Advertisement
MatsGranvik

Prime gaps asymptotic classification

Aug 24th, 2018
333
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 1.93 KB | None | 0 0
  1. (*start*)
  2. (*Mathematica*)
  3. Clear[nn, h, n, k, m, d, dd];
  4. nn = 20;
  5. h = 2;(*twin primes*)N[
  6. Table[Sum[
  7. Sum[If[Mod[n, k] == 0,
  8. Sum[If[Mod[GCD[n/k, m], d] == 0, MoebiusMu[d]*(d), 0], {d, 1,
  9. GCD[n/k, m]}]*
  10. Sum[If[Mod[GCD[k, m + h], c] == 0, MoebiusMu[c]*(c), 0], {c, 1,
  11. GCD[k, m + h]}], 0], {k, 1, n}]/n, {n, 1,
  12. nn - h + 100}], {m, 1, nn - h}]];
  13. N[Round[%, 10^-1]]
  14. Table[N[If[n == 1, Log[nn - h + 100] + EulerGamma, MangoldtLambda[n]]*
  15. MangoldtLambda[n + h]], {n, 1, nn - h}];
  16. N[Round[%, 10^-1]]
  17.  
  18.  
  19. Clear[nn, h, n, k, m];
  20. nn = 17;
  21. h = 2;(*twin primes*)M4 =
  22. Table[Sum[
  23. Sum[If[Mod[n, k] == 0,
  24. Sum[If[Mod[GCD[n/k, m], d] == 0, MoebiusMu[d]*(d), 0], {d, 1,
  25. GCD[n/k, m]}]*
  26. Sum[If[Mod[GCD[k, m + h], c] == 0, MoebiusMu[c]*(c), 0], {c, 1,
  27. GCD[k, m + h]}], 0], {k, 1, n}], {m, 1, n}], {n, 1, nn - h}]
  28.  
  29. Clear[nn, h, n, k, m];
  30. nn = 17 + 2;
  31. h = 4;(*Cousin primes*)M4 =
  32. Table[Sum[
  33. Sum[If[Mod[n, k] == 0,
  34. Sum[If[Mod[GCD[n/k, m], d] == 0, MoebiusMu[d]*(d), 0], {d, 1,
  35. GCD[n/k, m]}]*
  36. Sum[If[Mod[GCD[k, m + h], c] == 0, MoebiusMu[c]*(c), 0], {c, 1,
  37. GCD[k, m + h]}], 0], {k, 1, n}], {m, 1, n}], {n, 1, nn - h}]
  38. (*end*)
  39.  
  40. (*start*)
  41. (*8 Feb 2019*)
  42. TableForm[Table[
  43. h = 2^hh;
  44. nn = 82;
  45. TableForm[CC = Table[
  46. TableForm[
  47. A = Table[
  48. Table[If[Mod[n, k] == 0, MoebiusMu[k]/(k)^(0 - 1), 0], {k, 1,
  49. n}], {n, 1, nn}]];
  50. TableForm[
  51. B = Transpose[
  52. Table[Table[If[n >= k, A[[n, k]], 0], {k, 1, nn}], {n, 1,
  53. nn}]]];
  54. TableForm[
  55. AA = Table[
  56. Table[If[Mod[n, k] == 0, B[[n/k, m]], 0], {k, 1, nn}], {n, 1,
  57. nn}]];
  58. TableForm[
  59. BB = Table[
  60. Table[If[Mod[n, k] == 0, B[[n/k, m + h]], 0], {k, 1, nn}], {n,
  61. 1, nn}]];
  62. (AA.BB)[[All, 1]], {m, 1, nn - h}]];
  63. Table[Sum[CC[[n, k]], {n, 1, k}], {k, 1, nn - h}], {hh, 1, 6}]]
  64. (*end*)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement