Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- This formulation of the Möbius function:
- (*start*)
- (*Mathematica*)
- nn = 2^7 - 1
- Monitor[
- Table[
- +If[n == 2^0, 1, 0]
- - If[n < 2^1, 0, Sum[If[a == n, 1, 0], {a, 2, n/2^0}]]
- + If[n < 2^2, 0,
- Sum[Sum[If[a*b == n, 1, 0], {a, 2, n/2^1}], {b, 2, n/2^1}]]
- - If[n < 2^3, 0,
- Sum[Sum[Sum[If[a*b*c == n, 1, 0], {a, 2, n/2^2}], {b, 2,
- n/2^2}], {c, 2, n/2^2}]]
- + If[n < 2^4, 0,
- Sum[Sum[Sum[
- Sum[If[a*b*c*d == n, 1, 0], {a, 2, n/2^3}], {b, 2, n/2^3}], {c,
- 2, n/2^3}], {d, 2, n/2^3}]]
- - If[n < 2^5, 0,
- Sum[Sum[Sum[
- Sum[Sum[If[a*b*c*d*e == n, 1, 0], {a, 2, n/2^4}], {b, 2,
- n/2^4}], {c, 2, n/2^4}], {d, 2, n/2^4}], {e, 2, n/2^4}]]
- + If[n < 2^6, 0,
- Sum[Sum[Sum[
- Sum[Sum[Sum[If[a*b*c*d*e*f == n, 1, 0], {a, 2, n/2^5}], {b, 2,
- n/2^5}], {c, 2, n/2^5}], {d, 2, n/2^5}], {e, 2, n/2^5}], {f,
- 2, n/2^5}]]
- - If[n < 2^7, 0,
- Sum[Sum[Sum[
- Sum[Sum[Sum[
- Sum[If[a*b*c*d*e*f*g == n, 1, 0], {a, 2, n/2^6}], {b, 2,
- n/2^6}], {c, 2, n/2^6}], {d, 2, n/2^6}], {e, 2,
- n/2^6}], {f, 2, n/2^6}], {g, 2, n/2^6}]]
- + If[n < 2^8, 0,
- Sum[Sum[Sum[
- Sum[Sum[Sum[
- Sum[Sum[If[a*b*c*d*e*f*g*h == n, 1, 0], {a, 2, n/2^7}], {b,
- 2, n/2^7}], {c, 2, n/2^7}], {d, 2, n/2^7}], {e, 2,
- n/2^7}], {f, 2, n/2^7}], {g, 2, n/2^7}], {h, 2, n/2^7}]], {n,
- 1, nn}], n]
- Monitor[Table[MoebiusMu[n], {n, 1, nn}], n]
- %% - %
- Count[%, 0]
- (*end*)
- should be possible to combine with this Hurwitz zeta function:
- (*start*)
- Clear[a, b, c, sigma, n, s];
- nn = 200;
- a = 2;
- b = 3;
- c = 7;
- sigma = 1/2;
- s = sigma + c*I;
- Limit[Sum[1/k^s, {k, 1, a*n}] - Sum[1/k^s, {k, 1, b*n}], n -> 100]
- Clear[n];
- Show[ListPlot[
- Table[Re[Sum[1/k^s, {k, 1, a*n}] - Sum[1/k^s, {k, 1, b*n}]], {n, 1,
- nn}]],
- ListLinePlot[
- Table[Re[HurwitzZeta[s, b*n + 1] - HurwitzZeta[s, a*n + 1]], {n, 1,
- nn}], PlotStyle -> Red]]
- Chop[N[Table[
- Re[Sum[1/k^s, {k, 1, a*n}] - Sum[1/k^s, {k, 1, b*n}]], {n, 1,
- nn}] - Table[
- Re[HurwitzZeta[s, b*n + 1] - HurwitzZeta[s, a*n + 1]], {n, 1,
- nn}]]]
- "This transformation given by Mathematica should be possible to use \
- in the Möbius function sum:"
- Chop[N[Table[Re[Sum[1/k^s, {k, 1, a*n}]], {n, 1, nn}] -
- Table[Re[Zeta[s] - HurwitzZeta[s, a*n + 1]], {n, 1, nn}]]]
- (*end*)
- The main obstacle though is the missing exact formula for the
- Dirichlet Divisor problem, as well as higher dimensional variants
- thereof known as the Piltz divisor problem.
- (*start*)
- (* Feb 9 2022 fungerande Mathematica*)
- nn = 2^7 - 1
- m1 = Table[+If[n == 2^0,
- 1, \
- \
- 0], {n, 1, nn}]
- m2 = Table[-If[n < 2^1, 0,
- Sum[
- If[a == n, 1, 0], {a, 2,
- n/2^0}] ], {n, 1, nn}]
- m3 = Table[+If[n < 2^2, 0,
- Sum[Sum[If[a*b == n, 1, 0], {a, 2, n/2^1}], {b, 2,
- n/2^1}]], {n, 1, nn}]
- m4 = Table[-If[n < 2^3, 0,
- Sum[Sum[If[a*b == n, m3[[a]], 0], {a, 2, n/2^1}], {b, 2,
- n/2^1}]], {n, 1, nn}]
- m5 = Table[-If[n < 2^4, 0,
- Sum[Sum[If[a*b == n, m4[[a]], 0], {a, 2, n/2^1}], {b, 2,
- n/2^1}]], {n, 1, nn}]
- m6 = Table[-If[n < 2^5, 0,
- Sum[Sum[If[a*b == n, m5[[a]], 0], {a, 2, n/2^1}], {b, 2,
- n/2^1}]], {n, 1, nn}]
- m7 = Table[-If[n < 2^6, 0,
- Sum[Sum[If[a*b == n, m6[[a]], 0], {a, 2, n/2^1}], {b, 2,
- n/2^1}]], {n, 1, nn}]
- m8 = Table[-If[n < 2^7, 0,
- Sum[Sum[If[a*b == n, m7[[a]], 0], {a, 2, n/2^1}], {b, 2,
- n/2^1}]], {n, 1, nn}]
- m9 = Table[-If[n < 2^8, 0,
- Sum[Sum[If[a*b == n, m8[[a]], 0], {a, 2, n/2^1}], {b, 2,
- n/2^1}]], {n, 1, nn}]
- Accumulate[m1 + m2 + m3 + m4 + m5 + m6 + m7 + m8 + m9]
- Monitor[Accumulate[Table[MoebiusMu[n], {n, 1, nn}]], n]
- %% - %
- Count[%, 0]
- M1 = Table[
- Sum[If[Mod[n, k] == 0, m1[[n/k]], 0], {k, 1, nn}], {n, 1, nn}]
- M2 = Table[
- Sum[If[Mod[n, k] == 0, m2[[n/k]], 0], {k, 1, nn}], {n, 1, nn}]
- M3 = Table[
- Sum[If[Mod[n, k] == 0, m3[[n/k]], 0], {k, 1, nn}], {n, 1, nn}]
- M4 = Table[
- Sum[If[Mod[n, k] == 0, m4[[n/k]], 0], {k, 1, nn}], {n, 1, nn}]
- M5 = Table[
- Sum[If[Mod[n, k] == 0, m5[[n/k]], 0], {k, 1, nn}], {n, 1, nn}]
- M6 = Table[
- Sum[If[Mod[n, k] == 0, m6[[n/k]], 0], {k, 1, nn}], {n, 1, nn}]
- M7 = Table[
- Sum[If[Mod[n, k] == 0, m7[[n/k]], 0], {k, 1, nn}], {n, 1, nn}]
- M8 = Table[
- Sum[If[Mod[n, k] == 0, m8[[n/k]], 0], {k, 1, nn}], {n, 1, nn}]
- M9 = Table[
- Sum[If[Mod[n, k] == 0, m9[[n/k]], 0], {k, 1, nn}], {n, 1, nn}]
- M1 + M2 + M3 + M4 + M5 + M6 + M7 + M8 + M9
- Accumulate[%]
- (*end*)
- (*start better*)
- (*Feb 9 2022 fungerande Mathematica*)
- nn = 2^7 - 1
- "1"
- m1 = Table[+If[
- n == 2^0, 1,
- 0] \
- , {n, 1, nn}]
- "2"
- m2 = Table[-If[n < 2^1, 0,
- Sum[If[ a == n, 1, 0], {a, 2,
- n/2^0}] ] , {n, 1, nn}]
- "3"
- m3 = Table[-If[n < 2^2, 0,
- Sum[Sum[If[a*b == n, m2[[a]] , 0], {a, 2, n/2^1}], {b, 2,
- n/2^1}]], {n, 1, nn}]
- "4"
- m4 = Table[-If[n < 2^3, 0,
- Sum[Sum[If[a*b == n, m3[[a]], 0], {a, 2, n/2^1}], {b, 2,
- n/2^1}]], {n, 1, nn}]
- "5"
- m5 = Table[-If[n < 2^4, 0,
- Sum[Sum[If[a*b == n, m4[[a]], 0], {a, 2, n/2^1}], {b, 2,
- n/2^1}]], {n, 1, nn}]
- "6"
- m6 = Table[-If[n < 2^5, 0,
- Sum[Sum[If[a*b == n, m5[[a]], 0], {a, 2, n/2^1}], {b, 2,
- n/2^1}]], {n, 1, nn}]
- "7"
- m7 = Table[-If[n < 2^6, 0,
- Sum[Sum[If[a*b == n, m6[[a]], 0], {a, 2, n/2^1}], {b, 2,
- n/2^1}]], {n, 1, nn}]
- "8"
- m8 = Table[-If[n < 2^7, 0,
- Sum[Sum[If[a*b == n, m7[[a]], 0], {a, 2, n/2^1}], {b, 2,
- n/2^1}]], {n, 1, nn}]
- "9"
- m9 = Table[-If[n < 2^8, 0,
- Sum[Sum[If[a*b == n, m8[[a]], 0], {a, 2, n/2^1}], {b, 2,
- n/2^1}]], {n, 1, nn}]
- Accumulate[m1 + m2 + m3 + m4 + m5 + m6 + m7 + m8 + m9]
- Monitor[Accumulate[Table[MoebiusMu[n], {n, 1, nn}]], n]
- %% - %
- (*end better*)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement