------------
  755. 0 F s : 3.874758 s : 3.874758
  756. pz : 2.000000 p : 5.270229
  757. px : 1.270229
  758. py : 2.000000
  759. 1 H s : 0.855013 s : 0.855013
  760.  
  761.  
  762. *****************************
  763. * MAYER POPULATION ANALYSIS *
  764. *****************************
  765.  
  766. NA - Mulliken gross atomic population
  767. ZA - Total nuclear charge
  768. QA - Mulliken gross atomic charge
  769. VA - Mayer's total valence
  770. BVA - Mayer's bonded valence
  771. FA - Mayer's free valence
  772.  
  773. ATOM NA ZA QA VA BVA FA
  774. 0 F 9.2021 9.0000 -0.2021 0.9592 0.9592 -0.0000
  775. 1 H 0.7979 1.0000 0.2021 0.9592 0.9592 0.0000
  776.  
  777. Mayer bond orders larger than 0.100000
  778. B( 0-F , 1-H ) : 0.9592
  779.  
  780. -------
  781. TIMINGS
  782. -------
  783.  
  784. Total SCF time: 0 days 0 hours 0 min 0 sec
  785.  
  786. Total time .... 0.404 sec
  787. Sum of individual times .... 0.358 sec ( 88.7%)
  788.  
  789. Fock matrix formation .... 0.249 sec ( 61.7%)
  790. Split-RI-J .... 0.125 sec ( 50.2% of F)
  791. Chain of spheres X .... 0.057 sec ( 22.9% of F)
  792. XC integration .... 0.040 sec ( 16.2% of F)
  793. Basis function eval. .... 0.001 sec ( 3.4% of XC)
  794. Density eval. .... 0.005 sec ( 13.1% of XC)
  795. XC-Functional eval. .... 0.009 sec ( 22.7% of XC)
  796. XC-Potential eval. .... 0.001 sec ( 1.3% of XC)
  797. Diagonalization .... 0.013 sec ( 3.2%)
  798. Density matrix formation .... 0.000 sec ( 0.1%)
  799. Population analysis .... 0.003 sec ( 0.8%)
  800. Initial guess .... 0.007 sec ( 1.7%)
  801. Orbital Transformation .... 0.000 sec ( 0.0%)
  802. Orbital Orthonormalization .... 0.000 sec ( 0.0%)
  803. DIIS solution .... 0.021 sec ( 5.1%)
  804. SOSCF solution .... 0.004 sec ( 1.0%)
  805. Grid generation .... 0.061 sec ( 15.0%)
  806.  
  807. Maximum memory used throughout the entire SCF-calculation: 42.5 MB
  808.  
  809. ------------------------- --------------------
  810. FINAL SINGLE POINT ENERGY -98.933928582316
  811. ------------------------- --------------------
  812.  
  813.  
  814. ***************************************
  815. * ORCA property calculations *
  816. ***************************************
  817.  
  818. ---------------------
  819. Active property flags
  820. ---------------------
  821. (+) Dipole Moment
  822.  
  823.  
  824. ------------------------------------------------------------------------------
  825. ORCA ELECTRIC PROPERTIES CALCULATION
  826. ------------------------------------------------------------------------------
  827.  
  828. Dipole Moment Calculation ... on
  829. Quadrupole Moment Calculation ... off
  830. Polarizability Calculation ... off
  831. GBWName ... en.gbw
  832. Electron density ... en.scfp
  833. The origin for moment calculation is the CENTER OF MASS = (-5.435352, 2.578890 0.000000)
  834.  
  835. -------------
  836. DIPOLE MOMENT
  837. -------------
  838. X Y Z
  839. Electronic contribution: -0.37809 0.00000 0.00000
  840. Nuclear contribution : 0.86483 0.00000 0.00000
  841. -----------------------------------------
  842. Total Dipole Moment : 0.48674 0.00000 0.00000
  843. -----------------------------------------
  844. Magnitude (a.u.) : 0.48674
  845. Magnitude (Debye) : 1.23720
  846.  
  847.  
  848.  
  849. --------------------
  850. Rotational spectrum
  851. --------------------
  852.  
  853. Rotational constants in cm-1: 0.000000 20.699118 20.699118
  854. Rotational constants in MHz : 0.000000 620543.949424 620543.949424
  855.  
  856. Dipole components along the rotational axes:
  857. x,y,z [a.u.] : 0.486743 0.000000 0.000000
  858. x,y,z [Debye]: 1.237202 0.000000 0.000000
  859.  
  860.  
  861.  
  862.  
  863. ************************************************************
  864. * Program running with 8 parallel MPI-processes *
  865. * working on a common directory *
  866. ************************************************************
  867.  
  868. -------------------------------------------------------------------------------
  869. ORCA SCF HESSIAN
  870. -------------------------------------------------------------------------------
  871.  
  872. --------- SHARK INITIALIZATION DONE ---------
  873.  
  874. Hessian of the Kohn-Sham DFT energy:
  875. Kohn-Sham wavefunction type ... RKS
  876. Hartree-Fock exchange scaling ... 0.540
  877. Number of operators ... 1
  878. Number of atoms ... 2
  879. Basis set dimensions ... 6
  880. Integral neglect threshold ... 1.0e-10
  881. Integral primitive cutoff ... 1.0e-11
  882.  
  883. Setting up DFT Hessian calculations ...
  884.  
  885. HESS GRID
  886. ---------
  887.  
  888. General Integration Accuracy IntAcc ... 4.629
  889. Radial Grid Type RadialGrid ... OptM3 with GC (2021)
  890. Angular Grid (max. ang.) AngularGrid ... 5 (Lebedev-434)
  891. Angular grid pruning method GridPruning ... 4 (adaptive)
  892. Weight generation scheme WeightScheme... Becke
  893. Basis function cutoff BFCut ... 1.0000e-10
  894. Integration weight cutoff WCut ... 1.0000e-14
  895. Angular grids for H and He will be reduced by one unit
  896. Partially contracted basis set ... off
  897. Rotationally invariant grid construction ... off
  898.  
  899. Total number of grid points ... 14832
  900. Total number of batches ... 233
  901. Average number of points per batch ... 63
  902. Average number of grid points per atom ... 7416
  903.  
  904. Building densities ... done ( 0.0 sec)
  905. Calculating rho(r) on the grid ... done ( 0.0 sec)
  906. Building xc-kernel on the grid ... done ( 0.0 sec)
  907. done ( 0.1 sec)
  908.  
  909. Nuclear repulsion Hessian (SHARK) ... done ( 0.0 sec)
  910.  
  911. ----------------------------------------------
  912. Forming right-hand sides of CP-SCF equations ...
  913. ----------------------------------------------
  914. One electron integral derivatives (SHARK) ... done ( 0.0 sec)
  915. Transforming the overlap derivative matrices ... done ( 0.0 sec)
  916. Making the Q(x) pseudodensities ... done ( 0.0 sec)
  917. Adding the E*S(x)*S(y) terms to the Hessian ... done ( 0.0 sec)
  918. Calculating energy weighted overlap derivatives ... done ( 0.0 sec)
  919. Two electron integral derivatives (SHARK-RI) ... done ( 0.1 sec)
  920. Exchange-correlation integral derivatives ... done ( 0.0 sec)
  921. tr(F(y)Q(x)) contribution to the Hessian ... done ( 0.0 sec)
  922. Response fock operator R(S(x)) (SHARK-RIJCOSX) ... done ( 0.1 sec)
  923. XC Response fock operator R(S(x)) ... done ( 0.0 sec)
  924. tr(F(y)S(x)) contribution to the Hessian ... done ( 0.0 sec)
  925. Transforming and finalizing RHSs ... done ( 0.0 sec)
  926.  
  927. ----------------------------------------------
  928. Solving the CP-SCF equations (RIJCOSX) ...
  929. ----------------------------------------------
  930. CP-SCF ITERATION 0: 6.9389e-18 ( 0.1 sec 6/ 6 done)
  931. *** THE CP-SCF HAS CONVERGED ***
  932.  
  933. ... done ( 0.1 sec)
  934. Forming perturbed density Hessian contributions ... done ( 0.0 sec)
  935. 2nd integral derivative contribs (SHARK-RI) ... done ( 0.1 sec)
  936. Exchange-correlation Hessian ... done ( 0.0 sec)
  937. Dipole derivatives ... (center of mass: -5.435352, 2.578890 0.000000)done ( 0.0 sec)
  938.  
  939. Total SCF Hessian time: 0 days 0 hours 0 min 0 sec
  940.  
  941. Writing the Hessian file to the disk ... done
  942.  
  943.  
  944. Maximum memory used throughout the entire SCFHESS-calculation: 48.1 MB
  945.  
  946. -----------------------
  947. VIBRATIONAL FREQUENCIES
  948. -----------------------
  949.  
  950. Scaling factor for frequencies = 1.000000000 (already applied!)
  951.  
  952. 0: 0.00 cm**-1
  953. 1: 0.00 cm**-1
  954. 2: 0.00 cm**-1
  955. 3: 0.00 cm**-1
  956. 4: 0.00 cm**-1
  957. 5: 4829.27 cm**-1
  958.  
  959.  
  960. ------------
  961. NORMAL MODES
  962. ------------
  963.  
  964. These modes are the Cartesian displacements weighted by the diagonal matrix
  965. M(i,i)=1/sqrt(m[i]) where m[i] is the mass of the displaced atom
  966. Thus, these vectors are normalized but *not* orthogonal
  967.  
  968. 0 1 2 3 4 5
  969. 0 0.000000 0.000000 0.000000 0.000000 0.000000 -0.052984
  970. 1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
  971. 2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
  972. 3 0.000000 0.000000 0.000000 0.000000 0.000000 0.998595
  973. 4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
  974. 5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
  975.  
  976.  
  977. -----------
  978. IR SPECTRUM
  979. -----------
  980.  
  981. Mode freq eps Int T**2 TX TY TZ
  982. cm**-1 L/(mol*cm) km/mol a.u.
  983. ----------------------------------------------------------------------------
  984. 5: 4829.27 0.018642 94.21 0.001205 (-0.034708 0.000000 0.000000)
  985.  
  986. * The epsilon (eps) is given for a Dirac delta lineshape.
  987. ** The dipole moment derivative (T) already includes vibrational overlap.
  988.  
  989. The first frequency considered to be a vibration is 5
  990. The total number of vibrations considered is 1
  991.  
  992.  
  993. --------------------------
  994. THERMOCHEMISTRY AT 298.15K
  995. --------------------------
  996.  
  997. Temperature ... 298.15 K
  998. Pressure ... 1.00 atm
  999. Total Mass ... 20.01 AMU
  1000. The molecule is recognized as being linear
  1001.  
  1002. Throughout the following assumptions are being made:
  1003. (1) The electronic state is orbitally nondegenerate
  1004. (2) There are no thermally accessible electronically excited states
  1005. (3) Hindered rotations indicated by low frequency modes are not
  1006. treated as such but are treated as vibrations and this may
  1007. cause some error
  1008. (4) All equations used are the standard statistical mechanics
  1009. equations for an ideal gas
  1010. (5) All vibrations are strictly harmonic
  1011.  
  1012. freq. 4829.27 E(vib) ... 0.00
  1013.  
  1014. ------------
  1015. INNER ENERGY
  1016. ------------
  1017.  
  1018. The inner energy is: U= E(el) + E(ZPE) + E(vib) + E(rot) + E(trans)
  1019. E(el) - is the total energy from the electronic structure calculation
  1020. = E(kin-el) + E(nuc-el) + E(el-el) + E(nuc-nuc)
  1021. E(ZPE) - the the zero temperature vibrational energy from the frequency calculation
  1022. E(vib) - the the finite temperature correction to E(ZPE) due to population
  1023. of excited vibrational states
  1024. E(rot) - is the rotational thermal energy
  1025. E(trans)- is the translational thermal energy
  1026.  
  1027. Summary of contributions to the inner energy U:
  1028. Electronic energy ... -98.93392858 Eh
  1029. Zero point energy ... 0.01100188 Eh 6.90 kcal/mol
  1030. Thermal vibrational correction ... 0.00000000 Eh 0.00 kcal/mol
  1031. Thermal rotational correction ... 0.00094418 Eh 0.59 kcal/mol
  1032. Thermal translational correction ... 0.00141627 Eh 0.89 kcal/mol
  1033. -----------------------------------------------------------------------
  1034. Total thermal energy -98.92056625 Eh
  1035.  
  1036.  
  1037. Summary of corrections to the electronic energy:
  1038. (perhaps to be used in another calculation)
  1039. Total thermal correction 0.00236045 Eh 1.48 kcal/mol
  1040. Non-thermal (ZPE) correction 0.01100188 Eh 6.90 kcal/mol
  1041. -----------------------------------------------------------------------
  1042. Total correction 0.01336233 Eh 8.38 kcal/mol
  1043.  
  1044.  
  1045. --------
  1046. ENTHALPY
  1047. --------
  1048.  
  1049. The enthalpy is H = U + kB*T
  1050. kB is Boltzmann's constant
  1051. Total free energy ... -98.92056625 Eh
  1052. Thermal Enthalpy correction ... 0.00094421 Eh 0.59 kcal/mol
  1053. -----------------------------------------------------------------------
  1054. Total Enthalpy ... -98.91962204 Eh
  1055.  
  1056.  
  1057. Note: Rotational entropy computed according to Herzberg
  1058. Infrared and Raman Spectra, Chapter V,1, Van Nostrand Reinhold, 1945
  1059. Point Group: Cinfv, Symmetry Number: 1
  1060. Rotational constants in cm-1: 0.000000 20.699118 20.699118
  1061.  
  1062. Vibrational entropy computed according to the QRRHO of S. Grimme
  1063. Chem.Eur.J. 2012 18 9955
  1064.  
  1065.  
  1066. -------
  1067. ENTROPY
  1068. -------
  1069.  
  1070. The entropy contributions are T*S = T*(S(el)+S(vib)+S(rot)+S(trans))
  1071. S(el) - electronic entropy
  1072. S(vib) - vibrational entropy
  1073. S(rot) - rotational entropy
  1074. S(trans)- translational entropy
  1075. The entropies will be listed as multiplied by the temperature to get
  1076. units of energy
  1077.  
  1078. Electronic entropy ... 0.00000000 Eh 0.00 kcal/mol
  1079. Vibrational entropy ... -0.00000000 Eh -0.00 kcal/mol
  1080. Rotational entropy ... 0.00311931 Eh 1.96 kcal/mol
  1081. Translational entropy ... 0.01659227 Eh 10.41 kcal/mol
  1082. -----------------------------------------------------------------------
  1083. Final entropy term ... 0.01971157 Eh 12.37 kcal/mol
  1084.  
  1085.  
  1086. -------------------
  1087. GIBBS FREE ENERGY
  1088. -------------------
  1089.  
  1090. The Gibbs free energy is G = H - T*S
  1091.  
  1092. Total enthalpy ... -98.91962204 Eh
  1093. Total entropy correction ... -0.01971157 Eh -12.37 kcal/mol
  1094. -----------------------------------------------------------------------
  1095. Final Gibbs free energy ... -98.93933362 Eh
  1096.  
  1097. For completeness - the Gibbs free energy minus the electronic energy
  1098. G-E(el) ... -0.00540503 Eh -3.39 kcal/mol
  1099.  
  1100.  
  1101. Timings for individual modules:
  1102.  
  1103. Sum of individual times ... 2.477 sec (= 0.041 min)
  1104. GTO integral calculation ... 0.886 sec (= 0.015 min) 35.8 %
  1105. SCF iterations ... 0.585 sec (= 0.010 min) 23.6 %
  1106. Analytical frequency calculation... 1.007 sec (= 0.017 min) 40.6 %
  1107. ****ORCA TERMINATED NORMALLY****
  1108. TOTAL RUN TIME: 0 days 0 hours 0 minutes 2 seconds 776 msec
  1109.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement