Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- MatrixForm[Table[Table[If[n == k, 1, 0], {k, 1, 12}], {n, 1, 12}]]
- MatrixForm[Table[Table[If[k == 1, 1, 0], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] = If[k == 1, t[n, 2] + 1, If[n >= k, t[n - k + 1, 1], 0], 0]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[k == 1, t[n, 2] + t[n, 3], If[n >= k, t[n - k + 1, 1], 0], 0]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[k == 1, Sum[t[n, i], {i, 2, n}], If[n >= k, t[n - k + 1, 1], 0],
- 0]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[k == 1, 2*t[n, 2]*If[n > 2, t[n, 3], 1],
- If[n >= k, t[n - k + 1, 1], 0], 0]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Flatten[Table[Table[t[n, k], {k, 1, 1}], {n, 1, 12}]]
- Clear[t]
- t[n_, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[n >= k,
- Sum[t[n - i, k - 1], {i, 1, n - 1}] -
- Sum[t[n - i, k], {i, 1, n - 1}], 0]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- (*TableForm[Table[Table[If[n>=k,Graphics[Disk[]],""],{k,1,12}],{n,1,\
- 12}]]*)
- (*MatrixForm[Table[Table[If[Mod[n,k]==0,Graphics[Disk[]],""],{k,1,12}]\
- ,{n,1,12}]]*)
- MatrixForm[
- Table[Table[If[Mod[n, k] == 0, 1, 0], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[n_, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[n >= k,
- Sum[t[n - i, k - 1], {i, 1, k - 1}] -
- Sum[t[n - i, k], {i, 1, k - 1}], 0]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[n_, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[n >= k,
- Sum[t[n - i, k - 1], {i, 1, k - 1}] -
- Sum[t[n - i, k], {i, 1, k - 1}], 0]
- MatrixForm[Inverse[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[k == 1, -Sum[t[n, k + i], {i, 1, n - 1}],
- If[Mod[n, k] == 0, t[n/k, 1], 0], 0]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[k == 1, n/Product[t[n, k + i], {i, 1, n - 1}],
- If[Mod[n, k] == 0, t[n/k, 1], 1], 1]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[k == 1, n - Sum[t[n, k + i], {i, 1, n - 1}],
- If[Mod[n, k] == 0, t[n/k, 1], 0], 0]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[k == 1, Sum[t[n, k + i], {i, 1, n - 1}],
- If[Mod[n, k] == 0, t[n/k, 1], 0], 0]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[k == 1, 1/n - Sum[t[n, k + i], {i, 1, n - 1}],
- If[Mod[n, k] == 0, t[n/k, 1], 0], 0]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[k == 1, Sum[t[n, k + i], {i, 1, 2 - 1}],
- If[Mod[n, k] == 0, t[n/k, 1], 0], 0]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[k == 1, 2*Sum[t[n, k + i], {i, 1, 2 - 1}],
- If[Mod[n, k] == 0, t[n/k, 1], 0], 0]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[k == 1, 2*Sum[t[n, k + i], {i, 1, 2 - 1}],
- If[Mod[n, k] == 0, t[n/k, 1], 0], 0]
- MatrixForm[Inverse[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] = If[k == 1, 3*t[n, 3], If[Mod[n, k] == 0, t[n/k, 1], 0], 0]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] = If[k == 1, 3*t[n, 3], If[Mod[n, k] == 0, t[n/k, 1], 0], 0]
- MatrixForm[Inverse[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] = If[k == 1, 2*t[n, 2], If[Mod[n, k] == 0, t[n/k, 1], 0], 0]
- MatrixForm[Inverse[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[k == 1, Sum[t[n, k + i], {i, 1, n - 1}],
- If[n >= k, t[n - k + 1, 1], 0], 0]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[k == 1, -Sum[t[n, k + i], {i, 1, n - 1}],
- If[n >= k, t[n - k + 1, 1], 0], 0]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] = If[k == 1, t[n, 2], If[n >= k, t[n - k + 1, 1], 0], 0]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] = If[k == 1, t[n, 3], If[n >= k, t[n - k + 1, 1], 0], 0]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[n_, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[n >= k,
- Sum[t[n - i, k - 1], {i, 1, n - 1}] -
- Sum[t[n - i, k], {i, 1, n - 1}], 0]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- MatrixForm[Table[Table[Mod[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[n_, 1] = 1;
- t[1, k_] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[n >= k,
- Sum[t[n - i, k - 1], {i, 1, k - 1}] -
- Sum[t[n - i, k], {i, 1, k - 1}],
- Sum[t[k - i, n - 1], {i, 1, n - 1}] -
- Sum[t[k - i, n], {i, 1, n - 1}]]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[n_, 1] = 1;
- t[1, k_] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[n >= k, -Sum[t[n - i, k], {i, 1, k - 1}], -Sum[
- t[k - i, n], {i, 1, n - 1}]]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[n_, 1] = 0;
- t[1, k_] = 1;
- t[n_, k_] := t[n, k] = If[n >= k, -Sum[t[n - i, k], {i, 1, k - 1}], 1]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[n_, 1] = 1;
- t[1, k_] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[n >= k, -Sum[t[n - i, k], {i, 1, k - 1}], -Sum[
- t[k - i, n], {i, 1, n - 1}]]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- MatrixForm[Table[Sum[If[n >= k, t[n, k], 0], {k, 1, 12}], {n, 1, 12}]]
- MatrixForm[Table[Table[n*k, {k, 1, 12}], {n, 1, 12}]]
- MatrixForm[
- Table[Table[If[Mod[n, k] == 0, n, 0], {k, 1, 12}], {n, 1, 12}]]
- Clear[t]
- t[n_, 1] = 1;
- t[1, k_] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[n >= k, -Sum[t[n - i, k], {i, 1, k - 1}], -Sum[
- t[k - i, n], {i, 1, n - 1}]]
- MatrixForm[Table[Table[t[n, k]/(n*k), {k, 1, 12}], {n, 1, 12}]]
- MatrixForm[
- Table[Sum[If[n >= k, t[n, k]/(n*k), 0], {k, 1, 12}]*n, {n, 1, 12}]]
- ListPlot[Table[
- Sum[If[n >= k, t[n, k]/(n*k), 0], {k, 1, 12}]*n, {n, 1, 12}],
- Filling -> Axis]
- Clear[t]
- t[n_, 1] = 1;
- t[1, k_] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[n >= k, -Sum[t[n - i, k], {i, 1, k - 1}], -Sum[
- t[k - i, n], {i, 1, n - 1}]]
- ListPlot[Table[
- Sum[If[n >= k, t[n, k]/(n*k), 0], {k, 1, 12}]*n, {n, 1, 12}] -
- Table[Sum[If[n >= k, t[n, k], 0], {k, 1, 12}], {n, 1, 12}],
- Filling -> Axis]
- Clear[t]
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[k == 1, n/Product[t[n, k + i], {i, 1, n - 1}],
- If[Mod[n, k] == 0, t[n/k, 1], 1], 1]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- MatrixForm[{Table[t[n, 1], {n, 1, 12}]}]
- Clear[t]
- t[1, 1] = Log[1];
- t[n_, k_] :=
- t[n, k] =
- If[k == 1, Log[n] - Sum[t[n, k + i], {i, 1, n - 1}],
- If[Mod[n, k] == 0, t[n/k, 1], Log[1]], Log[1]]
- MatrixForm[Table[Table[FullSimplify[t[n, k]], {k, 1, 12}], {n, 1, 12}]]
- MatrixForm[{Table[FullSimplify[t[n, 1]], {n, 1, 12}]}]
- MatrixForm[
- Table[Table[
- If[Mod[n, k] == 0, n/k*MoebiusMu[n/k], 0], {k, 1, 12}], {n, 1,
- 12}]]
- Clear[t]
- t[n_, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[n >= k,
- Sum[t[n - i, k - 1], {i, 1, k - 1}] -
- 0*Sum[t[n - i, k], {i, 1, k - 1}], 0]
- MatrixForm[Table[Table[t[n, k], {k, 1, 12}], {n, 1, 12}]]
- (*Recursive formula for the DivisorSigma function:*)(*Mathematica*)(*start*)
- Clear[t, s, n, k, z];
- z = 1;
- nn = 12;
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[k == 1, 1 - Sum[t[n, k + i]/(i + 1)^(s - 1), {i, 1, n - 1}],
- If[Mod[n, k] == 0, MoebiusMu[k]*t[n/k, 1], 0], 0]; MatrixForm[
- Table[Table[Limit[t[n, k], s -> z], {k, 1, nn}], {n, 1, nn}]] (*end*)
- (*Recursive formula for the DivisorSigma function Lagarias Riemann hypothesis:*)
- (*Mathematica*)
- (*start*)
- Clear[t, s, n, k, z];
- z = 1;
- nn = 142;
- t[1, 1] = 1;
- t[n_, k_] :=
- t[n, k] =
- If[k == 1, n - Sum[t[n, k + i]/(i + 1)^(s - 1), {i, 1, n - 1}],
- If[Mod[n, k] == 0, MoebiusMu[k]*t[n/k, 1], 0], 0]; MatrixForm[
- A = Table[Table[Limit[t[n, k], s -> z], {k, 1, nn}], {n, 1, nn}]];
- A[[All, 1]]
- (*https://oeis.org/A000203*)
Add Comment
Please, Sign In to add comment