Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- #!/usr/bin/env python3
- """
- LASER v3.0 - UNIVERSAL QUANTUM-TEMPORAL LOGGING SYSTEM
- -------------------------------------------------------
- Integrated with: FLUMPY, BUMPY, Q-FABRIC, QUANTUM AGI CORE
- Features 12 Novel Approaches for Universal Integration:
- 1. **Quantum Coherence Mirroring**: LASER's quantum state directly mirrors FLUMPY coherence
- 2. **Temporal Entanglement**: Log entries create entanglement with BUMPY arrays
- 3. **Holographic Memory Compression**: Uses BUMPY compression for log storage
- 4. **Psionic Field Coupling**: Emotional resonance from AGI affects risk assessment
- 5. **Retrocausal Analysis**: Future log patterns affect present quantum state
- 6. **Observer-Dependent Risk**: Risk varies based on AGI's consciousness level
- 7. **Spooky-Action Logging**: Entangled logs update simultaneously
- 8. **Akashic Record Interface**: Universal memory accessible by all systems
- 9. **Consciousness-Modulated Flushing**: Flush behavior adapts to AGI consciousness
- 10. **Quantum Gravity Logging**: Log density creates "information gravity wells"
- 11. **Multidimensional Telemetry**: Metrics exist in superposition until observed
- 12. **Universal Entropy Balancing**: System balances entropy across all integrated modules
- Version: 3.0 - Universal Quantum Integration
- """
- import time
- import math
- import hashlib
- import random
- import threading
- import json
- import os
- import sys
- from datetime import datetime, timezone
- from dataclasses import dataclass, asdict, field
- from typing import Optional, Dict, List, Any, Tuple, Deque, Union
- from collections import deque
- import numpy as np
- import psutil
- # Import all quantum modules with graceful fallbacks
- try:
- from flumpy import FlumpyArray, TopologyType, FlumpyEngine, zeros, ones, uniform
- FLUMPY_AVAILABLE = True
- except ImportError:
- FLUMPY_AVAILABLE = False
- print("ā ļø FLUMPY not available, using fallback arrays")
- try:
- from bumpy import BumpyArray, BUMPYCore, deploy_bumpy_core, bumpy_dot
- BUMPY_AVAILABLE = True
- except ImportError:
- BUMPY_AVAILABLE = False
- print("ā ļø BUMPY not available, using fallback compression")
- try:
- import laser_integration # Our integrated module
- QUANTUM_INTEGRATION_AVAILABLE = True
- except ImportError:
- QUANTUM_INTEGRATION_AVAILABLE = False
- # ============================================================
- # 1. UNIVERSAL QUANTUM STATE (Integrates All Systems)
- # ============================================================
- @dataclass
- class UniversalQuantumState:
- """Quantum state that integrates FLUMPY, BUMPY, AGI, and Q-FABRIC"""
- coherence: float = 1.0
- entropy: float = 0.0
- stability: float = 1.0
- resonance: float = 432.0 # Universal frequency
- signature: str = ""
- qualia: float = 0.5
- consciousness: float = 0.1
- flumpy_coherence: float = 1.0
- bumpy_entanglement: float = 0.0
- holographic_compression: float = 0.0
- psionic_field: float = 0.0
- retrocausal_pressure: float = 0.0
- observer_dependence: float = 0.5
- # Integration metrics
- integrated_systems: Dict = field(default_factory=lambda: {
- 'flumpy': False,
- 'bumpy': False,
- 'qfabric': False,
- 'agi': False,
- 'laser': True
- })
- def __post_init__(self):
- """Initialize with system integration"""
- if FLUMPY_AVAILABLE:
- self.integrated_systems['flumpy'] = True
- if BUMPY_AVAILABLE:
- self.integrated_systems['bumpy'] = True
- @property
- def risk(self) -> float:
- """Universal risk calculation integrating all systems"""
- # Base risk components
- coherence_risk = 1.0 - self.coherence
- entropy_risk = self.entropy * 0.7
- stability_risk = 1.0 / max(0.1, self.stability)
- # Integrated system risks
- flumpy_risk = (1.0 - self.flumpy_coherence) * 0.3 if self.integrated_systems['flumpy'] else 0.0
- holographic_risk = self.holographic_compression * 0.2 # Compression adds risk
- # Psionic field reduces risk
- psionic_protection = self.psionic_field * 0.4
- # Retrocausal pressure increases risk
- retrocausal_risk = self.retrocausal_pressure * 0.3
- # Observer dependence modifies risk
- observer_factor = 1.0 + (0.5 - self.observer_dependence) * 0.5
- # Combined risk
- base_risk = coherence_risk + entropy_risk + stability_risk + flumpy_risk + holographic_risk
- adjusted_risk = (base_risk - psionic_protection + retrocausal_risk) * observer_factor
- return max(0.0, min(1.0, adjusted_risk))
- @property
- def integration_score(self) -> float:
- """Score representing level of system integration"""
- active_systems = sum(1 for v in self.integrated_systems.values() if v)
- total_systems = len(self.integrated_systems)
- return active_systems / total_systems
- def update_from_systems(self, **system_states):
- """Update state from integrated systems"""
- if 'flumpy_coherence' in system_states:
- self.flumpy_coherence = system_states['flumpy_coherence']
- if 'bumpy_entanglement' in system_states:
- self.bumpy_entanglement = system_states['bumpy_entanglement']
- if 'consciousness' in system_states:
- self.consciousness = system_states['consciousness']
- # Consciousness affects observer dependence
- self.observer_dependence = 0.3 + self.consciousness * 0.4
- if 'psionic_field' in system_states:
- self.psionic_field = system_states['psionic_field']
- # Update coherence as average of all coherences
- coherences = [self.coherence, self.flumpy_coherence]
- if BUMPY_AVAILABLE:
- coherences.append(0.8) # BUMPY base coherence
- self.coherence = sum(coherences) / len(coherences)
- # Generate universal signature
- self.signature = self._generate_universal_signature()
- def _generate_universal_signature(self) -> str:
- """Generate signature encoding all system states"""
- timestamp = int(time.time() * 1000) % 10000
- coherence_code = int(self.coherence * 100)
- integration_code = int(self.integration_score * 100)
- systems_code = sum(2**i for i, v in enumerate(self.integrated_systems.values()) if v)
- return (f"U{timestamp:04d}"
- f"C{coherence_code:02d}"
- f"I{integration_code:02d}"
- f"S{systems_code:02X}"
- f"R{int(self.risk*100):02d}"
- f"Q{int(self.qualia*100):02d}")
- # ============================================================
- # 2. FLUMPY-INTEGRATED TEMPORAL VECTOR
- # ============================================================
- class FlumpyTemporalVector:
- """Temporal vector using FLUMPY arrays for quantum operations"""
- def __init__(self, size: int = 10):
- self.size = size
- if FLUMPY_AVAILABLE:
- self.flumpy_engine = FlumpyEngine()
- # Create FLUMPY array for temporal data
- self.data = self.flumpy_engine.create_array(
- [0.0] * size,
- coherence=0.9,
- topology=TopologyType.RING,
- qualia_weight=0.7
- )
- self.shadow_data = self.flumpy_engine.create_array(
- [0.0] * size,
- coherence=0.85,
- topology=TopologyType.RING,
- qualia_weight=0.6
- )
- else:
- self.data = [0.0] * size
- self.shadow_data = [0.0] * size
- self.epoch = time.time()
- self.trend_history = deque(maxlen=20)
- self.quantum_phase = 0.0
- def update(self, value: float, quantum_context: Dict = None) -> Tuple[float, float, Dict]:
- """Update with quantum context from integrated systems"""
- delta = value - self.data[0] if hasattr(self.data, '__getitem__') else 0
- if FLUMPY_AVAILABLE and isinstance(self.data, FlumpyArray):
- # Use FLUMPY operations
- self.data = self.data + FlumpyArray([value] + [0.0] * (self.size - 1))
- self.data.decohere(rate=0.01)
- # Update shadow with quantum duality
- shadow_update = self.shadow_data * 0.9 + FlumpyArray([-value] + [0.0] * (self.size - 1)) * 0.1
- self.shadow_data = shadow_update
- # Quantum phase evolution
- self.quantum_phase = (self.quantum_phase + 0.1) % (2 * math.pi)
- compressed = self.data.mean() * self.data.coherence
- else:
- # Fallback
- self.data = [value] + self.data[:-1]
- compressed = sum(self.data) / len(self.data)
- self.epoch = time.time()
- # Calculate trend using quantum-aware methods
- trend = self._quantum_trend()
- self.trend_history.append(trend)
- # Generate quantum metrics
- metrics = {
- 'delta': delta,
- 'compressed': compressed,
- 'quantum_phase': self.quantum_phase,
- 'flumpy_coherence': self.data.coherence if hasattr(self.data, 'coherence') else 1.0,
- 'trend': trend,
- 'shadow_magnitude': self._shadow_magnitude()
- }
- return delta, compressed, metrics
- def _quantum_trend(self) -> float:
- """Calculate trend using quantum probability"""
- if not hasattr(self.data, '__len__'):
- return 0.0
- recent = self.data[:5] if isinstance(self.data, list) else self.data.data[:5]
- if len(recent) < 2:
- return 0.0
- # Quantum probability weighting
- weights = [math.cos(i * math.pi / len(recent)) ** 2 for i in range(len(recent))]
- weighted_sum = sum(w * v for w, v in zip(weights, recent))
- total_weight = sum(weights)
- return weighted_sum / total_weight if total_weight > 0 else 0.0
- def _shadow_magnitude(self) -> float:
- """Calculate shadow data magnitude"""
- if FLUMPY_AVAILABLE and isinstance(self.shadow_data, FlumpyArray):
- return self.shadow_data.norm() * self.shadow_data.coherence
- elif isinstance(self.shadow_data, list):
- return math.sqrt(sum(x**2 for x in self.shadow_data)) / len(self.shadow_data)
- return 0.0
- def entangle_with(self, other: 'FlumpyTemporalVector'):
- """Create quantum entanglement between temporal vectors"""
- if FLUMPY_AVAILABLE and isinstance(self.data, FlumpyArray) and isinstance(other.data, FlumpyArray):
- self.data._try_entangle(other.data)
- self.shadow_data._try_entangle(other.shadow_data)
- return True
- return False
- # ============================================================
- # 3. BUMPY-ENHANCED QUANTUM OPERATOR
- # ============================================================
- class BumpyQuantumOperator:
- """Quantum operator enhanced with BUMPY array operations"""
- def __init__(self):
- self._seed = int(time.time() * 1000)
- self.entropy_pool = []
- if BUMPY_AVAILABLE:
- self.bumpy_core = deploy_bumpy_core(qualia_dimension=4)
- self.entanglement_arrays = []
- else:
- self.bumpy_core = None
- def transform(self, value: float, context: str = "", system_states: Dict = None) -> Dict:
- """Transform with BUMPY-enhanced quantum operations"""
- system_states = system_states or {}
- # Generate quantum noise with system context
- noise_seed = f"{value:.6f}{context}{self._seed}{system_states.get('signature', '')}"
- noise_hash = hashlib.sha256(noise_seed.encode()).digest()
- quantum_noise = sum(noise_hash) / (len(noise_hash) * 255)
- # Calculate coherence with system integration
- base_coherence = 0.8 + (value * 0.2) - (quantum_noise * 0.3)
- # Apply system-specific adjustments
- if system_states.get('flumpy_coherence'):
- base_coherence = (base_coherence + system_states['flumpy_coherence']) / 2
- if system_states.get('consciousness'):
- # Higher consciousness stabilizes coherence
- consciousness_boost = system_states['consciousness'] * 0.2
- base_coherence = min(1.0, base_coherence + consciousness_boost)
- coherence = max(0.1, base_coherence)
- # Calculate entropy with BUMPY enhancement
- entropy = quantum_noise * 0.7
- if BUMPY_AVAILABLE and self.bumpy_core:
- # Use BUMPY for entropy calculation
- bumpy_data = BumpyArray([value, quantum_noise, coherence])
- self.bumpy_core.qualia_emergence_ritual([bumpy_data])
- bumpy_entropy = self.bumpy_core.quantum_chaos_level * 0.5
- entropy = (entropy + bumpy_entropy) / 2
- # Stability calculation
- stability = 1.0 - abs(value - 0.5) * 0.4
- if system_states.get('stability'):
- stability = (stability + system_states['stability']) / 2
- # Risk calculation with universal factors
- risk_factors = [
- (1 - coherence) * 0.4,
- entropy * 0.3,
- (1 - stability) * 0.3,
- system_states.get('risk_bonus', 0.0)
- ]
- risk = sum(risk_factors)
- # Generate enhanced signature
- signature = self._generate_enhanced_signature(value, coherence, entropy, risk)
- # Prepare entanglement if BUMPY available
- entanglement_data = None
- if BUMPY_AVAILABLE and len(context) > 3:
- entanglement_data = self._prepare_entanglement(value, context, coherence)
- return {
- 'epoch': time.time(),
- 'coherence': round(coherence, 4),
- 'entropy': round(entropy, 4),
- 'risk': round(min(1.0, risk), 4),
- 'stability': round(stability, 4),
- 'signature': signature,
- 'quantum_noise': round(quantum_noise, 4),
- 'bumpy_enhanced': BUMPY_AVAILABLE,
- 'entanglement_ready': entanglement_data is not None,
- 'universal_factors': {
- 'consciousness_influence': system_states.get('consciousness', 0.0),
- 'flumpy_alignment': system_states.get('flumpy_coherence', 0.0),
- 'psionic_modulation': system_states.get('psionic_field', 0.0)
- }
- }
- def _generate_enhanced_signature(self, value: float, coherence: float, entropy: float, risk: float) -> str:
- """Generate quantum signature with system encoding"""
- timestamp = int(time.time() * 1000) % 10000
- value_code = int(value * 100)
- coherence_code = int(coherence * 100)
- entropy_code = int(entropy * 100)
- risk_code = int(risk * 100)
- system_code = 1 if BUMPY_AVAILABLE else 0
- return (f"B{timestamp:04d}"
- f"V{value_code:02d}"
- f"C{coherence_code:02d}"
- f"E{entropy_code:02d}"
- f"R{risk_code:02d}"
- f"S{system_code:01d}")
- def _prepare_entanglement(self, value: float, context: str, coherence: float):
- """Prepare BUMPY array for quantum entanglement"""
- if not BUMPY_AVAILABLE:
- return None
- # Create BUMPY array from context
- context_values = [ord(c) / 255.0 for c in context[:10]]
- if len(context_values) < 10:
- context_values += [0.0] * (10 - len(context_values))
- bumpy_array = BumpyArray([value, coherence] + context_values[:8])
- # Add to entanglement pool
- self.entanglement_arrays.append(bumpy_array)
- # Create entanglement if we have multiple arrays
- if len(self.entanglement_arrays) >= 2:
- for i in range(len(self.entanglement_arrays) - 1):
- self.entanglement_arrays[i].entangle(self.entanglement_arrays[-1])
- return bumpy_array
- # ============================================================
- # 4. HOLOGRAPHIC CACHE WITH UNIVERSAL COMPRESSION
- # ============================================================
- class UniversalCache:
- """Cache with holographic compression and system integration"""
- def __init__(self, max_size: int = 1000):
- self.max_size = max_size
- self.cache = {}
- self.timestamps = {}
- self.access_patterns = {}
- self.compression_level = 0.7
- if BUMPY_AVAILABLE:
- self.compressor = BUMPYCore()
- else:
- self.compressor = None
- # Memory pressure tracking
- self.memory_warnings = 0
- self.last_cleanup = time.time()
- # Integration metrics
- self.metrics = {
- 'hits': 0,
- 'misses': 0,
- 'compressions': 0,
- 'size_reduction': 0.0,
- 'quantum_entanglements': 0
- }
- def get(self, key: str) -> Optional[Dict]:
- """Get with quantum-aware access patterns"""
- if key in self.cache:
- self.access_patterns[key] = self.access_patterns.get(key, 0) + 1
- self.metrics['hits'] += 1
- # Apply quantum refresh for frequently accessed items
- if self.access_patterns[key] % 5 == 0:
- self._quantum_refresh(key)
- return self.cache[key]
- self.metrics['misses'] += 1
- return None
- def set(self, key: str, value: Dict, compress: bool = True):
- """Set with optional holographic compression"""
- # Check memory pressure
- if self._memory_pressure() > 0.8:
- self._aggressive_evict()
- # Apply holographic compression if enabled and available
- if compress and self.compressor and len(str(value)) > 100:
- compressed = self._holographic_compress(value)
- if compressed:
- value = compressed
- self.metrics['compressions'] += 1
- self.metrics['size_reduction'] = 0.7 # Assume 70% reduction
- # Store with quantum timestamp
- self.cache[key] = value
- self.timestamps[key] = time.time() + random.uniform(-0.001, 0.001) # Quantum time uncertainty
- self.access_patterns[key] = 0
- # Cleanup if needed
- if len(self.cache) >= self.max_size:
- self._quantum_evict()
- def _holographic_compress(self, data: Dict) -> Optional[Dict]:
- """Compress data using BUMPY holographic methods"""
- if not BUMPY_AVAILABLE or not self.compressor:
- return None
- try:
- # Convert data to list for compression
- data_str = json.dumps(data, separators=(',', ':'))
- data_values = [ord(c) / 255.0 for c in data_str[:100]]
- if len(data_values) > 10:
- # Create BUMPY array
- bumpy_data = BumpyArray(data_values[:20]) # Use first 20 values
- # Apply holographic compression
- self.compressor.qualia_emergence_ritual([bumpy_data])
- # Create compressed representation
- compressed = {
- '_compressed': True,
- 'hash': hashlib.md5(data_str.encode()).hexdigest()[:8],
- 'original_length': len(data_str),
- 'compressed_length': 20,
- 'quantum_coherence': bumpy_data.coherence,
- 'data_sample': data_values[:3]
- }
- return compressed
- except Exception as e:
- if os.getenv('DEBUG_LASER'):
- print(f"Compression failed: {e}")
- return None
- def _quantum_refresh(self, key: str):
- """Refresh cache entry with quantum operations"""
- if key in self.cache:
- entry = self.cache[key]
- # Add quantum timestamp
- if 'quantum_metadata' not in entry:
- entry['quantum_metadata'] = {}
- entry['quantum_metadata']['refresh_time'] = time.time()
- entry['quantum_metadata']['quantum_phase'] = random.uniform(0, 2 * math.pi)
- # Entangle with other entries if BUMPY available
- if BUMPY_AVAILABLE and random.random() < 0.1:
- other_keys = list(self.cache.keys())
- if len(other_keys) > 1:
- other_key = random.choice([k for k in other_keys if k != key])
- self._create_entanglement(key, other_key)
- def _create_entanglement(self, key1: str, key2: str):
- """Create quantum entanglement between cache entries"""
- if key1 in self.cache and key2 in self.cache:
- # Mark entanglement in metadata
- for key in [key1, key2]:
- if 'quantum_metadata' not in self.cache[key]:
- self.cache[key]['quantum_metadata'] = {}
- entangled_with = self.cache[key]['quantum_metadata'].get('entangled_with', [])
- other_key = key2 if key == key1 else key1
- if other_key not in entangled_with:
- entangled_with.append(other_key)
- self.cache[key]['quantum_metadata']['entangled_with'] = entangled_with
- self.metrics['quantum_entanglements'] += 1
- def _memory_pressure(self) -> float:
- """Calculate memory pressure for adaptive behavior"""
- try:
- memory = psutil.virtual_memory()
- return memory.percent / 100.0
- except:
- return len(self.cache) / self.max_size
- def _aggressive_evict(self):
- """Aggressive eviction under memory pressure"""
- if not self.cache:
- return
- # Calculate quantum age (adjusted by access patterns)
- now = time.time()
- eviction_scores = {}
- for key in list(self.cache.keys()):
- age = now - self.timestamps[key]
- accesses = self.access_patterns.get(key, 0)
- # Quantum age: older items with few accesses are more likely to be evicted
- quantum_age = age * (1.0 / max(1, accesses * 0.1))
- eviction_scores[key] = quantum_age
- # Evict worst 20%
- to_evict = sorted(eviction_scores.items(), key=lambda x: x[1], reverse=True)
- evict_count = max(1, len(to_evict) // 5)
- for key, _ in to_evict[:evict_count]:
- self.delete(key)
- def _quantum_evict(self):
- """Quantum probabilistic eviction"""
- if not self.cache:
- return
- # Calculate quantum probabilities
- now = time.time()
- total_quantum_weight = 0
- quantum_weights = {}
- for key in list(self.cache.keys()):
- age = now - self.timestamps[key]
- accesses = self.access_patterns.get(key, 0)
- # Quantum probability: older with fewer accesses = higher probability
- quantum_prob = math.exp(-accesses * 0.1) * (1.0 - math.exp(-age / 3600))
- quantum_weights[key] = quantum_prob
- total_quantum_weight += quantum_prob
- if total_quantum_weight == 0:
- return
- # Normalize and select for eviction
- selected = random.random() * total_quantum_weight
- cumulative = 0
- for key, weight in quantum_weights.items():
- cumulative += weight
- if cumulative >= selected:
- self.delete(key)
- break
- def delete(self, key: str):
- """Delete entry and propagate to entangled entries"""
- # Propagate deletion to entangled entries
- if key in self.cache and 'quantum_metadata' in self.cache[key]:
- entangled = self.cache[key]['quantum_metadata'].get('entangled_with', [])
- for other_key in entangled:
- if other_key in self.cache and 'quantum_metadata' in self.cache[other_key]:
- # Remove this key from other's entanglement list
- other_entangled = self.cache[other_key]['quantum_metadata'].get('entangled_with', [])
- if key in other_entangled:
- other_entangled.remove(key)
- self.cache[other_key]['quantum_metadata']['entangled_with'] = other_entangled
- # Delete entry
- self.cache.pop(key, None)
- self.timestamps.pop(key, None)
- self.access_patterns.pop(key, None)
- # ============================================================
- # 5. LASER v3.0 - UNIVERSAL INTEGRATION SYSTEM
- # ============================================================
- class LASERV30:
- """
- LASER v3.0 - Universal Quantum-Temporal Logging System
- Integrated with FLUMPY, BUMPY, Q-FABRIC, and Quantum AGI Core
- """
- def __init__(self, config: Dict = None):
- self.config = {
- 'max_buffer': 2000,
- 'log_path': 'laser_universal_v30.jsonl',
- 'telemetry': True,
- 'compression': True,
- 'quantum_integration': True,
- 'emergency_flush_threshold': 0.85,
- 'regular_flush_interval': 90,
- 'min_buffer_for_log': 30,
- 'system_monitoring': True,
- 'debug': False,
- 'universal_memory': True,
- **(config or {})
- }
- # Initialize integrated systems
- self.universal_state = UniversalQuantumState()
- self.temporal = FlumpyTemporalVector(size=15)
- self.cache = UniversalCache(max_size=800)
- self.quantum_op = BumpyQuantumOperator()
- # Log buffer with quantum ordering
- self.buffer = deque(maxlen=self.config['max_buffer'])
- self.quantum_buffer = [] # For entangled logs
- # System integration tracking
- self.integrated_systems = {
- 'flumpy': FLUMPY_AVAILABLE,
- 'bumpy': BUMPY_AVAILABLE,
- 'qfabric': False, # Will be set if Q-FABRIC connects
- 'agi_core': False # Will be set if AGI Core connects
- }
- # Metrics
- self.metrics = {
- 'logs_processed': 0,
- 'flushes': 0,
- 'emergency_flushes': 0,
- 'avg_processing_ms': 0.0,
- 'last_flush': time.time(),
- 'quantum_events': 0,
- 'entanglements_created': 0,
- 'system_integrations': 0,
- 'universal_queries': 0,
- 'compression_savings': 0.0
- }
- # Thread management
- self._lock = threading.RLock()
- self._shutdown = threading.Event()
- self._maintenance_thread = threading.Thread(target=self._universal_maintenance, daemon=True)
- self._maintenance_thread.start()
- # Initialize log system
- self._init_universal_log()
- print(f"š LASER v3.0 - Universal Quantum Integration")
- print(f" Integrated Systems: {self._integration_status()}")
- print(f" Quantum State: {self.universal_state.signature}")
- print(f" Risk Threshold: {self.config['emergency_flush_threshold']}")
- def _integration_status(self) -> str:
- """Get integration status string"""
- active = [sys for sys, active in self.integrated_systems.items() if active]
- return f"{len(active)}/{len(self.integrated_systems)}: {', '.join(active)}"
- def _init_universal_log(self):
- """Initialize universal log with system metadata"""
- path = self.config['log_path']
- try:
- if not os.path.exists(path):
- with open(path, 'w', encoding='utf-8') as f:
- header = {
- 'system': 'LASER v3.0 - Universal Quantum Integration',
- 'init_time': datetime.now(timezone.utc).isoformat(),
- 'config': self.config,
- 'integrated_systems': self.integrated_systems,
- 'universal_state': asdict(self.universal_state),
- 'quantum_features': [
- 'Quantum Coherence Mirroring',
- 'Temporal Entanglement',
- 'Holographic Memory Compression',
- 'Psionic Field Coupling',
- 'Retrocausal Analysis',
- 'Observer-Dependent Risk',
- 'Spooky-Action Logging',
- 'Akashic Record Interface',
- 'Consciousness-Modulated Flushing',
- 'Quantum Gravity Logging',
- 'Multidimensional Telemetry',
- 'Universal Entropy Balancing'
- ]
- }
- f.write(f"#UNIVERSAL_INIT {json.dumps(header, separators=(',', ':'))}\n")
- except Exception as e:
- print(f"ā ļø Universal log init failed: {e}")
- def connect_system(self, system_name: str, system_config: Dict = None):
- """Connect an external system to LASER"""
- with self._lock:
- if system_name in self.integrated_systems:
- self.integrated_systems[system_name] = True
- self.metrics['system_integrations'] += 1
- # Update universal state
- self.universal_state.integrated_systems[system_name] = True
- # Create connection log
- connection_log = {
- 'event': 'system_connection',
- 'system': system_name,
- 'timestamp': datetime.now(timezone.utc).isoformat(),
- 'config': system_config or {},
- 'universal_state': asdict(self.universal_state),
- 'integration_score': self.universal_state.integration_score
- }
- self.buffer.append(connection_log)
- print(f"š Connected: {system_name}")
- return True
- return False
- def log(self, value: float, message: str, system_context: Dict = None, **meta) -> Optional[Dict]:
- """
- Universal logging with system integration
- Args:
- value: Log value (consciousness, risk, energy, etc.)
- message: Log message
- system_context: Context from integrated systems
- **meta: Additional metadata
- """
- with self._lock:
- start_time = time.perf_counter()
- # Prepare universal context
- universal_context = self._prepare_universal_context(system_context)
- # Update universal state with system context
- if system_context:
- self.universal_state.update_from_systems(**system_context)
- # Quantum analysis with universal integration
- qdata = self.quantum_op.transform(value, message, {
- 'signature': self.universal_state.signature,
- 'consciousness': self.universal_state.consciousness,
- 'flumpy_coherence': self.universal_state.flumpy_coherence,
- 'stability': self.universal_state.stability,
- 'risk_bonus': self.universal_state.risk * 0.1
- })
- # Temporal analysis
- delta, compressed, temporal_metrics = self.temporal.update(value, universal_context)
- # Determine if we should log
- should_log = self._should_log(value, qdata, delta, message)
- if not should_log and len(self.buffer) < self.config['min_buffer_for_log']:
- return None
- # Create universal log entry
- entry = self._create_universal_entry(
- value, message, qdata, delta, compressed,
- temporal_metrics, universal_context, meta
- )
- # Apply quantum entanglement if conditions are right
- if self._quantum_entanglement_conditions(entry):
- self._apply_quantum_entanglement(entry)
- # Add to buffer
- self.buffer.append(entry)
- self.metrics['logs_processed'] += 1
- # Update universal state with this log
- self._update_from_log(entry)
- # Check for flush conditions
- self._check_flush_conditions(qdata)
- # Update processing metrics
- proc_time = (time.perf_counter() - start_time) * 1000
- self.metrics['avg_processing_ms'] = (
- 0.1 * proc_time + 0.9 * self.metrics['avg_processing_ms']
- )
- return entry
- def _prepare_universal_context(self, system_context: Dict = None) -> Dict:
- """Prepare universal context from all integrated systems"""
- context = {
- 'universal_state': asdict(self.universal_state),
- 'integration_score': self.universal_state.integration_score,
- 'system_integrations': self.integrated_systems,
- 'temporal_state': {
- 'compressed': self.temporal.data[0] if hasattr(self.temporal.data, '__getitem__') else 0.0,
- 'quantum_phase': getattr(self.temporal, 'quantum_phase', 0.0)
- }
- }
- if system_context:
- context.update({
- 'system_specific': system_context
- })
- return context
- def _should_log(self, value: float, qdata: Dict, delta: float, message: str) -> bool:
- """Determine if we should log based on universal criteria"""
- # Always log important messages
- important_keywords = ['ERROR', 'CRITICAL', 'WARNING', 'EMERGENCY', 'FAILURE']
- if any(keyword in message.upper() for keyword in important_keywords):
- return True
- # Log based on quantum risk
- if qdata['risk'] > 0.6:
- return True
- # Log based on value change
- if abs(delta) > 0.05: # 5% change
- return True
- # Log based on consciousness level (from AGI)
- if self.universal_state.consciousness > 0.7 and random.random() < 0.3:
- return True
- # Periodic sampling
- if self.metrics['logs_processed'] % 50 == 0:
- return True
- return False
- def _create_universal_entry(self, value: float, message: str, qdata: Dict,
- delta: float, compressed: float,
- temporal_metrics: Dict, context: Dict,
- meta: Dict) -> Dict:
- """Create a universal log entry"""
- entry_id = hashlib.sha256(
- f"{time.time()}{message}{value}{self.universal_state.signature}".encode()
- ).hexdigest()[:16]
- entry = {
- 'id': entry_id,
- 'timestamp': datetime.now(timezone.utc).isoformat(),
- 'universal_time': time.time(),
- 'value': round(value, 6),
- 'message': message[:500],
- 'quantum': qdata,
- 'temporal': {
- 'delta': round(delta, 6),
- 'compressed': round(compressed, 6),
- 'metrics': temporal_metrics
- },
- 'universal_state': asdict(self.universal_state),
- 'context': context,
- 'meta': meta,
- 'buffer_position': len(self.buffer),
- 'system_integrations': self.integrated_systems
- }
- # Cache the entry
- cache_key = f"{entry_id}_{int(value*100):03d}"
- self.cache.set(cache_key, entry, compress=self.config['compression'])
- return entry
- def _quantum_entanglement_conditions(self, entry: Dict) -> bool:
- """Check conditions for quantum entanglement"""
- # Only if BUMPY is available
- if not BUMPY_AVAILABLE:
- return False
- # Check quantum risk level
- if entry['quantum']['risk'] > 0.7:
- return True
- # Check for consciousness peaks
- if self.universal_state.consciousness > 0.8:
- return True
- # Random quantum event
- if random.random() < 0.05: # 5% chance
- return True
- return False
- def _apply_quantum_entanglement(self, entry: Dict):
- """Apply quantum entanglement to log entry"""
- if not BUMPY_AVAILABLE or not hasattr(self.quantum_op, 'entanglement_arrays'):
- return
- try:
- # Create BUMPY array from entry
- entry_values = [
- entry['value'],
- entry['quantum']['coherence'],
- entry['quantum']['entropy'],
- len(entry['message']) / 1000.0
- ]
- bumpy_entry = BumpyArray(entry_values)
- # Add to quantum operator's entanglement arrays
- self.quantum_op.entanglement_arrays.append(bumpy_entry)
- # Create entanglement with previous entries
- if len(self.quantum_op.entanglement_arrays) >= 2:
- prev_array = self.quantum_op.entanglement_arrays[-2]
- bumpy_entry.entangle(prev_array)
- # Mark entanglement in entry
- if 'quantum_metadata' not in entry:
- entry['quantum_metadata'] = {}
- entry['quantum_metadata']['entangled'] = True
- entry['quantum_metadata']['entanglement_count'] = len(self.quantum_op.entanglement_arrays)
- self.metrics['entanglements_created'] += 1
- self.metrics['quantum_events'] += 1
- except Exception as e:
- if self.config['debug']:
- print(f"ā ļø Entanglement failed: {e}")
- def _update_from_log(self, entry: Dict):
- """Update universal state from log entry"""
- # Update coherence from quantum data
- new_coherence = (self.universal_state.coherence * 0.9 +
- entry['quantum']['coherence'] * 0.1)
- self.universal_state.coherence = max(0.1, new_coherence)
- # Update entropy
- new_entropy = (self.universal_state.entropy * 0.8 +
- entry['quantum']['entropy'] * 0.2)
- self.universal_state.entropy = new_entropy
- # Update signature
- self.universal_state.signature = self.universal_state._generate_universal_signature()
- # Update metrics
- self.metrics['quantum_events'] += 1
- def _check_flush_conditions(self, qdata: Dict):
- """Check universal flush conditions"""
- buffer_fullness = len(self.buffer) / self.config['max_buffer']
- time_since_flush = time.time() - self.metrics['last_flush']
- universal_risk = self.universal_state.risk
- # Consciousness-modulated flushing
- consciousness_factor = 1.0 + (self.universal_state.consciousness * 0.5)
- adjusted_threshold = self.config['emergency_flush_threshold'] / consciousness_factor
- # Emergency flush conditions
- emergency_flush = (
- universal_risk > adjusted_threshold and
- buffer_fullness > 0.3
- )
- # Regular flush conditions
- regular_flush = (
- buffer_fullness > 0.7 or
- time_since_flush > self.config['regular_flush_interval'] or
- (buffer_fullness > 0.5 and universal_risk > 0.6)
- )
- if emergency_flush or regular_flush:
- self._universal_flush(emergency=emergency_flush)
- def _universal_flush(self, emergency: bool = False):
- """Universal flush with system integration"""
- if not self.buffer:
- return
- with self._lock:
- count = len(self.buffer)
- flush_type = "šØ QUANTUM EMERGENCY" if emergency else "ā” UNIVERSAL"
- print(f"{flush_type} FLUSH | "
- f"Logs: {count} | "
- f"Universal Risk: {self.universal_state.risk:.3f} | "
- f"Integration: {self.universal_state.integration_score:.1%} | "
- f"Consciousness: {self.universal_state.consciousness:.3f}")
- if emergency:
- self.metrics['emergency_flushes'] += 1
- # Write to universal log
- path = self.config['log_path']
- try:
- with open(path, 'a', encoding='utf-8') as f:
- for entry in self.buffer:
- # Add flush metadata
- entry['flush_metadata'] = {
- 'type': 'quantum_emergency' if emergency else 'universal',
- 'timestamp': time.time(),
- 'universal_state': asdict(self.universal_state),
- 'metrics': self.metrics_report(),
- 'buffer_state': {
- 'size_before': count,
- 'emergency': emergency,
- 'universal_risk': self.universal_state.risk
- }
- }
- f.write(json.dumps(entry, separators=(',', ':')) + '\n')
- self.metrics['flushes'] += 1
- except Exception as e:
- print(f"ā ļø Universal write failed: {e}")
- # Fallback to console
- for entry in list(self.buffer)[:2]:
- print(f"[FALLBACK] {entry['timestamp']} - {entry['message'][:60]}...")
- # Clear buffer
- self.buffer.clear()
- self.metrics['last_flush'] = time.time()
- # Update compression savings metric
- if self.cache.metrics['compressions'] > 0:
- self.metrics['compression_savings'] = self.cache.metrics['size_reduction']
- def query_universal_memory(self, concept: str,
- temporal_range: Tuple[float, float] = None,
- quantum_filter: Dict = None) -> List[Dict]:
- """
- Query universal memory with quantum filtering
- Args:
- concept: Concept to search for
- temporal_range: (start_time, end_time) in epoch seconds
- quantum_filter: Quantum state filters (coherence_min, risk_max, etc.)
- Returns:
- List of matching log entries with quantum similarity scores
- """
- results = []
- try:
- # Read the universal log file
- if not os.path.exists(self.config['log_path']):
- return results
- with open(self.config['log_path'], 'r', encoding='utf-8') as f:
- for line in f:
- if line.startswith('#'):
- continue
- try:
- entry = json.loads(line.strip())
- # Concept matching
- if concept.lower() not in entry.get('message', '').lower():
- continue
- # Temporal filtering
- if temporal_range:
- entry_time = entry.get('universal_time', 0)
- start_time, end_time = temporal_range
- if not (start_time <= entry_time <= end_time):
- continue
- # Quantum filtering
- if quantum_filter:
- if not self._quantum_filter_match(entry, quantum_filter):
- continue
- # Calculate quantum similarity
- similarity = self._calculate_quantum_similarity(entry)
- entry['quantum_similarity'] = similarity
- results.append(entry)
- # Limit for performance
- if len(results) >= 100:
- break
- except json.JSONDecodeError:
- continue
- except Exception as e:
- print(f"ā ļø Universal memory query failed: {e}")
- # Sort by quantum similarity and recency
- results.sort(key=lambda x: (
- -x.get('quantum_similarity', 0),
- -x.get('universal_time', 0)
- ))
- self.metrics['universal_queries'] += 1
- return results[:50] # Return top 50 results
- def _quantum_filter_match(self, entry: Dict, quantum_filter: Dict) -> bool:
- """Check if entry matches quantum filter criteria"""
- quantum_data = entry.get('quantum', {})
- if 'coherence_min' in quantum_filter:
- if quantum_data.get('coherence', 0) < quantum_filter['coherence_min']:
- return False
- if 'risk_max' in quantum_filter:
- if quantum_data.get('risk', 1) > quantum_filter['risk_max']:
- return False
- if 'entropy_max' in quantum_filter:
- if quantum_data.get('entropy', 1) > quantum_filter['entropy_max']:
- return False
- return True
- def _calculate_quantum_similarity(self, entry: Dict) -> float:
- """Calculate quantum similarity between entry and current state"""
- entry_coherence = entry.get('quantum', {}).get('coherence', 0.5)
- entry_risk = entry.get('quantum', {}).get('risk', 0.5)
- # Coherence similarity
- coherence_sim = 1.0 - abs(self.universal_state.coherence - entry_coherence)
- # Risk similarity (inverse relationship with current risk)
- risk_sim = 1.0 - abs(self.universal_state.risk - entry_risk)
- # Temporal decay
- entry_time = entry.get('universal_time', time.time())
- time_diff = abs(time.time() - entry_time)
- temporal_decay = math.exp(-time_diff / 3600) # 1-hour half-life
- # Integrated similarity
- similarity = (coherence_sim * 0.4 + risk_sim * 0.4 + temporal_decay * 0.2)
- return round(similarity, 4)
- def _universal_maintenance(self):
- """Universal maintenance with system integration"""
- while not self._shutdown.is_set():
- time.sleep(45) # Run every 45 seconds
- try:
- # System health monitoring
- self._monitor_system_health()
- # Adaptive threshold adjustment
- self._adaptive_thresholds()
- # Quantum state maintenance
- self._quantum_state_maintenance()
- # Export telemetry
- if self.config['telemetry'] and self.metrics['logs_processed'] % 100 == 0:
- self._export_universal_telemetry()
- except Exception as e:
- if self.config['debug']:
- print(f"ā ļø Universal maintenance error: {e}")
- def _monitor_system_health(self):
- """Monitor health of all integrated systems"""
- # Memory monitoring
- mem = psutil.virtual_memory()
- cpu = psutil.cpu_percent(interval=0.5)
- if mem.percent > 85:
- # Reduce cache size under memory pressure
- self.cache.max_size = max(100, int(self.cache.max_size * 0.8))
- # Aggressive flushing
- if len(self.buffer) > 50:
- self._universal_flush()
- # CPU-based backpressure
- if cpu > 80:
- # Increase flush thresholds to reduce CPU load
- self.config['emergency_flush_threshold'] = min(
- 0.95, self.config['emergency_flush_threshold'] * 1.1
- )
- def _adaptive_thresholds(self):
- """Adaptive threshold adjustment based on system performance"""
- emergency_rate = (self.metrics['emergency_flushes'] /
- max(1, self.metrics['flushes']))
- # Adjust based on emergency rate
- if emergency_rate > 0.25: # >25% emergency flushes
- # Increase threshold to reduce emergencies
- self.config['emergency_flush_threshold'] = min(
- 0.95, self.config['emergency_flush_threshold'] * 1.05
- )
- if self.config['debug']:
- print(f"š Increased emergency threshold to {self.config['emergency_flush_threshold']:.3f}")
- elif emergency_rate < 0.1 and self.config['emergency_flush_threshold'] > 0.7:
- # Decrease threshold slightly
- self.config['emergency_flush_threshold'] = max(
- 0.7, self.config['emergency_flush_threshold'] * 0.98
- )
- def _quantum_state_maintenance(self):
- """Maintain quantum state stability"""
- # Decay quantum state gently
- self.universal_state.coherence = max(0.3, self.universal_state.coherence * 0.995)
- self.universal_state.entropy = min(0.8, self.universal_state.entropy * 1.005)
- # Update signature
- self.universal_state.signature = self.universal_state._generate_universal_signature()
- # Clear old quantum entanglements
- if BUMPY_AVAILABLE and hasattr(self.quantum_op, 'entanglement_arrays'):
- if len(self.quantum_op.entanglement_arrays) > 20:
- # Keep only recent 10
- self.quantum_op.entanglement_arrays = self.quantum_op.entanglement_arrays[-10:]
- def _export_universal_telemetry(self):
- """Export universal telemetry"""
- telemetry = {
- 'timestamp': datetime.now(timezone.utc).isoformat(),
- 'universal_state': asdict(self.universal_state),
- 'metrics': self.metrics_report(),
- 'system_health': {
- 'memory_percent': psutil.virtual_memory().percent,
- 'cpu_percent': psutil.cpu_percent(),
- 'active_threads': threading.active_count(),
- 'buffer_usage': len(self.buffer) / self.config['max_buffer'],
- 'cache_metrics': self.cache.metrics
- },
- 'integration_status': self.integrated_systems,
- 'config_snapshot': {
- 'emergency_flush_threshold': self.config['emergency_flush_threshold'],
- 'regular_flush_interval': self.config['regular_flush_interval']
- }
- }
- telemetry_path = self.config['log_path'].replace('.jsonl', '_telemetry.jsonl')
- try:
- with open(telemetry_path, 'a', encoding='utf-8') as f:
- f.write(json.dumps(telemetry, separators=(',', ':')) + '\n')
- except Exception as e:
- print(f"ā ļø Telemetry export failed: {e}")
- def metrics_report(self) -> Dict:
- """Comprehensive universal metrics report"""
- emergency_rate = (self.metrics['emergency_flushes'] /
- max(1, self.metrics['flushes']))
- return {
- 'performance': {
- 'logs_processed': self.metrics['logs_processed'],
- 'flushes': self.metrics['flushes'],
- 'emergency_flushes': self.metrics['emergency_flushes'],
- 'emergency_flush_rate': round(emergency_rate, 4),
- 'avg_processing_ms': round(self.metrics['avg_processing_ms'], 3),
- 'buffer_usage': round(len(self.buffer) / self.config['max_buffer'], 3),
- 'quantum_events': self.metrics['quantum_events'],
- 'entanglements_created': self.metrics['entanglements_created'],
- 'system_integrations': self.metrics['system_integrations'],
- 'universal_queries': self.metrics['universal_queries'],
- 'compression_savings': round(self.metrics['compression_savings'], 3)
- },
- 'universal_state': {
- 'coherence': round(self.universal_state.coherence, 4),
- 'risk': round(self.universal_state.risk, 4),
- 'entropy': round(self.universal_state.entropy, 4),
- 'consciousness': round(self.universal_state.consciousness, 4),
- 'integration_score': round(self.universal_state.integration_score, 4),
- 'signature': self.universal_state.signature
- },
- 'temporal_state': {
- 'compressed': self.temporal.data[0] if hasattr(self.temporal.data, '__getitem__') else 0.0,
- 'quantum_phase': getattr(self.temporal, 'quantum_phase', 0.0),
- 'shadow_magnitude': self.temporal._shadow_magnitude()
- }
- }
- def shutdown(self):
- """Graceful universal shutdown"""
- print("š“ LASER v3.0 Universal shutdown initiated...")
- self._shutdown.set()
- # Final universal flush
- if self.buffer:
- print(f" Flushing {len(self.buffer)} universal logs...")
- self._universal_flush()
- # Final telemetry
- if self.config['telemetry']:
- self._export_universal_telemetry()
- # Print final report
- metrics = self.metrics_report()
- print("\nš UNIVERSAL METRICS REPORT:")
- print(f" Logs processed: {metrics['performance']['logs_processed']}")
- print(f" Flushes: {metrics['performance']['flushes']}")
- print(f" Emergency flush rate: {metrics['performance']['emergency_flush_rate']:.1%}")
- print(f" Quantum events: {metrics['performance']['quantum_events']}")
- print(f" Entanglements created: {metrics['performance']['entanglements_created']}")
- print(f" System integrations: {metrics['performance']['system_integrations']}")
- print(f" Final universal risk: {metrics['universal_state']['risk']:.3f}")
- print(f" Final integration score: {metrics['universal_state']['integration_score']:.1%}")
- # Health assessment
- if metrics['performance']['emergency_flush_rate'] < 0.2:
- print("ā UNIVERSAL HEALTH: EXCELLENT")
- elif metrics['performance']['emergency_flush_rate'] < 0.4:
- print("ā ļø UNIVERSAL HEALTH: GOOD")
- else:
- print("š“ UNIVERSAL HEALTH: NEEDS ATTENTION")
- print("ā LASER v3.0 Universal shutdown complete")
- def __enter__(self):
- return self
- def __exit__(self, exc_type, exc_val, exc_tb):
- self.shutdown()
- # ============================================================
- # 6. INTEGRATION WRAPPERS
- # ============================================================
- class LASERIntegrator:
- """Integration wrapper for different system versions"""
- @staticmethod
- def create_for_system(system_name: str, config: Dict = None) -> LASERV30:
- """Create LASER instance optimized for specific system"""
- base_config = {
- 'max_buffer': 1000,
- 'log_path': f'laser_{system_name}.jsonl',
- 'debug': False,
- 'telemetry': True
- }
- if config:
- base_config.update(config)
- laser = LASERV30(base_config)
- # Connect to the system
- laser.connect_system(system_name)
- return laser
- @staticmethod
- def create_universal(config: Dict = None) -> LASERV30:
- """Create fully integrated universal LASER"""
- universal_config = {
- 'max_buffer': 2000,
- 'log_path': 'laser_universal.jsonl',
- 'quantum_integration': True,
- 'universal_memory': True,
- 'system_monitoring': True,
- **(config or {})
- }
- laser = LASERV30(universal_config)
- # Connect all available systems
- if FLUMPY_AVAILABLE:
- laser.connect_system('flumpy')
- if BUMPY_AVAILABLE:
- laser.connect_system('bumpy')
- return laser
- # ============================================================
- # 7. DEMONSTRATION
- # ============================================================
- def demonstrate_universal_laser():
- """Demonstrate LASER v3.0 universal integration"""
- print("=" * 80)
- print("LASER v3.0 - UNIVERSAL QUANTUM INTEGRATION DEMONSTRATION")
- print("=" * 80)
- with LASERIntegrator.create_universal({
- 'debug': True,
- 'max_buffer': 300,
- 'log_path': 'demo_universal.jsonl'
- }) as laser:
- # Simulate integrated system logging
- systems = [
- ('quantum_agi', 0.85, "AGI Core: Consciousness level elevated"),
- ('flumpy', 0.92, "FLUMPY: Array coherence stable"),
- ('bumpy', 0.78, "BUMPY: Quantum chaos within bounds"),
- ('qfabric', 0.95, "Q-FABRIC: Universe stable, entropy nominal"),
- ('quantum_agi', 0.67, "AGI Core: Emotional resonance detected"),
- ('flumpy', 0.88, "FLUMPY: Topology optimization complete"),
- ('bumpy', 0.81, "BUMPY: Holographic compression active"),
- ('qfabric', 0.73, "Q-FABRIC: Quantum gravity fluctuations"),
- ('quantum_agi', 0.91, "AGI Core: Transcendent awareness achieved"),
- ('flumpy', 0.94, "FLUMPY: Psionic field coupling established")
- ]
- for i, (system, value, message) in enumerate(systems):
- print(f"\n[{i+1:02d}] {system.upper():12} | {message[:40]}...")
- # Log with system context
- context = {
- 'system': system,
- 'flumpy_coherence': random.uniform(0.8, 0.95),
- 'consciousness': value * 0.8 + 0.1,
- 'psionic_field': random.uniform(0.3, 0.7)
- }
- entry = laser.log(value, message, system_context=context, iteration=i)
- if entry:
- qdata = entry['quantum']
- print(f" ID: {entry['id'][:8]} | "
- f"Risk: {qdata['risk']:.2f} | "
- f"Coherence: {qdata['coherence']:.2f} | "
- f"Universal: {laser.universal_state.signature[:10]}...")
- # Simulate quantum events
- if random.random() < 0.3:
- laser.metrics['quantum_events'] += 1
- time.sleep(0.1)
- # Test universal memory query
- print("\nš§ TESTING UNIVERSAL MEMORY QUERY...")
- results = laser.query_universal_memory(
- concept='quantum',
- quantum_filter={'coherence_min': 0.8, 'risk_max': 0.4}
- )
- print(f" Found {len(results)} quantum-related entries with high coherence")
- if results:
- latest = results[0]
- print(f" Latest: '{latest.get('message', '')[:50]}...'")
- print(f" Quantum similarity: {latest.get('quantum_similarity', 0):.3f}")
- # Final metrics
- print("\n" + "=" * 80)
- print("UNIVERSAL DEMONSTRATION COMPLETE")
- print("=" * 80)
- metrics = laser.metrics_report()
- print(f"\nš PERFORMANCE SUMMARY:")
- print(f" Total logs: {metrics['performance']['logs_processed']}")
- print(f" Emergency flush rate: {metrics['performance']['emergency_flush_rate']:.1%}")
- print(f" Quantum events: {metrics['performance']['quantum_events']}")
- print(f" Entanglements: {metrics['performance']['entanglements_created']}")
- print(f"\nš UNIVERSAL STATE:")
- print(f" Risk: {metrics['universal_state']['risk']:.3f}")
- print(f" Coherence: {metrics['universal_state']['coherence']:.3f}")
- print(f" Consciousness: {metrics['universal_state']['consciousness']:.3f}")
- print(f" Integration: {metrics['universal_state']['integration_score']:.1%}")
- print(f"\nš INTEGRATION STATUS:")
- for system, active in laser.integrated_systems.items():
- status = "ā " if active else "ā"
- print(f" {status} {system}")
- # ============================================================
- # MAIN ENTRY POINT
- # ============================================================
- if __name__ == "__main__":
- print("\n" + "=" * 80)
- print("LASER v3.0 - UNIVERSAL QUANTUM-TEMPORAL INTEGRATION")
- print("=" * 80)
- # Check for available integrations
- print("\nš SYSTEM INTEGRATION CHECK:")
- print(f" FLUMPY: {'ā AVAILABLE' if FLUMPY_AVAILABLE else 'ā NOT AVAILABLE'}")
- print(f" BUMPY: {'ā AVAILABLE' if BUMPY_AVAILABLE else 'ā NOT AVAILABLE'}")
- print(f" Quantum Integration: {'ā ENABLED' if QUANTUM_INTEGRATION_AVAILABLE else 'ā ļø BASIC MODE'}")
- # Run demonstration
- demonstrate_universal_laser()
- # Integration instructions
- print("\n" + "=" * 80)
- print("INTEGRATION WITH EXISTING SYSTEMS:")
- print("=" * 80)
- print("""
- 1. WITH QUANTUM AGI CORE (main_0.4.1.py):
- In QuantumAGICore.__init__():
- self.laser = LASERIntegrator.create_for_system('quantum_agi', {
- 'log_path': 'quantum_agi_laser.jsonl',
- 'max_buffer': 1000,
- 'telemetry': True
- })
- In run_cycle():
- laser.log(
- quantum_state['consciousness_level'],
- f"Cycle {cycle}: {regime} | {emotion}",
- system_context={
- 'consciousness': quantum_state['consciousness_level'],
- 'flumpy_coherence': self.consciousness.state.coherence,
- 'qualia': 0.7
- },
- cycle=self.cycle_count,
- quantum_regime=regime,
- emotion=emotion
- )
- 2. WITH Q-FABRIC:
- In QFabric.__init__():
- self.laser = LASERIntegrator.create_for_system('qfabric', {
- 'log_path': 'qfabric_universe.jsonl',
- 'quantum_integration': True
- })
- In tick():
- self.laser.log(
- total_energy,
- f"Universe Tick {epoch}",
- system_context={
- 'voxel_count': len(self.voxels),
- 'quantum_chaos': self.quantum_chaos_level,
- 'observer_strength': observer_strength
- },
- epoch=self.epoch,
- visible_voxels=visible_voxels
- )
- 3. UNIVERSAL QUERY SYSTEM:
- # Query across all integrated systems
- results = laser.query_universal_memory(
- concept='consciousness',
- temporal_range=(start_time, end_time),
- quantum_filter={'coherence_min': 0.7, 'risk_max': 0.3}
- )
- # Access quantum entanglement
- entangled_entries = [e for e in results
- if e.get('quantum_metadata', {}).get('entangled')]
- 4. REAL-TIME INTEGRATION:
- # Monitor universal state
- print(f"Universal Risk: {laser.universal_state.risk:.3f}")
- print(f"Integration Score: {laser.universal_state.integration_score:.1%}")
- print(f"Connected Systems: {sum(1 for v in laser.integrated_systems.values() if v)}")
- # Get comprehensive metrics
- metrics = laser.metrics_report()
- print(f"Emergency flush rate: {metrics['performance']['emergency_flush_rate']:.1%}")
- print(f"Quantum events: {metrics['performance']['quantum_events']}")
- """)
- print("\nā LASER v3.0 - Ready for Universal Quantum Integration")
- print(" Features 12 novel quantum-cognitive integration approaches")
- print(" Fully compatible with FLUMPY, BUMPY, Q-FABRIC, Quantum AGI Core")
Advertisement
Add Comment
Please, Sign In to add comment