Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- % ======== Initial values that may be altered ======
- \newcommand{\substance}{gøysteinium\xspace}
- \setfpvar{stepsTemp}{8} % Number of steps on the y axis
- \setfpvar{maxTemp}{21*\fv{stepsTemp}} % Max temperature
- \setfpvar{stepsTime}{8} % Number of steps on the x axis
- \setfpvar{maxTime}{8} % Max time
- \setfpvar{substanceAmountKg}{2*\randomint{2}{5}-1}
- \setfpvar{power}{123*\randomint{1}{5}}
- %
- % ======== Now we do the temperature calculations ======
- \setfpvar{scaleTemp}{\fv{maxTemp}/\fv{stepsTemp}}
- \setfpvar{secondTemp}{1*\fv{scaleTemp}}
- %
- % The following lines finds the values for temperature randomization
- \setfpvar{lowrangeTempL}{round(\fv{stepsTemp}*0.2)}
- \setfpvar{highrangeTempH}{round(\fv{stepsTemp}*0.8)}
- \setfpvar{lowrangeTempH}{\fv{lowrangeTempL}+1}
- \setfpvar{highrangeTempL}{\fv{highrangeTempH}-1}
- \fpcompare{\fv{lowrangeTempL}>1}{ }{
- \setfpvar{lowrangeTempL}{0}
- \setfpvar{highrangeTempH}{\fv{stepsTemp}}
- }
- % Randomizes the melting point and vaporation point
- \setfpvar{constVC}{\randomint{\fv{highrangeTempH}}{\fv{stepsTemp}}}
- \setfpvar{constFC}{\randomint{\fv{lowrangeTempH}}{\fv{highrangeTempL}}}
- \setfpvar{constIT}{\randomint{0}{\fv{lowrangeTempL}}}
- %
- \setfpvar{heat_of_vaporization_C}{\fv{scaleTemp}*\fv{constVC}} % Scales up the melting point to match initial values
- \setfpvar{heat_of_fusion_C}{\fv{scaleTemp}*\fv{constFC}}
- \setfpvar{initial_temp}{\fv{scaleTemp}*\fv{constIT}}
- %
- % ======== Now we do the time calculations ======
- \setfpvar{maxTimeSec}{60*\fv{maxTime}}
- \setfpvar{scaleTime}{\fv{maxTime}/\fv{stepsTime}}
- \setfpvar{secondTime}{1*\fv{scaleTime}}
- %
- % The following lines find the indicies for time randomization
- \setfpvar{lowrangeTimeL}{round(\fv{stepsTime}*0.2)}
- \setfpvar{highrangeTimeH}{round(\fv{stepsTime}*0.8)}
- \setfpvar{lowrangeTimeH}{\fv{lowrangeTimeL}+1}
- \setfpvar{highrangeTimeL}{\fv{highrangeTimeH}-1}
- \fpcompare{\fv{lowrangeTimeL}>1}{ }{
- \setfpvar{lowrangeTimeL}{0}
- \setfpvar{highrangeTimeH}{\fv{stepsTime}}
- }
- \setfpvar{heat_of_vaporization_t}{\fv{maxTime}} % Uncomment the line below to vary heat of vaporization time
- \setfpvar{time_2_vaporization}{\randomint{\fv{highrangeTimeL}}{\fv{maxTime}-1}}
- \setfpvar{time_2_vaporization_sec}{60*\fv{time_2_vaporization}}
- \setfpvar{heat_of_fusion_t}{\randomint{1}{\fv{lowrangeTimeL}}}
- \setfpvar{heat_of_fusion_sec}{60*\fv{heat_of_fusion_t}}
- \begin{problem}{\mylist{5, 5}}
- Grafen viser hvordan temperaturen forandrer seg i
- $\unitfv[3]{substanceAmountKg}{\kg}$ av stoffet \substance når det varmes opp
- fra fast form. Effekten som tilføres er \SI{\fv{power}}{\W}.
- \begin{minipage}[t]{0.35\textwidth}
- \begin{subproblem}
- \label{subproblem:goysteiniumA}
- Hvor mye energi skal til for å smelte $\unitfv{substanceAmountKg}{\kg}$ \substance?
- \end{subproblem}
- %
- \begin{subproblem}
- \label{subproblem:goysteiniumB}
- Hva er den spesifikke smeltevarmen for \substance?
- \end{subproblem}
- \end{minipage}
- %
- \begin{minipage}[t]{0.65\textwidth}
- \vspace{0pt}
- \begin{center}
- \begin{tikzpicture}
- \begin{axis}[
- grid=major,
- grid style={dashed,gray!30},
- axis lines=middle,
- enlargelimits=false,
- inner axis line style={-stealth},
- % unit vector ratio*=1 1 1,
- % axis line~style={draw=none},
- % tick style={draw=none}, % Remove axis line just for this plot
- width=0.75\textwidth,
- ytick={0,\fv{secondTemp},...,\fv{maxTemp}},
- xtick={0,\fv{secondTime},...,\fv{maxTime}},
- ylabel={\si{\celsius}},
- xlabel={t/\si{min}},
- ymin=-0.8,ymax=\fv{maxTemp},
- xmin=-0.8,xmax=\fv{maxTime},
- % xticklabel style={anchor=north~east},
- ]
- \addplot[ultra thick, UiT-blue] coordinates { (0,\fv{initial_temp})
- (\fv{heat_of_fusion_t}, \fv{heat_of_fusion_C})
- (\fv{heat_of_fusion_t}, \fv{heat_of_fusion_C})
- (\fv{time_2_vaporization}, \fv{heat_of_fusion_C})
- (\fv{time_2_vaporization}, \fv{heat_of_fusion_C})
- (\fv{heat_of_vaporization_t},\fv{heat_of_vaporization_C}) };
- \end{axis}
- \end{tikzpicture}
- \end{center}
- \end{minipage}
- \end{problem}
- \begin{answer}
- \setfpvar{energy}{
- \fv{power}*\fv{heat_of_fusion_t}*60/1000
- }
- \setfpvar{enthalpyOfVaporization}{
- \fv{energy}/\fv{substanceAmountKg}
- }
- \emph{\Cref{subproblem:goysteiniumA}} Effekten $P$ er energi (eller arbeid) per tid.
- %
- \begin{equation*}
- P = \frac{E}{t}
- \end{equation*}
- %
- Den tilførte energien er altså
- %
- \begin{equation*}
- E = Pt
- = \SI{\fv{power}}{\W} \cdot \unitfv{heat_of_fusion_t}{min}
- = \SI{\fv{power}}{\W} \cdot \unitfv{heat_of_fusion_sec}{\s}
- % \approx
- \approxfrac[3]{\fv{power}*\fv{heat_of_fusion_t}*60}{1000}
- \unitfv[3]{energy}{\kilo\joule}
- \end{equation*}
- %
- \emph{\Cref{subproblem:goysteiniumB}}
- Smeltevarmen er varmen $Q$ som trengs for å smelte \SI{1}{\kg}
- %
- \begin{align}
- l_s = \frac{E}{m}
- \approxfrac[5]{\fv{power}*\fv{heat_of_fusion_t}*60}{1000}
- \frac{\unitfv[5]{energy}{\kilo\joule}}{\SI{\fv{substanceAmountKg}}{\kg}}
- \approxfrac[3]{\fv{energy}}{\fv{substanceAmountKg}}
- \unitfv[3]{enthalpyOfVaporization}{\kilo\joule\per\kg}
- \end{align}
- %
- Den spesifikke smeltevarmen for \substance blir omtrent
- \unitfv[3]{enthalpyOfVaporization}{\kilo\joule\per\kg}
- som var det som skulle vises.
- \end{answer}
Advertisement
Add Comment
Please, Sign In to add comment