Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import pandas as pd
- import numpy as np
- import matplotlib.pyplot as plt
- from keras.models import Sequential
- from keras.layers import Dense
- from sklearn.model_selection import train_test_split
- nn_0_data = pd.read_csv('nn_0.csv')
- plt.scatter(nn_0_data.loc[nn_0_data['class'] == -1]['X1'].values, nn_0_data.loc[nn_0_data['class'] == -1]['X2'].values, c='r')
- plt.scatter(nn_0_data.loc[nn_0_data['class'] == 1]['X1'].values, nn_0_data.loc[nn_0_data['class'] == 1]['X2'].values, c='b')
- plt.show()
- y = nn_0_data.loc[:,'class':]
- y = y.values.ravel()
- X = nn_0_data.loc[:,'X1':'X2']
- X = X.values.tolist()
- y = [0 if i == -1 else 1 for i in y]
- X = np.array(X)
- y = np.array(y)
- model = Sequential()
- model.add(Dense(1, input_dim=2))
- model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
- print(model.summary())
- X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True, test_size = 0.25, random_state=42)
- model.fit(X_train, y_train, epochs=10, batch_size=2)
- print(X_test)
- model.evaluate(X_test, y_test)
- model.predict(X_test)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement