Advertisement
frentzy

Pag 1.01

Apr 19th, 2018
192
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 7.14 KB | None | 0 0
  1. \documentclass[10pt,a4paper]{article}
  2.  
  3. %\usepackage{titlesec}
  4. %\renewcommand{\thesubsubsection}{(\roman{subsubsection})}
  5. %\usepackage{textgreek}
  6. \usepackage[english]{babel}
  7. \usepackage{memhfixc}
  8. \usepackage{fancyhdr}  
  9. \usepackage[utf8]{inputenc}
  10. \usepackage{libertine}
  11. \usepackage{blindtext}
  12. \usepackage{geometry}
  13. \usepackage{lipsum}
  14. \usepackage{multicol}
  15. \usepackage {amsmath}
  16. \usepackage {bm}
  17. \geometry{
  18. a4paper,
  19. total={170mm,257mm},
  20. left=20mm,
  21. top=20mm,
  22. }
  23. \setlength{\columnsep}{1cm}
  24. \lhead{\headerL}
  25. \chead{\headerC}
  26. \rhead{\headerR}
  27. \def\headerL{}
  28. \def\headerC{}
  29. \def\headerR{}
  30. \newcommand{\thispageheader}[2][R]{\expandafter\def\csname header#1\endcsname{#2}}
  31. %\date{\today}
  32.  
  33. \begin{document}
  34.  
  35. \title{ \textbf{ Un titlu remarcabil de unic}}
  36. \author{ Frentescu Stefan}
  37. \maketitle
  38.  
  39. \abstract
  40. \noindent \blindtext
  41. %}
  42. \section*{Section 1}
  43. \lipsum
  44. \section*{Section 2}
  45. \lipsum
  46. \section*{Section 3}
  47. \lipsum
  48. \newpage
  49. \begin{multicols}{2}
  50.    
  51. \hspace{-5.3mm}\textbf{DOUBLE EXPONENTIAL \\
  52. DISTRIBUTIONS}
  53.  
  54. \hspace{5mm}Let be $\mathrm{a_t}$ be a serios of independent identically \hspace{5mm} double-exponentially \hspace{5mm} (Laplace) distributed random variables, i.e. with probability density function(\textbf{PDF}) given by $$\displaystyle{ f(a) = \frac{\lambda}{2}e^{-\lambda |a|} , \lambda > 0 \hspace{5mm} \forall a}$$
  55. Let be the observed stationary time series $ \mathrm{\{X_t\}} $ be generated by the \textbf{ARMA} scheme
  56. $$\Phi ( B ) X_t = \Theta ( B ) a_t $$ where $$ \Theta ( B ) = (1 - \phi_{_1} B - ... - \phi_q B^q ) $$
  57. $$ \Phi ( B )  = ( 1 - \phi_{_1} B - \phi_{_2} B^2 - ... - \phi_p B^p ) $$ and B is the backward shift operator so that $$\mathrm{ B^k X_t = X_{t-k}.} $$
  58. \hspace{5mm} Since the series $\mathrm{\{X_t\}} $ is assumed to be stationary, all the roots of \hspace{2mm} lie outside the unit circle, and we can write the moving average
  59. $$ X_{_t} = \Phi^{-1} ( B )  \Theta ( B ) a_t = \Psi (B ) \sum\nolimits_{j = 0}^{m} \mathit{\Psi_j a_{t-j}} $$
  60. where the coefficients \boldsymbol{$ \Psi ( B )  = 1 + \psi_1 B + ...    $} can be found by equating coefficients in
  61. $$ \Phi( B )  \Psi ( B ) = \Theta ( B ). $$
  62. Let
  63. \begin{equation} Z_{_n} = \sum_{j = 0}^n \mathit{\Psi_{_j} a_{_{t-j}}} \end{equation}
  64. and assume $\scriptstyle{\Psi_y \neq \Psi_j} $ for i $\neq$ j.
  65. \hspace{5mm} The \textbf{PDF} of $ \mathrm{Z_n} $ is given by
  66. \large{$$ \displaystyle{ f_n (z) = \frac{\lambda}{2} \sum\nolimits_{j=0}^{n} \alpha_{_j}^{ ( n )} \left| \mathit{\Psi}_{_j} \right|^{-1}  \mathrm{exp} ( - \lambda \left| \frac{z}{\mathit{\Psi}_{_j}} \right|)}$$} \normalsize{\hspace{-1.5mm}where $\mathrm{\alpha_{j}^{(n)} }$ are functions of \hspace{1mm} $\mathrm{\scriptstyle{\{\Psi_i\}}}$
  67. the given by
  68. } $$ \alpha_{_j}^{(n)} = \prod_{i=0,i \neq j} (1 - \left|\mathit{\frac{\Psi_{_i}}{\Psi_{_j}}} \right| )^{-1}, \hspace{2mm} \mathit{j} = 1,2,...,n $$
  69. \hspace{5mm}Now
  70. \begin{equation} \displaystyle\ f(x) = \lim_{_{n \rightarrow \infty}} f_n(x)  $$
  71. and obtain the following expression for the marginal \textbf{PDF} of $\mathrm{X_t}$
  72. $$ f(x) = \frac{\lambda}{2} \sum\nolimits_{j=0}^{\infty} \alpha_{_j} \left| \mathit{\Psi_{_j}} \right|^{-1 } \mathrm{exp} (-\lambda \left| \mathit{\frac{x}{\Psi_{_j}}} \right| )   \
  73. \end{equation}
  74. and $$ \alpha_{_j} = \prod_{_{i=0,i \neq j}}^{\infty} {(1 - \left| \mathit{\frac{\Psi_{_i}}{\Psi_{_j}}} \right| ) }^{-1} $$
  75. \hspace{5mm} These results follows as special case of \textit{Box's} [3], where he derives the distribution of any linear combination of independent $ \chi^2 $ variables with even degree of freedom by nothing that each $\mathrm{a_i}$ may be written as a constant times as difference \hspace{3mm} between \hspace{3mm} two independent \hspace{3mm} $\chi^2$ variables. \textit{Preda} [8] generalized the above fact to mixed double-exponentially.
