daily pastebin goal
26%
SHARE
TWEET

Untitled

mattfarley Jul 29th, 2018 (edited) 103 Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. #!/bin/bash
  2.  
  3. #
  4. # Usage:
  5. #
  6. if [[ $# == 0 ]] ; then
  7.  
  8.     echo
  9.     echo
  10.     echo "Usage:   $(basename $0) <room> <action> option"
  11.     echo
  12.     echo "Example: $(basename $0) boys_room test clean|messy"
  13.     echo "         $(basename $0) boys_room train"
  14.     echo "         $(basename $0) boys_room score [image.jpg]"
  15.     echo
  16.     exit 0
  17.  
  18. fi
  19.  
  20. #
  21. # Model selection
  22. #
  23.  
  24. # InceptionV3
  25. # Most accurate, but also slowest
  26. MODEL_NAME=inceptionv3
  27. INPUT_HEIGHT=""
  28. INPUT_WIDTH=""
  29. TFHUB_MODULE=https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1
  30.  
  31. # 224px 100% MobileNetV2 = 1.102s
  32. # This model seems accurate and fast
  33. #MODEL_NAME=mobilenetv2_224_100
  34. #INPUT_HEIGHT="--input_height=224"
  35. #INPUT_WIDTH="--input_width=224"
  36. #TFHUB_MODULE=https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/feature_vector/1
  37.  
  38. # 96px 35% MobileNetV2
  39. # This model wasn't very accurate when I didn't have too much training data
  40. #MODEL_NAME=mobilenetv2_96_035
  41. #INPUT_HEIGHT="--input_height=96"
  42. #INPUT_WIDTH="--input_width=96"
  43. #TFHUB_MODULE=https://tfhub.dev/google/imagenet/mobilenet_v2_035_96/feature_vector/2
  44.  
  45. #
  46. # Config
  47. #
  48. ROOT=/b/tf
  49. cd $ROOT
  50. MODEL_ROOM=$1
  51. MODEL_ROOT=$ROOT/models/$MODEL_ROOM
  52. DATA_TEST=$ROOT/data_testing/$MODEL_ROOM
  53. DATA_TRAIN=$ROOT/data_training/$MODEL_ROOM
  54. MODEL=$MODEL_ROOT/$MODEL_NAME
  55.  
  56. #
  57. # Train a new model
  58. #
  59. if [[ $2 == "train" ]] ; then
  60.  
  61.     python retrain.py --image_dir $DATA_TRAIN --output_graph=$MODEL.pb --output_labels=$MODEL.txt --tfhub_module $TFHUB_MODULE
  62.     exit 0
  63.  
  64. fi
  65.  
  66. #
  67. # Test a URL or file
  68. #
  69. if [[ $2 == "score" ]] ; then
  70.  
  71.     # Determine if they specified a URL or a local image
  72.     #regex='(https?|ftp|file)://[-A-Za-z0-9\+&@#/%?=~_|!:,.;]*[-A-Za-z0-9\+&@#/%=~_|]'
  73.     #if [[ $3 =~ $regex ]]; then
  74.  
  75.     # If they didn't specify a path-to-url, download from webcam:
  76.     if [[ $# -eq 2 ]]; then
  77.  
  78.         #
  79.         # Specified a URL, get it to tmp
  80.         #
  81.         if [[ $1 == "boys_room" ]]; then
  82.             URL=http://192.168.1.21/snapshot.cgi
  83.         fi
  84.  
  85.         if [[ $1 == "kitchen" ]]; then
  86.             URL=http://192.168.1.23/snapshot.cgi
  87.         fi
  88.  
  89.         if [[ $1 == "upstairs" ]]; then
  90.             URL=http://192.168.1.25/snapshot.cgi
  91.         fi
  92.  
  93.         TMP_IMAGE=/tmp/how_clean_$MODEL_ROOM.jpg
  94.  
  95.         # Repeat in case camera failed with zero length / bad image
  96.         wget "$URL" -O $TMP_IMAGE > /dev/null 2>&1
  97.         FILESIZE=$(stat -c%s "$TMP_IMAGE")
  98.         if [ $FILESIZE -lt 50 ]; then
  99.             sleep 2
  100.             wget "$URL" -O $TMP_IMAGE > /dev/null 2>&1
  101.         fi
  102.         if [ $FILESIZE -lt 50 ]; then
  103.             sleep 2
  104.             wget "$URL" -O $TMP_IMAGE > /dev/null 2>&1
  105.         fi
  106.         if [ $FILESIZE -lt 50 ]; then
  107.             sleep 2
  108.             wget "$URL" -O $TMP_IMAGE > /dev/null 2>&1
  109.         fi
  110.         if [ $FILESIZE -lt 50 ]; then
  111.             sleep 2
  112.             wget "$URL" -O $TMP_IMAGE > /dev/null 2>&1
  113.         fi
  114.         if [ $FILESIZE -lt 50 ]; then
  115.             sleep 2
  116.             wget "$URL" -O $TMP_IMAGE > /dev/null 2>&1
  117.         fi
  118.  
  119.     else
  120.  
  121.         # User specified a path-to-image in arg #3
  122.         TMP_IMAGE=$3
  123.  
  124.     fi
  125.  
  126.     #
  127.     # This outputs how "clean" the room is on a scale of 1..100
  128.     #
  129.     { python label_image.py --graph=$MODEL.pb --labels=$MODEL.txt $INPUT_WIDTH $INPUT_HEIGHT --input_layer=Placeholder --output_layer=final_result --image=$TMP_IMAGE; } 2>&1 | grep "clean" | cut -d ' ' -f2 | awk '{printf "%.0f\n", $1*100}'
  130.  
  131.     exit 0
  132. fi
  133.  
  134. #
  135. # Loop through 12 images help back for testing:
  136. #
  137. if [[ $2 == "test" ]] ; then
  138.     for i in {1..12}
  139.         do
  140.             { time python label_image.py --graph=$MODEL.pb --labels=$MODEL.txt $INPUT_WIDTH $INPUT_HEIGHT --input_layer=Placeholder --output_layer=final_result --image=$DATA_TEST/$3/$i.jpg; } 2>&1 | grep "$3\|real"
  141.             echo ---
  142.         done
  143.     exit 0
  144. fi
RAW Paste Data
We use cookies for various purposes including analytics. By continuing to use Pastebin, you agree to our use of cookies as described in the Cookies Policy. OK, I Understand
 
Top