Guest User

Exam.heat_of_vaporization

a guest
Jun 7th, 2021
22
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 5.29 KB | None | 0 0
  1.  
  2.  
  3. % ======== Initial values that may be altered ======
  4. \newcommand{\substance}{gøysteinium\xspace}
  5. \setfpvar{stepsTemp}{8} % Number of steps on the y axis
  6. \setfpvar{maxTemp}{21*\fv{stepsTemp}} % Max temperature
  7. \setfpvar{stepsTime}{8} % Number of steps on the x axis
  8. \setfpvar{maxTime}{8} % Max time
  9. \setfpvar{substanceAmountKg}{2*\randomint{2}{5}-1}
  10. \setfpvar{power}{123*\randomint{1}{5}}
  11. %
  12. % ======== Now we do the temperature calculations ======
  13. \setfpvar{scaleTemp}{\fv{maxTemp}/\fv{stepsTemp}}
  14. \setfpvar{secondTemp}{1*\fv{scaleTemp}}
  15. %
  16. % The following lines finds the values for temperature randomization
  17. \setfpvar{lowrangeTempL}{round(\fv{stepsTemp}*0.2)}
  18. \setfpvar{highrangeTempH}{round(\fv{stepsTemp}*0.8)}
  19. \setfpvar{lowrangeTempH}{\fv{lowrangeTempL}+1}
  20. \setfpvar{highrangeTempL}{\fv{highrangeTempH}-1}
  21. \fpcompare{\fv{lowrangeTempL}>1}{ }{
  22. \setfpvar{lowrangeTempL}{0}
  23. \setfpvar{highrangeTempH}{\fv{stepsTemp}}
  24. }
  25. % Randomizes the melting point and vaporation point
  26. \setfpvar{constVC}{\randomint{\fv{highrangeTempH}}{\fv{stepsTemp}}}
  27. \setfpvar{constFC}{\randomint{\fv{lowrangeTempH}}{\fv{highrangeTempL}}}
  28. \setfpvar{constIT}{\randomint{0}{\fv{lowrangeTempL}}}
  29. %
  30. \setfpvar{heat_of_vaporization_C}{\fv{scaleTemp}*\fv{constVC}} % Scales up the melting point to match initial values
  31. \setfpvar{heat_of_fusion_C}{\fv{scaleTemp}*\fv{constFC}}
  32. \setfpvar{initial_temp}{\fv{scaleTemp}*\fv{constIT}}
  33. %
  34. % ======== Now we do the time calculations ======
  35. \setfpvar{maxTimeSec}{60*\fv{maxTime}}
  36. \setfpvar{scaleTime}{\fv{maxTime}/\fv{stepsTime}}
  37. \setfpvar{secondTime}{1*\fv{scaleTime}}
  38. %
  39. % The following lines find the indicies for time randomization
  40. \setfpvar{lowrangeTimeL}{round(\fv{stepsTime}*0.2)}
  41. \setfpvar{highrangeTimeH}{round(\fv{stepsTime}*0.8)}
  42. \setfpvar{lowrangeTimeH}{\fv{lowrangeTimeL}+1}
  43. \setfpvar{highrangeTimeL}{\fv{highrangeTimeH}-1}
  44. \fpcompare{\fv{lowrangeTimeL}>1}{ }{
  45. \setfpvar{lowrangeTimeL}{0}
  46. \setfpvar{highrangeTimeH}{\fv{stepsTime}}
  47. }
  48. \setfpvar{heat_of_vaporization_t}{\fv{maxTime}} % Uncomment the line below to vary heat of vaporization time
  49. \setfpvar{time_2_vaporization}{\randomint{\fv{highrangeTimeL}}{\fv{maxTime}-1}}
  50. \setfpvar{time_2_vaporization_sec}{60*\fv{time_2_vaporization}}
  51. \setfpvar{heat_of_fusion_t}{\randomint{1}{\fv{lowrangeTimeL}}}
  52. \setfpvar{heat_of_fusion_sec}{60*\fv{heat_of_fusion_t}}
  53.  
  54. \begin{problem}{\mylist{5, 5}}
  55. Grafen viser hvordan temperaturen forandrer seg i
  56. $\unitfv[3]{substanceAmountKg}{\kg}$ av stoffet \substance når det varmes opp
  57. fra fast form. Effekten som tilføres er \SI{\fv{power}}{\W}.
  58.  
  59. \begin{minipage}[t]{0.35\textwidth}
  60. \begin{subproblem}
  61. \label{subproblem:goysteiniumA}
  62. Hvor mye energi skal til for å smelte $\unitfv{substanceAmountKg}{\kg}$ \substance?
  63. \end{subproblem}
  64. %
  65. \begin{subproblem}
  66. \label{subproblem:goysteiniumB}
  67. Hva er den spesifikke smeltevarmen for \substance?
  68. \end{subproblem}
  69. \end{minipage}
  70. %
  71. \begin{minipage}[t]{0.65\textwidth}
  72. \vspace{0pt}
  73. \begin{center}
  74. \begin{tikzpicture}
  75. \begin{axis}[
  76. grid=major,
  77. grid style={dashed,gray!30},
  78. axis lines=middle,
  79. enlargelimits=false,
  80. inner axis line style={-stealth},
  81. % unit vector ratio*=1 1 1,
  82. % axis line~style={draw=none},
  83. % tick style={draw=none}, % Remove axis line just for this plot
  84. width=0.75\textwidth,
  85. ytick={0,\fv{secondTemp},...,\fv{maxTemp}},
  86. xtick={0,\fv{secondTime},...,\fv{maxTime}},
  87. ylabel={\si{\celsius}},
  88. xlabel={t/\si{min}},
  89. ymin=-0.8,ymax=\fv{maxTemp},
  90. xmin=-0.8,xmax=\fv{maxTime},
  91. % xticklabel style={anchor=north~east},
  92. ]
  93. \addplot[ultra thick, UiT-blue] coordinates { (0,\fv{initial_temp})
  94. (\fv{heat_of_fusion_t}, \fv{heat_of_fusion_C})
  95. (\fv{heat_of_fusion_t}, \fv{heat_of_fusion_C})
  96. (\fv{time_2_vaporization}, \fv{heat_of_fusion_C})
  97. (\fv{time_2_vaporization}, \fv{heat_of_fusion_C})
  98. (\fv{heat_of_vaporization_t},\fv{heat_of_vaporization_C}) };
  99. \end{axis}
  100. \end{tikzpicture}
  101. \end{center}
  102. \end{minipage}
  103. \end{problem}
  104.  
  105. \begin{answer}
  106. \setfpvar{energy}{
  107. \fv{power}*\fv{heat_of_fusion_t}*60/1000
  108. }
  109. \setfpvar{enthalpyOfVaporization}{
  110. \fv{energy}/\fv{substanceAmountKg}
  111. }
  112.  
  113. \emph{\Cref{subproblem:goysteiniumA}} Effekten $P$ er energi (eller arbeid) per tid.
  114. %
  115. \begin{equation*}
  116. P = \frac{E}{t}
  117. \end{equation*}
  118. %
  119. Den tilførte energien er altså
  120. %
  121. \begin{equation*}
  122. E = Pt
  123. = \SI{\fv{power}}{\W} \cdot \unitfv{heat_of_fusion_t}{min}
  124. = \SI{\fv{power}}{\W} \cdot \unitfv{heat_of_fusion_sec}{\s}
  125. % \approx
  126. \approxfrac[3]{\fv{power}*\fv{heat_of_fusion_t}*60}{1000}
  127. \unitfv[3]{energy}{\kilo\joule}
  128. \end{equation*}
  129. %
  130. \emph{\Cref{subproblem:goysteiniumB}}
  131. Smeltevarmen er varmen $Q$ som trengs for å smelte \SI{1}{\kg}
  132. %
  133. \begin{align}
  134. l_s = \frac{E}{m}
  135. \approxfrac[5]{\fv{power}*\fv{heat_of_fusion_t}*60}{1000}
  136. \frac{\unitfv[5]{energy}{\kilo\joule}}{\SI{\fv{substanceAmountKg}}{\kg}}
  137. \approxfrac[3]{\fv{energy}}{\fv{substanceAmountKg}}
  138. \unitfv[3]{enthalpyOfVaporization}{\kilo\joule\per\kg}
  139. \end{align}
  140. %
  141. Den spesifikke smeltevarmen for \substance blir omtrent
  142. \unitfv[3]{enthalpyOfVaporization}{\kilo\joule\per\kg}
  143. som var det som skulle vises.
  144. \end{answer}
Advertisement
Add Comment
Please, Sign In to add comment