Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import matplotlib.pyplot as plt
- import numpy as np
- from sklearn import datasets, linear_model
- from sklearn.metrics import mean_squared_error
- diabetes = datasets.load_diabetes()
- diabetes_X = diabetes.data[:, np.newaxis, 2]
- diabetes_X_train = diabetes_X[:-30]
- diabetes_X_test = diabetes_X[-30:]
- model = linear_model
- diabetes_y_train = diabetes.target[:-30]
- diabetes_y_test = diabetes.target[-30:]
- model= linear_model.LinearRegression()
- model.fit(diabetes_X_train, diabetes_y_train)
- diabetes_y_predicted = model.predict(diabetes_X_test)
- print("Mean squared error is: ", mean_squared_error(diabetes_y_test, diabetes_y_predicted))
- print("Weights: ", model.coef_)
- print("Interecpt: ", model.intercept_)
- plt.scatter(diabetes_X_test, diabetes_y_test)
- plt.plot(diabetes_X_test, diabetes_y_predicted)
- plt.show()
Advertisement
Add Comment
Please, Sign In to add comment