Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- (venv) peter@gpu-server:~$ vllm serve /srv/models/awq/GLM-4.5-Air-AWQ --host 192.168.1.12 --port 8000 --api-key token-abc123 --tensor-parallel-size 8 --tool-call-parser glm45 --reasoning-parser glm45 --enable-auto-tool-choice --dtype half --enable-expert-parallel --tensor-parallel-size 2 --pipeline-parallel-size 1 --max-model-len 16384 --max-num-seqs 16 --kv-cache-dtype fp8 --calculate-kv-scales --gpu-memory-utilization 0.98
- INFO 07-29 15:58:06 [__init__.py:235] Automatically detected platform cuda.
- (APIServer pid=16464) INFO 07-29 15:58:09 [api_server.py:1774] vLLM API server version 0.10.1.dev164+g755fa8b65
- (APIServer pid=16464) INFO 07-29 15:58:09 [utils.py:326] non-default args: {'model_tag': '/srv/models/awq/GLM-4.5-Air-AWQ', 'host': '192.168.1.12', 'api_key': 'token-abc123', 'enable_auto_tool_choice': True, 'tool_call_parser': 'glm45', 'model': '/srv/models/awq/GLM-4.5-Air-AWQ', 'dtype': 'half', 'max_model_len': 16384, 'reasoning_parser': 'glm45', 'tensor_parallel_size': 2, 'enable_expert_parallel': True, 'gpu_memory_utilization': 0.98, 'kv_cache_dtype': 'fp8', 'calculate_kv_scales': True, 'max_num_seqs': 16}
- (APIServer pid=16464) INFO 07-29 15:58:15 [config.py:713] Resolved architecture: Glm4MoeForCausalLM
- (APIServer pid=16464) WARNING 07-29 15:58:15 [config.py:3544] Casting torch.bfloat16 to torch.float16.
- (APIServer pid=16464) INFO 07-29 15:58:15 [config.py:1724] Using max model len 16384
- (APIServer pid=16464) WARNING 07-29 15:58:15 [arg_utils.py:1694] --kv-cache-dtype is not supported by the V1 Engine. Falling back to V0.
- (APIServer pid=16464) INFO 07-29 15:58:15 [config.py:1853] Using fp8 data type to store kv cache. It reduces the GPU memory footprint and boosts the performance. Meanwhile, it may cause accuracy drop without a proper scaling factor.
- (APIServer pid=16464) INFO 07-29 15:58:16 [api_server.py:280] Started engine process with PID 16536
- INFO 07-29 15:58:20 [__init__.py:235] Automatically detected platform cuda.
- INFO 07-29 15:58:23 [llm_engine.py:225] Initializing a V0 LLM engine (v0.10.1.dev164+g755fa8b65) with config: model='/srv/models/awq/GLM-4.5-Air-AWQ', speculative_config=None, tokenizer='/srv/models/awq/GLM-4.5-Air-AWQ', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config={}, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=16384, download_dir=None, load_format=auto, tensor_parallel_size=2, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=compressed-tensors, enforce_eager=False, kv_cache_dtype=fp8, device_config=cuda, decoding_config=DecodingConfig(backend='auto', disable_fallback=False, disable_any_whitespace=False, disable_additional_properties=False, reasoning_backend='glm45'), observability_config=ObservabilityConfig(show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None), seed=0, served_model_name=/srv/models/awq/GLM-4.5-Air-AWQ, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=None, chunked_prefill_enabled=False, use_async_output_proc=True, pooler_config=None, compilation_config={"level":0,"debug_dump_path":"","cache_dir":"","backend":"","custom_ops":[],"splitting_ops":[],"use_inductor":true,"compile_sizes":[],"inductor_compile_config":{"enable_auto_functionalized_v2":false},"inductor_passes":{},"use_cudagraph":true,"cudagraph_num_of_warmups":0,"cudagraph_capture_sizes":[16,8,4,2,1],"cudagraph_copy_inputs":false,"full_cuda_graph":false,"max_capture_size":16,"local_cache_dir":null}, use_cached_outputs=True,
- WARNING 07-29 15:58:23 [multiproc_worker_utils.py:307] Reducing Torch parallelism from 8 threads to 1 to avoid unnecessary CPU contention. Set OMP_NUM_THREADS in the external environment to tune this value as needed.
- INFO 07-29 15:58:23 [cuda.py:331] Using FlashInfer backend.
- INFO 07-29 15:58:27 [__init__.py:235] Automatically detected platform cuda.
- (VllmWorkerProcess pid=16574) INFO 07-29 15:58:30 [multiproc_worker_utils.py:226] Worker ready; awaiting tasks
- (VllmWorkerProcess pid=16574) INFO 07-29 15:58:30 [cuda.py:331] Using FlashInfer backend.
- INFO 07-29 15:58:31 [__init__.py:1376] Found nccl from library libnccl.so.2
- (VllmWorkerProcess pid=16574) INFO 07-29 15:58:31 [__init__.py:1376] Found nccl from library libnccl.so.2
- INFO 07-29 15:58:31 [pynccl.py:70] vLLM is using nccl==2.26.2
- (VllmWorkerProcess pid=16574) INFO 07-29 15:58:31 [pynccl.py:70] vLLM is using nccl==2.26.2
- INFO 07-29 15:58:31 [custom_all_reduce_utils.py:246] reading GPU P2P access cache from /home/peter/.cache/vllm/gpu_p2p_access_cache_for_0,1,2.json
- (VllmWorkerProcess pid=16574) INFO 07-29 15:58:31 [custom_all_reduce_utils.py:246] reading GPU P2P access cache from /home/peter/.cache/vllm/gpu_p2p_access_cache_for_0,1,2.json
- (VllmWorkerProcess pid=16574) WARNING 07-29 15:58:31 [custom_all_reduce.py:147] Custom allreduce is disabled because your platform lacks GPU P2P capability or P2P test failed. To silence this warning, specify disable_custom_all_reduce=True explicitly.
- WARNING 07-29 15:58:31 [custom_all_reduce.py:147] Custom allreduce is disabled because your platform lacks GPU P2P capability or P2P test failed. To silence this warning, specify disable_custom_all_reduce=True explicitly.
- INFO 07-29 15:58:31 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[1], buffer_handle=(1, 4194304, 6, 'psm_35c37c5c'), local_subscribe_addr='ipc:///tmp/222a790a-c5d4-42d1-a650-6f8d42ef0f55', remote_subscribe_addr=None, remote_addr_ipv6=False)
- (VllmWorkerProcess pid=16574) INFO 07-29 15:58:31 [parallel_state.py:1102] rank 1 in world size 2 is assigned as DP rank 0, PP rank 0, TP rank 1, EP rank 1
- INFO 07-29 15:58:31 [parallel_state.py:1102] rank 0 in world size 2 is assigned as DP rank 0, PP rank 0, TP rank 0, EP rank 0
- INFO 07-29 15:58:31 [model_runner.py:1083] Starting to load model /srv/models/awq/GLM-4.5-Air-AWQ...
- (VllmWorkerProcess pid=16574) INFO 07-29 15:58:32 [model_runner.py:1083] Starting to load model /srv/models/awq/GLM-4.5-Air-AWQ...