  76. \subsection*{\center{1. STATISTICAL MODEL}}
  77. \subsubsection*{\center{Autoregressive model}}
  78. \hspace{16.4mm}Let be the time series Z and Y be represented by autoregressive models of order p
  79. $$ Z_{_t} = \mu + \sum\nolimits_{i=1}^p \phi_{_i}(Z_{_{t-i}} -\mu) + a_{_t} $$
  80. and
  81. $$ Y_{_t} = \xi + \sum\nolimits_{i=1}^p \mathit{\Theta}_{_i}(Y_{_{t-i}} -\xi) + b_{_t} $$
  82. where $\phi_{_i}$ and $\mathit{\Theta_{_i}}$ (i=1,...p) are the autoregressive parameters and $\mu$ and $\xi$ are the mean of the series Z and Y, respectively. $\mathrm{\{a_{t}  \} and \{ b_t \}}$ are white-noise \hspace{3mm} processes \hspace{2mm} with $\mathrm{E(a_t)=E(b_t)=0,}$ \hspace{2mm} and Cov($\mathrm{a_t , b_{t+r}=0,}r \neq 0$) \hspace{2mm} and Var($\mathrm{a_t}$)$=\mathrm{\hspace{2mm} \sigma^2_{z}}$ \hspace{2mm} and Var($\mathrm{b_t}) = \mathrm{\sigma^2_{y}}.$
  83. \hspace{5mm}Since the assumption of independence is very limited in practive, we assume that the joint distribution of $\mathrm{a_t}$ and $\mathrm{b_t}$ is bivariate , so that Cov($\mathrm{a_t,b_{t+r}}$) $=\mathrm{\rho \sigma_z \sigma_y \forall r.}$
  84. \hspace{5mm} Let denote by $\mathrm{Z_n(L) = E(Z_{n+L} |z^{(n)})}$ the expecte value of Z at time n+L and $\mathrm{z^{(n)} = z_1,...,z_n}$ the set of observations form Z. Similarly denote by $\mathrm{Y_m(K) = E(Z_{m+K}|y^{(m)})}$ the expected value of Y at time m+K and the set of observations form Y.
  85. \hspace{10mm} We get
  86. $$ Z_{_{n+L}}(L) = \mu + \sum\nolimits_{i=1}^p \phi_{_i}(Z_{_n}(L-i)-\mu) $$
  87. \hspace{5mm} The difference $\mathrm{Z_{n+L}-Z_n(L)}$ between actual and expected value Z at time n+L will be denoted by $\mathrm{e_n(L)}$.We can show that
  88. $$e_n(L) = \sum\nolimits_{i=0}^{L-1} R_{_i}a_{n+L-i}$$
  89. where
  90. $$ \mathrm{R_{_0} = 1, R_{_1} = \phi_{_1} , ... , R_{_j} }= \sum\nolimits_{i=1}^p \phi_{_i} R_{_{j-i}} $$
  91. %// footer pt urmatoarea pagina sa nu uiti
  92. \pagenumbering{gobble}
  93.    
  94.     %\pagebreak
  95. %   asd asda sda sdasdsaasd df szdf  sdasdaD Ad asd asd dddddddddddddddd
  96. \newpage
  97. %\pagestyle{fancy}
  98. {\thispageheader[C]{My Text}
  99. \pagestyle{fancy}
  100. test test test test test test test test test test test test test
  101. \newpage}
  102. %\def\calification{
  103. %  \newpage
  104. %  \null\vfil
  105. %  \clearpage
  106. %  \pagestyle{calification}
  107. %}
  108.  
  109. %\def\endcalification{\par\vfil\newpage}
  110. %\fancyhf{}
  111. %\thispagestyle{myheadings}
  112. %\center{\markright{John Smith}}
  113. %\fancyhead[c]{output you want}
  114.  
  115.  
  116. %
  117. %\pagestyle{fancy}
  118. %\fancyhead[LE,RO]{Share\LaTeX}
  119. %\fancyhead[RE,LO]{Guides and tutorials}
  120. %\fancyfoot[CE,CO]{\leftmark}
  121. %\fancyfoot[LE,RO]{\thepage}
  122. %\rhead{ceva asd asd asd asd asd asd asssssssssssssss}
  123. tion, signature recognition, keystroke, teeth image recoginition , ADN, etc.\\
  124. The protocol can be used not only for two persons who wants to communicate but also for a group communication. The second situation is much more complex due to the number of the authentications that must be made. We suppose that all the users that have been authenticated (even if they are two or more) have acces to the messages transmitted on the network. An authenticated user can send messages, read messages even if they are not addresed to him, and modify messages that he did not send. All the users that have been authenticated have the same common key so they all can see if one message have been modified and what are the modifications.
  125. \section{Fuzzy Model Construction}
  126. \end{multicols}
  127.    
  128.  
  129. \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement