Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- conv2 = tf.layers.conv2d(inputs=pool1, filters=64, kernel_size=[5, 5], padding="same", activation=tf.nn.relu)
- pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
- pool_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])
Advertisement
Add Comment
Please, Sign In to add comment