- INFO 07-29 15:58:32 [compressed_tensors_wNa16.py:95] Using MarlinLinearKernel for CompressedTensorsWNA16
- (VllmWorkerProcess pid=16574) INFO 07-29 15:58:32 [compressed_tensors_wNa16.py:95] Using MarlinLinearKernel for CompressedTensorsWNA16
- INFO 07-29 15:58:32 [compressed_tensors_wNa16.py:95] Using ExllamaLinearKernel for CompressedTensorsWNA16
- (VllmWorkerProcess pid=16574) INFO 07-29 15:58:33 [compressed_tensors_wNa16.py:95] Using ExllamaLinearKernel for CompressedTensorsWNA16
- ERROR 07-29 15:58:33 [engine.py:456]
- Traceback (most recent call last):
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 444, in run_mp_engine
- engine = MQLLMEngine.from_vllm_config(
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 133, in from_vllm_config
- return cls(
- ^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 87, in __init__
- self.engine = LLMEngine(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/engine/llm_engine.py", line 260, in __init__
- self.model_executor = executor_class(vllm_config=vllm_config)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 263, in __init__
- super().__init__(*args, **kwargs)
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 53, in __init__
- self._init_executor()
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/executor/mp_distributed_executor.py", line 126, in _init_executor
- self._run_workers("load_model",
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/executor/mp_distributed_executor.py", line 186, in _run_workers
- driver_worker_output = run_method(self.driver_worker, sent_method,
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/utils/__init__.py", line 2987, in run_method
- return func(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/worker/worker.py", line 211, in load_model
- self.model_runner.load_model()
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/worker/model_runner.py", line 1086, in load_model
- self.model = get_model(vllm_config=self.vllm_config)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/model_loader/__init__.py", line 118, in get_model
- return loader.load_model(vllm_config=vllm_config,
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/model_loader/base_loader.py", line 44, in load_model
- model = initialize_model(vllm_config=vllm_config,
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/model_loader/utils.py", line 63, in initialize_model
- return model_class(vllm_config=vllm_config, prefix=prefix)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/models/glm4_moe.py", line 596, in __init__
- self.model = Glm4MoeModel(vllm_config=vllm_config,
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/compilation/decorators.py", line 183, in __init__
- old_init(self, vllm_config=vllm_config, prefix=prefix, **kwargs)
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/models/glm4_moe.py", line 397, in __init__
- self.start_layer, self.end_layer, self.layers = make_layers(
- ^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/models/utils.py", line 640, in make_layers
- maybe_offload_to_cpu(layer_fn(prefix=f"{prefix}.{idx}"))
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/models/glm4_moe.py", line 399, in <lambda>
- lambda prefix: Glm4MoeDecoderLayer(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/models/glm4_moe.py", line 343, in __init__
- self.mlp = Glm4MoeMLP(hidden_size=config.hidden_size,
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/models/glm4_moe.py", line 81, in __init__
- self.down_proj = RowParallelLinear(intermediate_size,
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/layers/linear.py", line 1297, in __init__
- self.quant_method.create_weights(
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py", line 659, in create_weights
- layer.scheme.create_weights(
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py", line 108, in create_weights
- assert input_size_per_partition % group_size == 0
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- AssertionError
- Process SpawnProcess-1:
- ERROR 07-29 15:58:33 [multiproc_worker_utils.py:121] Worker VllmWorkerProcess pid 16574 died, exit code: -15
- INFO 07-29 15:58:33 [multiproc_worker_utils.py:125] Killing local vLLM worker processes
- Traceback (most recent call last):
- File "/usr/lib/python3.12/multiprocessing/process.py", line 314, in _bootstrap
- self.run()
- File "/usr/lib/python3.12/multiprocessing/process.py", line 108, in run
- self._target(*self._args, **self._kwargs)
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 458, in run_mp_engine
- raise e from None
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 444, in run_mp_engine
- engine = MQLLMEngine.from_vllm_config(
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 133, in from_vllm_config
- return cls(
- ^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 87, in __init__
- self.engine = LLMEngine(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/engine/llm_engine.py", line 260, in __init__
- self.model_executor = executor_class(vllm_config=vllm_config)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 263, in __init__
- super().__init__(*args, **kwargs)
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 53, in __init__
- self._init_executor()
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/executor/mp_distributed_executor.py", line 126, in _init_executor
- self._run_workers("load_model",
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/executor/mp_distributed_executor.py", line 186, in _run_workers
- driver_worker_output = run_method(self.driver_worker, sent_method,
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/utils/__init__.py", line 2987, in run_method
- return func(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/worker/worker.py", line 211, in load_model
- self.model_runner.load_model()
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/worker/model_runner.py", line 1086, in load_model
- self.model = get_model(vllm_config=self.vllm_config)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/model_loader/__init__.py", line 118, in get_model
- return loader.load_model(vllm_config=vllm_config,
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/model_loader/base_loader.py", line 44, in load_model
- model = initialize_model(vllm_config=vllm_config,
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/model_loader/utils.py", line 63, in initialize_model
- return model_class(vllm_config=vllm_config, prefix=prefix)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/models/glm4_moe.py", line 596, in __init__
- self.model = Glm4MoeModel(vllm_config=vllm_config,
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/compilation/decorators.py", line 183, in __init__
- old_init(self, vllm_config=vllm_config, prefix=prefix, **kwargs)
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/models/glm4_moe.py", line 397, in __init__
- self.start_layer, self.end_layer, self.layers = make_layers(
- ^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/models/utils.py", line 640, in make_layers
- maybe_offload_to_cpu(layer_fn(prefix=f"{prefix}.{idx}"))
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/models/glm4_moe.py", line 399, in <lambda>
- lambda prefix: Glm4MoeDecoderLayer(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/models/glm4_moe.py", line 343, in __init__
- self.mlp = Glm4MoeMLP(hidden_size=config.hidden_size,
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/models/glm4_moe.py", line 81, in __init__
- self.down_proj = RowParallelLinear(intermediate_size,
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/layers/linear.py", line 1297, in __init__
- self.quant_method.create_weights(
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py", line 659, in create_weights
- layer.scheme.create_weights(
- File "/home/peter/venv/lib/python3.12/site-packages/vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py", line 108, in create_weights
- assert input_size_per_partition % group_size == 0
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- AssertionError
- [rank0]:[W729 15:58:34.680629485 ProcessGroupNCCL.cpp:1479] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
- (APIServer pid=16464) Traceback (most recent call last):
- (APIServer pid=16464) File "/home/peter/venv/bin/vllm", line 8, in <module>
- (APIServer pid=16464) sys.exit(main())
- (APIServer pid=16464) ^^^^^^
- (APIServer pid=16464) File "/home/peter/venv/lib/python3.12/site-packages/vllm/entrypoints/cli/main.py", line 54, in main
- (APIServer pid=16464) args.dispatch_function(args)
- (APIServer pid=16464) File "/home/peter/venv/lib/python3.12/site-packages/vllm/entrypoints/cli/serve.py", line 52, in cmd
- (APIServer pid=16464) uvloop.run(run_server(args))
- (APIServer pid=16464) File "/home/peter/venv/lib/python3.12/site-packages/uvloop/__init__.py", line 109, in run
- (APIServer pid=16464) return __asyncio.run(
- (APIServer pid=16464) ^^^^^^^^^^^^^^
- (APIServer pid=16464) File "/usr/lib/python3.12/asyncio/runners.py", line 194, in run
- (APIServer pid=16464) return runner.run(main)
- (APIServer pid=16464) ^^^^^^^^^^^^^^^^
- (APIServer pid=16464) File "/usr/lib/python3.12/asyncio/runners.py", line 118, in run
- (APIServer pid=16464) return self._loop.run_until_complete(task)
- (APIServer pid=16464) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- (APIServer pid=16464) File "uvloop/loop.pyx", line 1518, in uvloop.loop.Loop.run_until_complete
- (APIServer pid=16464) File "/home/peter/venv/lib/python3.12/site-packages/uvloop/__init__.py", line 61, in wrapper
- (APIServer pid=16464) return await main
- (APIServer pid=16464) ^^^^^^^^^^
- (APIServer pid=16464) File "/home/peter/venv/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 1817, in run_server
- (APIServer pid=16464) await run_server_worker(listen_address, sock, args, **uvicorn_kwargs)
- (APIServer pid=16464) File "/home/peter/venv/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 1837, in run_server_worker
- (APIServer pid=16464) async with build_async_engine_client(
- (APIServer pid=16464) File "/usr/lib/python3.12/contextlib.py", line 210, in __aenter__
- (APIServer pid=16464) return await anext(self.gen)
- (APIServer pid=16464) ^^^^^^^^^^^^^^^^^^^^^
- (APIServer pid=16464) File "/home/peter/venv/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 166, in build_async_engine_client
- (APIServer pid=16464) async with build_async_engine_client_from_engine_args(
- (APIServer pid=16464) File "/usr/lib/python3.12/contextlib.py", line 210, in __aenter__
- (APIServer pid=16464) return await anext(self.gen)
- (APIServer pid=16464) ^^^^^^^^^^^^^^^^^^^^^
- (APIServer pid=16464) File "/home/peter/venv/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 303, in build_async_engine_client_from_engine_args
- (APIServer pid=16464) raise RuntimeError(
- (APIServer pid=16464) RuntimeError: Engine process failed to start. See stack trace for the root cause.
- /usr/lib/python3.12/multiprocessing/resource_tracker.py:254: UserWarning: resource_tracker: There appear to be 1 leaked shared_memory objects to clean up at shutdown
- warnings.warn('resource_tracker: There appear to be %d '
Advertisement
Add Comment
Please, Sign In to add comment