Advertisement
Guest User

nn

a guest
May 7th, 2020
200
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 1.06 KB | None | 0 0
  1. import pandas as pd
  2. import numpy as np
  3. import matplotlib.pyplot as plt
  4. from keras.models import Sequential
  5. from keras.layers import Dense
  6. from sklearn.model_selection import train_test_split
  7.  
  8. nn_0_data = pd.read_csv('nn_0.csv')
  9. plt.scatter(nn_0_data.loc[nn_0_data['class'] == -1]['X1'].values, nn_0_data.loc[nn_0_data['class'] == -1]['X2'].values, c='r')
  10. plt.scatter(nn_0_data.loc[nn_0_data['class'] == 1]['X1'].values, nn_0_data.loc[nn_0_data['class'] == 1]['X2'].values, c='b')
  11. plt.show()
  12.  
  13. y = nn_0_data.loc[:,'class':]
  14. y = y.values.ravel()
  15. X = nn_0_data.loc[:,'X1':'X2']
  16. X = X.values.tolist()
  17. y = [0 if i == -1 else 1 for i in y]
  18. X = np.array(X)
  19. y = np.array(y)
  20.  
  21. model = Sequential()
  22. model.add(Dense(1, input_dim=2))
  23. model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
  24. print(model.summary())
  25.  
  26. X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True, test_size = 0.25, random_state=42)
  27. model.fit(X_train, y_train, epochs=10, batch_size=2)
  28.  
  29. print(X_test)
  30. model.evaluate(X_test, y_test)
  31. model.predict(X_test)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement