Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- # A
- import numpy as np
- height, width = map(int, input().split())
- ans = np.array([[255 if (i + j) % 2 else 0 for j in range(width)] for i in range(height)])
- print(ans)
- #B (это лучше сделать иначе, а то слишком неочевидное решение)
- import numpy as np
- import sys
- k = int(input())
- mt = [[int(x) for x in row.split()] for row in sys.stdin]
- rows = len(mt)
- cols = len(mt[0]) if rows > 0 else 0
- ans_rows = (rows + k - 1) // k
- ans_cols = (cols + k - 1) // k
- ans = [[0 for _ in range(ans_cols)] for _ in range(ans_rows)]
- for i in range(len(mt)):
- for j in range(len(mt[i])):
- ni = i // k
- nj = j // k
- ans[ni][nj] += mt[i][j]
- for row in ans:
- print(" ".join(map(str, row)))
- #C
- import sys
- import numpy as np
- def get_cos_dist(a: np.array, b: np.array) -> float:
- if np.linalg.norm(a) == 0 or np.linalg.norm(b) == 0:
- return np.inf
- return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
- def main():
- vectors = [np.array(list(map(float, row.split()))) for row in sys.stdin]
- if len(vectors) < 2:
- print("No solution")
- return
- ans = np.inf
- for i in range(len(vectors)):
- for j in range(i + 1, len(vectors)):
- if vectors[i].shape != vectors[j].shape:
- # print(vectors[i].shape)
- continue
- cos_dist = get_cos_dist(vectors[i], vectors[j])
- ans = min(ans, cos_dist)
- if ans != np.inf:
- print(f'{ans:.2}')
- else:
- print("No solution")
- main()
- #D (норм решает гпт)
- import numpy as np
- height, width = map(int, input().split())
- r, g, b = map(int, input().split())
- rb, gb, bb, = map(int, input().split())
- image = np.zeros((height, width, 3), dtype=np.uint8)
- image[2:-2, 2:-2] = (r, g, b)
- image[:2, :] = (rb, gb, bb)
- image[-2:, :] = (rb, gb, bb)
- image[:, :2] = (rb, gb, bb)
- image[:, -2:] = (rb, gb, bb)
- print(image)
- #E
- import numpy as np
- import sys
- mt = np.array([line.strip() for line in sys.stdin])
- # print(mt)
- print(len(np.unique(mt)))
- #F
- import sys
- import numpy as np
- mt = np.array([list(map(float, row.split())) for row in sys.stdin])
- mean_values = np.mean(mt, axis=1)
- # print(mean_values, 'a')
- ans = mt - mean_values[:, np.newaxis]
- print(str(ans))
- #G
- import sys
- import numpy as np
- mt = np.array([list(map(float, row.split())) for row in sys.stdin])
- # b = np.array([0 for i in range(len(mt))])
- ans = np.sum(np.all(mt==0, axis=0))
- # print(np.all(mt == 0, axis=0))
- print(ans)
Advertisement
Add Comment
Please, Sign In to add comment