Advertisement
Guest User

Untitled

a guest
Nov 21st, 2019
174
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 13.44 KB | None | 0 0
  1. Lemma “Reflexivity of ⊆”: R = S ⇒ R ⊆ S
  2. Proof:
  3. Assuming `R = S`:
  4. R ⊆ S
  5. ≡⟨ Assumption `R = S`⟩
  6. S ⊆ S
  7. ≡⟨“Reflexivity of ⊆”⟩
  8. true
  9.  
  10.  
  11. Theorem “Mutual inclusion”: R = S ≡ R ⊆ S ∧ S ⊆ R
  12. Proof:
  13. Using “Mutual implication”:
  14. Subproof for `R = S ⇒ R ⊆ S ∧ S ⊆ R`:
  15. Assuming `R = S`:
  16. R ⊆ S ∧ S ⊆ R
  17. ≡⟨ Assumption `R = S`⟩
  18. S ⊆ S ∧ S ⊆ S
  19. ≡⟨“Idempotency of ∧”⟩
  20. S ⊆ S
  21. ≡⟨“Reflexivity of ⊆”⟩
  22. true
  23. Subproof for `R ⊆ S ∧ S ⊆ R ⇒ R = S`:
  24. R ⊆ S ∧ S ⊆ R ⇒ R = S
  25. ≡⟨“Shunting”⟩
  26. R ⊆ S ⇒ S ⊆ R ⇒ R = S
  27. ≡⟨“Antisymmetry of ⊆”⟩
  28. true
  29.  
  30.  
  31.  
  32. Theorem “Indirect Relation Equality”
  33. “Indirect Relation Equality from below”:
  34. Q = R ≡ (∀ S • S ⊆ Q ≡ S ⊆ R)
  35. Proof:
  36. Using “Mutual implication”:
  37. Subproof for `Q = R ⇒ (∀ S • S ⊆ Q ≡ S ⊆ R)`:
  38. Assuming `Q = R`:
  39. (∀ S • S ⊆ Q ≡ S ⊆ R)
  40. ≡⟨ Assumption `Q = R`⟩
  41. (∀ S • S ⊆ R ≡ S ⊆ R)
  42. ≡⟨“Reflexivity of ≡”⟩
  43. (∀ S • true)
  44. ≡⟨“True ∀ body”⟩
  45. true
  46. Subproof for `(∀ S • S ⊆ Q ≡ S ⊆ R) ⇒ Q = R`:
  47. Assuming `(∀ S • S ⊆ Q ≡ S ⊆ R)`:
  48. Q = R
  49. ≡⟨“Left-identity of ⇒”⟩
  50. true ⇒ Q = R
  51. ≡⟨“Reflexivity of ⊆”⟩
  52. R ⊆ R ⇒ Q = R
  53. ≡⟨ Assumption `(∀ S • S ⊆ Q ≡ S ⊆ R)`⟩
  54. R ⊆ Q ⇒ Q = R
  55. ⇐⟨“Antisymmetry of ⊆”⟩
  56. Q ⊆ R
  57. ≡⟨ Assumption `(∀ S • S ⊆ Q ≡ S ⊆ R)`⟩
  58. Q ⊆ Q
  59. ≡⟨“Reflexivity of ⊆”⟩
  60. true
  61.  
  62.  
  63.  
  64.  
  65. Theorem “Indirect Relation Inclusion”
  66. “Indirect Relation Inclusion from above”:
  67. Q ⊆ R ≡ (∀ S • R ⊆ S ⇒ Q ⊆ S)
  68. Proof:
  69. Using “Mutual implication”:
  70. Subproof for `Q ⊆ R ⇒ (∀ S • R ⊆ S ⇒ Q ⊆ S)`:
  71. Assuming `Q ⊆ R `:
  72. For any `S`:
  73. R ⊆ S ⇒ Q ⊆ S
  74. ≡⟨“Left-identity of ⇒”⟩
  75. true ⇒ R ⊆ S ⇒ Q ⊆ S
  76. ≡⟨ Assumption `Q ⊆ R`⟩
  77. Q ⊆ R ⇒ R ⊆ S ⇒ Q ⊆ S
  78. ≡⟨“Transitivity of ⊆”⟩
  79. true
  80. Subproof for `(∀ S • R ⊆ S ⇒ Q ⊆ S) ⇒ Q ⊆ R`:
  81. Assuming `(∀ S • R ⊆ S ⇒ Q ⊆ S)`:
  82. Q ⊆ R
  83. ⇐⟨ Assumption `(∀ S • R ⊆ S ⇒ Q ⊆ S)`⟩
  84. R ⊆ R
  85. ≡⟨“Reflexivity of ⊆”⟩
  86. true
  87.  
  88.  
  89.  
  90. Lemma “Cancellation of ˘”:
  91. R ˘ = S ˘ ≡ R = S
  92. Proof:
  93. Using “Mutual implication”:
  94. Subproof for `R ˘ = S ˘ ⇒ R = S`:
  95. Assuming `R ˘ = S ˘ `:
  96. R = S
  97. ≡⟨“Self-inverse of ˘”⟩
  98. R ˘ ˘ = S
  99. ≡⟨ Assumption `R ˘ = S ˘ `⟩
  100. S ˘ ˘ = S
  101. ≡⟨“Self-inverse of ˘”⟩
  102. S = S
  103. ≡⟨“Reflexivity of =”⟩
  104. true
  105. Subproof for `R = S ⇒ R ˘ = S ˘`:
  106. Assuming `R = S`:
  107. R ˘ = S ˘
  108. ≡⟨ Assumption `R = S`⟩
  109. S ˘ = S ˘
  110. ≡⟨“Reflexivity of =”⟩
  111. true
  112.  
  113.  
  114.  
  115.  
  116.  
  117.  
  118.  
  119. Theorem “Isotonicity of ˘”: R ⊆ S ≡ R ˘ ⊆ S ˘
  120. Proof:
  121. Using “Mutual implication”:
  122. Subproof for `R ⊆ S ⇒ R ˘ ⊆ S ˘ `:
  123. R ⊆ S ⇒ R ˘ ⊆ S ˘
  124. ≡⟨“Monotonicity of ˘”⟩
  125. true
  126. Subproof for `R ˘ ⊆ S ˘ ⇒ R ⊆ S `:
  127. Assuming `R ˘ ⊆ S ˘ `:
  128. R ⊆ S
  129. ≡⟨“Self-inverse of ˘”⟩
  130. R ˘ ˘ ⊆ S ˘ ˘
  131. ⇐⟨“Monotonicity of ˘”⟩
  132. R ˘ ⊆ S ˘
  133. ≡⟨ Assumption `R ˘ ⊆ S ˘ `⟩
  134. true
  135.  
  136.  
  137.  
  138.  
  139. Lemma “Definition of symmetry”:
  140. is-symmetric R ≡ R ˘ = R
  141. Proof:
  142. is-symmetric R ≡ R ˘ = R
  143. ≡⟨“Definition of symmetry”⟩
  144. R ˘ ⊆ R ≡ R ˘ = R
  145. ≡⟨“Mutual inclusion”⟩
  146. R ˘ ⊆ R ≡ R ˘ ⊆ R ∧ R ⊆ R ˘
  147. ≡⟨“Definition of ⇒”⟩
  148. R ˘ ⊆ R ⇒ R ⊆ R ˘
  149. ≡⟨“Self-inverse of ˘”⟩
  150. R ˘ ⊆ R ⇒ R ˘ ˘ ⊆ R ˘
  151. ≡⟨“Monotonicity of ˘”⟩
  152. true
  153.  
  154.  
  155.  
  156.  
  157. Theorem “Reflexivity of converse”:
  158. is-reflexive R ≡ is-reflexive (R ˘)
  159. Proof:
  160. is-reflexive R ≡ is-reflexive (R ˘)
  161. ≡⟨“Definition of reflexivity”⟩
  162. Id ⊆ R ≡ Id ⊆ R ˘
  163. ≡⟨“Self-inverse of ˘”⟩
  164. Id ˘ ˘ ⊆ R ˘ ˘ ≡ Id ˘ ˘ ⊆ R ˘ ˘ ˘
  165. ≡⟨“Isotonicity of ˘”⟩
  166. Id ˘ ⊆ R ˘ ≡ Id ˘ ⊆ R ˘ ˘
  167. ≡⟨“Converse of `Id`”⟩
  168. Id ⊆ R ˘ ≡ Id ˘ ⊆ R ˘ ˘
  169. ≡⟨“Isotonicity of ˘”⟩
  170. true
  171.  
  172.  
  173.  
  174.  
  175. Theorem “Reflexivity of ⨾”:
  176. is-reflexive R ⇒ is-reflexive S ⇒ is-reflexive (R ⨾ S)
  177. Proof:
  178. is-reflexive R ⇒ is-reflexive S ⇒ is-reflexive (R ⨾ S)
  179. ≡⟨“Definition of reflexivity”⟩
  180. Id ⊆ R ⇒ Id ⊆ S ⇒ Id ⊆ (R ⨾ S)
  181. ≡⟨“Identity of ⨾”⟩
  182. Id ⊆ R ⇒ Id ⨾ Id ⊆ S ⇒ Id ⨾ Id ⨾ Id ⊆ (R ⨾ S)
  183. ≡⟨“Monotonicity of ⨾”⟩
  184. true
  185.  
  186.  
  187.  
  188.  
  189.  
  190. Theorem “Symmetry of converse”:
  191. is-symmetric R ≡ is-symmetric (R ˘)
  192. Proof:
  193. is-symmetric R ≡ is-symmetric (R ˘)
  194. ≡⟨“Definition of symmetry”⟩
  195. R ˘ ⊆ R ≡ R ˘ ˘ ⊆ R ˘
  196. ≡⟨“Self-inverse of ˘”⟩
  197. R ˘ ⊆ R ≡ R ⊆ R ˘
  198. ≡⟨“Isotonicity of ˘”⟩
  199. R ˘ ˘ ⊆ R ˘ ≡ R ⊆ R ˘
  200. ≡⟨“Self-inverse of ˘”⟩
  201. R ⊆ R ˘ ≡ R ⊆ R ˘
  202. ≡⟨“Reflexivity of ≡”⟩
  203. true
  204.  
  205.  
  206. Theorem “Symmetry of converse”:
  207. is-symmetric R ≡ is-symmetric (R ˘)
  208. Proof:
  209. is-symmetric R ≡ is-symmetric (R ˘)
  210. ≡⟨“Definition of symmetry”⟩
  211. R ˘ ⊆ R ≡ R ˘ ˘ ⊆ R ˘
  212. ≡⟨“Self-inverse of ˘”⟩
  213. R ˘ ⊆ R ≡ R ⊆ R ˘
  214. ≡⟨“Isotonicity of ˘”⟩
  215. R ˘ ˘ ⊆ R ˘ ≡ R ⊆ R ˘
  216. ≡⟨“Self-inverse of ˘”⟩
  217. R ⊆ R ˘ ≡ R ⊆ R ˘
  218. ≡⟨“Reflexivity of ≡”⟩
  219. true
  220.  
  221.  
  222.  
  223.  
  224. Theorem “Symmetry of ∩”: Q ∩ R ⊆ R ∩ Q
  225. Proof:
  226. Q ∩ R ⊆ R ∩ Q
  227. ≡⟨“Characterisation of ∩”⟩
  228. Q ∩ R ⊆ R ∧ Q ∩ R ⊆ Q
  229. ≡⟨“Weakening for ∩”⟩
  230. true
  231.  
  232.  
  233. Corollary “Symmetry of ∩”: Q ∩ R = R ∩ Q
  234. Proof:
  235. Q ∩ R = R ∩ Q
  236. ≡⟨“Mutual inclusion”⟩
  237. (Q ∩ R ⊆ R ∩ Q) ∧ (R ∩ Q ⊆ Q ∩ R)
  238. ≡⟨“Characterisation of ∩”⟩
  239. (Q ∩ R ⊆ R ∧ Q ∩ R ⊆ Q) ∧ (R ∩ Q ⊆ Q ∧ R ∩ Q ⊆ R)
  240. ≡⟨“Weakening for ∩”⟩
  241. true ∧ true
  242. ≡⟨“Idempotency of ∧”⟩
  243. true
  244.  
  245.  
  246. Theorem “Associativity of ∩”: (Q ∩ R) ∩ S ⊆ Q ∩ (R ∩ S)
  247. Proof:
  248. (Q ∩ R) ∩ S ⊆ Q ∩ (R ∩ S)
  249. ≡⟨“Characterisation of ∩”⟩
  250. (Q ∩ R) ∩ S ⊆ Q ∧ (Q ∩ R) ∩ S ⊆ (R ∩ S)
  251. ≡⟨“Characterisation of ∩”⟩
  252. (Q ∩ R) ∩ S ⊆ Q ∧ (Q ∩ R) ∩ S ⊆ R ∧ (Q ∩ R) ∩ S ⊆ S
  253. ≡⟨“Characterisation of ∩”⟩
  254. ((Q ∩ R) ∩ S ⊆ Q ∩ R) ∧ (Q ∩ R) ∩ S ⊆ S
  255. ≡⟨“Weakening for ∩”⟩
  256. true
  257.  
  258.  
  259.  
  260. Corollary “Associativity of ∩”: (Q ∩ R) ∩ S = Q ∩ (R ∩ S)
  261. Proof:
  262. (Q ∩ R) ∩ S = Q ∩ (R ∩ S)
  263. ≡⟨“Mutual inclusion”⟩
  264. ((Q ∩ R) ∩ S ⊆ Q ∩ (R ∩ S)) ∧ (Q ∩ (R ∩ S) ⊆ (Q ∩ R) ∩ S)
  265. ≡⟨“Associativity of ∩”⟩
  266. true ∧ true
  267. ≡⟨“Idempotency of ∧”⟩
  268. true
  269.  
  270.  
  271.  
  272.  
  273. Theorem “Idempotency of ∩”: R ∩ R = R
  274. Proof:
  275. R ∩ R = R
  276. ≡⟨“Mutual inclusion”⟩
  277. R ∩ R ⊆ R ∧ R ⊆ R ∩ R
  278. ≡⟨“Characterisation of ∩”⟩
  279. R ∩ R ⊆ R ∧ R ⊆ R ∧ R ⊆ R
  280. ≡⟨“Reflexivity of ⊆”, “Idempotency of ∧”, “Identity of ∧”⟩
  281. R ∩ R ⊆ R
  282. ≡⟨“Idempotency of ∧”⟩
  283. R ∩ R ⊆ R ∧ R ∩ R ⊆ R
  284. ≡⟨“Weakening for ∩”⟩
  285. true
  286.  
  287.  
  288.  
  289.  
  290. Theorem “Monotonicity of ∩”: Q ⊆ R ⇒ Q ∩ S ⊆ R ∩ S
  291. Proof:
  292. Q ⊆ R ⇒ Q ∩ S ⊆ R ∩ S
  293. ≡⟨“Characterisation of ∩”⟩
  294. Q ⊆ R ⇒ (Q ∩ S ⊆ R) ∧ (Q ∩ S ⊆ S)
  295. ≡⟨“Identity of ∧”⟩
  296. Q ⊆ R ⇒ (Q ∩ S ⊆ R) ∧ (Q ∩ S ⊆ S) ∧ true
  297. ≡⟨“Weakening for ∩”⟩
  298. Q ⊆ R ⇒ (Q ∩ S ⊆ R) ∧ (Q ∩ S ⊆ S) ∧ (Q ∩ S ⊆ Q) ∧ (Q ∩ S ⊆ S)
  299. ≡⟨“Idempotency of ∧”⟩
  300. Q ⊆ R ⇒ (Q ∩ S ⊆ R) ∧ (Q ∩ S ⊆ S) ∧ (Q ∩ S ⊆ Q)
  301. ≡⟨“Weakening for ∩”⟩
  302. Q ⊆ R ⇒ (Q ∩ S ⊆ R) ∧ true
  303. ≡⟨“Identity of ∧”⟩
  304. Q ⊆ R ⇒ (Q ∩ S ⊆ R)
  305. ⇐⟨“Transitivity of ⊆”⟩
  306. Q ∩ S ⊆ Q
  307. ≡⟨“Idempotency of ∧” and “Weakening for ∩”⟩
  308. true
  309.  
  310.  
  311.  
  312.  
  313. Theorem “Inclusion via ∩”: Q ⊆ R ≡ Q ∩ R = Q
  314. Proof:
  315. Q ∩ R = Q
  316. ≡⟨“Mutual inclusion”⟩
  317. Q ∩ R ⊆ Q ∧ Q ⊆ Q ∩ R
  318. ≡⟨“Identity of ∧”⟩
  319. Q ∩ R ⊆ Q ∧ Q ⊆ Q ∩ R ∧ true
  320. ≡⟨“Weakening for ∩”⟩
  321. Q ∩ R ⊆ Q ∧ Q ⊆ Q ∩ R ∧ Q ∩ R ⊆ Q ∧ Q ∩ R ⊆ R
  322. ≡⟨“Idempotency of ∧”⟩
  323. Q ∩ R ⊆ Q ∧ Q ⊆ Q ∩ R ∧ Q ∩ R ⊆ R
  324. ≡⟨“Weakening for ∩”⟩
  325. true ∧ Q ⊆ Q ∩ R
  326. ≡⟨“Identity of ∧”⟩
  327. Q ⊆ Q ∩ R
  328. ≡⟨“Characterisation of ∩”⟩
  329. Q ⊆ Q ∧ Q ⊆ R
  330. ≡⟨“Reflexivity of ⊆”, “Identity of ∧”⟩
  331. Q ⊆ R
  332.  
  333.  
  334.  
  335. Theorem “Converse of ∩”: (R ∩ S) ˘ ⊆ R ˘ ∩ S ˘
  336. Proof:
  337. (R ∩ S) ˘ ⊆ R ˘ ∩ S ˘
  338. ≡⟨“Characterisation of ∩”⟩
  339. (R ∩ S) ˘ ⊆ R ˘ ∧ (R ∩ S) ˘ ⊆ S ˘
  340. ≡⟨“Isotonicity of ˘”⟩
  341. (R ∩ S) ⊆ R ∧ (R ∩ S) ⊆ S
  342. ≡⟨“Weakening for ∩”⟩
  343. true
  344.  
  345.  
  346.  
  347.  
  348.  
  349.  
  350.  
  351. Theorem “Converse of ∩”: (R ∩ S) ˘ = R ˘ ∩ S ˘
  352. Proof:
  353. (R ∩ S) ˘ = R ˘ ∩ S ˘
  354. ≡⟨“Mutual inclusion”⟩
  355. (R ∩ S) ˘ ⊆ R ˘ ∩ S ˘ ∧ R ˘ ∩ S ˘ ⊆ (R ∩ S) ˘
  356. ≡⟨“Converse of ∩”, “Identity of ∧”⟩
  357. R ˘ ∩ S ˘ ⊆ (R ∩ S) ˘
  358. ≡⟨“Isotonicity of ˘”⟩
  359. (R ˘ ∩ S ˘) ˘ ⊆ (R ∩ S) ˘ ˘
  360. ≡⟨“Self-inverse of ˘”⟩
  361. (R ˘ ∩ S ˘) ˘ ⊆ (R ∩ S)
  362. ≡⟨“Self-inverse of ˘”⟩
  363. (R ˘ ∩ S ˘) ˘ ⊆ (R ˘ ˘ ∩ S ˘ ˘)
  364. ≡⟨“Converse of ∩”⟩
  365. true
  366.  
  367.  
  368.  
  369. Theorem “Sub-distributivity of ⨾ over ∩”:
  370. Q ⨾ (R ∩ S) ⊆ Q ⨾ R ∩ Q ⨾ S
  371. Proof:
  372. Q ⨾ (R ∩ S)
  373. =⟨“Idempotency of ∩”⟩
  374. (Q ⨾ (R ∩ S)) ∩ (Q ⨾ (R ∩ S))
  375. ⊆⟨“Monotonicity of ∩” with “Monotonicity of ⨾” with “Weakening for ∩”⟩
  376. (Q ⨾ (R ∩ S)) ∩ Q ⨾ S
  377. ⊆⟨“Monotonicity of ∩” with “Monotonicity of ⨾” with “Weakening for ∩”⟩
  378. (Q ⨾ R) ∩ Q ⨾ S
  379.  
  380.  
  381.  
  382.  
  383.  
  384.  
  385.  
  386.  
  387. Theorem “Antisymmetry of converse”: is-antisymmetric R ≡ is-antisymmetric (R ˘)
  388. Proof:
  389. is-antisymmetric R ≡ is-antisymmetric (R ˘)
  390. ≡⟨“Definition of antisymmetry”⟩
  391. R ∩ R ˘ ⊆ Id ≡ R ˘ ∩ R ˘ ˘ ⊆ Id
  392. ≡⟨“Self-inverse of ˘”⟩
  393. R ∩ R ˘ ⊆ Id ≡ R ˘ ∩ R ⊆ Id
  394. ≡⟨“Symmetry of ∩”⟩
  395. R ˘ ∩ R ⊆ Id ≡ R ˘ ∩ R ⊆ Id
  396. ≡⟨“Reflexivity of ≡”⟩
  397. true
  398.  
  399.  
  400.  
  401.  
  402.  
  403.  
  404. Theorem “Converse of an order”: is-order E ≡ is-order (E ˘)
  405. Proof:
  406. is-order E ≡ is-order (E ˘)
  407. ≡⟨“Definition of ordering”⟩
  408. is-reflexive E ∧ is-antisymmetric E ∧ is-transitive E ≡ is-reflexive (E ˘) ∧ is-antisymmetric (E ˘) ∧ is-transitive (E ˘)
  409. ≡⟨“Reflexivity of converse”, “Antisymmetry of converse”⟩
  410. is-reflexive (E ˘) ∧ is-antisymmetric (E ˘) ∧ is-transitive E ≡ is-reflexive (E ˘) ∧ is-antisymmetric (E ˘) ∧ is-transitive (E ˘)
  411. ≡⟨“Definition of transitivity”⟩
  412. is-reflexive (E ˘) ∧ is-antisymmetric (E ˘) ∧ (E ⨾ E ⊆ E) ≡ is-reflexive (E ˘) ∧ is-antisymmetric (E ˘) ∧ (E ˘ ⨾ E ˘ ⊆ E ˘)
  413. ≡⟨“Converse of ⨾”⟩
  414. is-reflexive (E ˘) ∧ is-antisymmetric (E ˘) ∧ (E ⨾ E ⊆ E) ≡ is-reflexive (E ˘) ∧ is-antisymmetric (E ˘) ∧ ((E ⨾ E) ˘ ⊆ E ˘)
  415. ≡⟨“Isotonicity of ˘”⟩
  416. is-reflexive (E ˘) ∧ is-antisymmetric (E ˘) ∧ (E ⨾ E ⊆ E) ≡ is-reflexive (E ˘) ∧ is-antisymmetric (E ˘) ∧ ((E ⨾ E) ⊆ E)
  417. ≡⟨“Reflexivity of ≡”⟩
  418. true
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement