Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- -> 500cos(a)-288.6sin(a)-300=0
- Euler:
- cos(x) = (e^jx+e^-jx)/2
- sin(x) = (e^jx-e^-jx)/2j
- -> Substitute in the original equation:
- 250e^ja+250e^-ja-(144.3/j)e^ja+(144.3/j)e^-ja-300=0
- -> Reorder terms:
- (250-144.3/j)e^ja+(250+144.3/j)e^-ja-300=0
- -> Multiply by e^ja:
- (250-144.3/j)e^2ja-300e^ja+(250+144.3/j)=0
- -> Now solve the equation to find e^ja
- a=((-144.3+250j)/j)=250+144.3j
- b=-300
- c=((144.3+250j)/j)=250-144.3j
- sol=(-b+-sqrt(b^2-4ac))/2a
- -> We have two solutions:
- ans1=0.87716506966622945779+0.48018896338570592133j
- ans2=0.02295205357384654090-0.99973656691987778778j
- For ans1:
- ----------
- e^ja=ans1
- ja=ln(ans1)
- =ln(0.87716506966622945779+0.48018896338570592133j)
- =0.50087012481978262042j
- a=0.50087012481978262042 rad (28.6977442 degrees)
- For ans2:
- ----------
- e^ja=ans2
- ja=ln(ans2)
- =ln(0.02295205357384654090-0.99973656691987778778j)
- =-1.54784225756526295179j
- a=-1.54784225756526295179 (-88.6848287 degrees)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement