Advertisement
erek1e

CEOI '20 - Star Trek

Jun 3rd, 2023
1,232
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
C++ 5.97 KB | None | 0 0
  1. #include <iostream>
  2. #include <vector>
  3. #include <algorithm>
  4. // #include <cassert>
  5.  
  6. using namespace std;
  7.  
  8. const int BASE = 1e9 + 7;
  9.  
  10. int add(int x, int y) {
  11.     x += y;
  12.     if (x >= BASE) return x-BASE;
  13.     return x;
  14. }
  15. int sub(int x, int y) {
  16.     x -= y;
  17.     if (x < 0) return x+BASE;
  18.     return x;
  19. }
  20. int mult(int x, int y) {
  21.     return (long long)x*y % BASE;
  22. }
  23. int bin_pow(int x, int y) {
  24.     int res = 1;
  25.     while (y) {
  26.         if (y & 1) res = mult(res, x);
  27.         y >>= 1;
  28.         x = mult(x, x);
  29.     }
  30.     return res;
  31. }
  32. int inverse(int x) {
  33.     return bin_pow(x, BASE-2);
  34. }
  35.  
  36. vector<vector<int>> g;
  37. vector<int> S, A;
  38. vector<int> S_subtree, A_subtree; // state in subtree, cnt of change nodes in subtree
  39.  
  40. void dfsSubtree(int node, int parent = -1) {
  41.     int s[2]{}, a[2]{};
  42.     for (int child : g[node]) {
  43.         if (child != parent) {
  44.             dfsSubtree(child, node);
  45.             s[S_subtree[child]]++, a[S_subtree[child]] += A_subtree[child];
  46.         }
  47.     }
  48.     if (s[0] == 0) { // no losing child, so this node is losing
  49.         S_subtree[node] = 0;
  50.         A_subtree[node] = a[1]; // any losing node would make it winning
  51.         ++A_subtree[node]; // this node itself could become winning
  52.     } else {
  53.         S_subtree[node] = 1;
  54.         A_subtree[node] = (s[0] > 1 ? 0 : a[0]);
  55.     }
  56. }
  57. void dfsOutside(int node, int parent = -1, int S_parent = 1, int A_parent = 0) {
  58.     vector<pair<int, int>> d[2]{}; // directions: (node, A_direction[node])
  59.     int a[2]{};
  60.     if (parent != -1) d[S_parent].emplace_back(parent, A_parent), a[S_parent] += A_parent;
  61.     for (int child : g[node]) {
  62.         if (child != parent) {
  63.             d[S_subtree[child]].emplace_back(child, A_subtree[child]);
  64.             a[S_subtree[child]] += A_subtree[child];
  65.         }
  66.     }
  67.  
  68.     if (d[0].size() == 0) { // no losing children, so losing node
  69.         S[node] = 0;
  70.         A[node] = a[1];
  71.         ++A[node]; // this node itself could become winning
  72.         for (int child : g[node]) {
  73.             if (child != parent) {
  74.                 dfsOutside(child, node, 0, A[node] - A_subtree[child]);
  75.             }
  76.         }
  77.     } else {
  78.         S[node] = 1;
  79.         if (d[0].size() == 1) {
  80.             A[node] = a[0];
  81.             int x = d[0][0].first;
  82.             for (int child : g[node]) {
  83.                 if (child != parent) {
  84.                     if (child == x) dfsOutside(child, node, 0, a[1]+1); // +1 since this node itself can change
  85.                     else dfsOutside(child, node, 1, a[0]);
  86.                 }
  87.             }
  88.         } else if (d[0].size() == 2) {
  89.             A[node] = 0;
  90.             int x = d[0][0].first, y = d[0][1].first;
  91.             int ax = (x == parent ? A_parent : A_subtree[x]);
  92.             int ay = (y == parent ? A_parent : A_subtree[y]);
  93.             for (int child : g[node]) {
  94.                 if (child != parent) {
  95.                     if (child == x) dfsOutside(child, node, 1, ay);
  96.                     else if (child == y) dfsOutside(child, node, 1, ax);
  97.                     else dfsOutside(child, node, 1, 0);
  98.                 }
  99.             }
  100.         } else {
  101.             A[node] = 0;
  102.             for (int child : g[node]) {
  103.                 if (child != parent) dfsOutside(child, node, 1, 0);
  104.             }
  105.         }
  106.     }
  107. }
  108.  
  109. struct Matrix {
  110.     int N, M;
  111.     vector<vector<int>> v;
  112.     Matrix(){}
  113.     Matrix(int N, int M): N(N), M(M) {v.assign(N, vector<int>(M));}
  114.     Matrix operator * (const Matrix &m2) {
  115.         // assert(M == m2.N);
  116.         int K = m2.M;
  117.         Matrix m(N, K);
  118.         for (int i = 0; i < N; ++i) {
  119.             for (int k = 0; k < K; ++k) {
  120.                 for (int j = 0; j < M; ++j) {
  121.                     m.v[i][k] = add(m.v[i][k], mult(v[i][j], m2.v[j][k]));
  122.                 }
  123.             }
  124.         }
  125.         return m;
  126.     }
  127.     Matrix operator ^ (long long int n) {
  128.         // assert(N == M);
  129.         Matrix m(N, N);
  130.         for (int i = 0; i < N; ++i) m.v[i][i] = 1; // identity
  131.         Matrix p2 = *this;
  132.         while (n) {
  133.             if (n & 1) m = m * p2;
  134.             n >>= 1;
  135.             p2 = p2 * p2;
  136.         }
  137.         return m;
  138.     }
  139.     void print() const {
  140.         for (int i = 0; i < N; ++i) {
  141.             for (int j = 0; j < M; ++j) cout << v[i][j] << ' ';
  142.             cout << endl;
  143.         }
  144.     }
  145. };
  146.  
  147. int main() {
  148.     ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
  149.     int N; long long D; cin >> N >> D;
  150.     g.resize(1+N);
  151.     for (int i = 1; i <= N-1; ++i) {
  152.         int u, v; cin >> u >> v;
  153.         g[u].push_back(v);
  154.         g[v].push_back(u);
  155.     }
  156.  
  157.     /*
  158.     Let's define a losing combination over some suffix of dimensions as the number of
  159.     combinations of start node and portals in that suffix that lead to a loss for the
  160.     player whose turn it is at the start node.
  161.     Then the number of losing combinations over a larger suffix can be calculated.
  162.     */
  163.  
  164.     /* Find A[r] for all "roots" - the number of losing nodes s.t. if that node was turned into
  165.     a winning node, that would change the state of the root r */
  166.     S_subtree.resize(1+N), A_subtree.resize(1+N);
  167.     dfsSubtree(1);
  168.     S.resize(1+N), A.resize(1+N);
  169.     dfsOutside(1);
  170.  
  171.     int cnt[2]{}, sumA[2]{};
  172.     for (int i = 1; i <= N; ++i) ++cnt[S[i]], sumA[S[i]] = add(sumA[S[i]], A[i]);
  173.  
  174.     // This is the O(D) version:
  175.     // int L = 0, N2d = 1; // N^(2d)
  176.     // for (int d = 0; d <= D-1; ++d) {
  177.     //     L = add(mult(N2d, cnt[0]), mult(L, sub(sumA[1], sumA[0])));
  178.     //     N2d = mult(N2d, mult(N, N));
  179.     // }
  180.  
  181.     // O(log D) using Matrix Exponentiation
  182.     int T = sub(sumA[1], sumA[0]);
  183.     Matrix m(2, 2);
  184.     m.v = {{T, cnt[0]}, {0, mult(N, N)}};
  185.     Matrix v(2, 1);
  186.     v.v = {{0}, {1}};
  187.    
  188.     // m^D * v
  189.     Matrix m2 = m ^ D;
  190.     Matrix m3 = m2 * v;
  191.     int L = m3.v[0][0], N2d = m3.v[1][0];
  192.  
  193.     int win = 0;
  194.     if (S[1] == 0) win = mult(A[1], L);
  195.     else win = sub(N2d, mult(A[1], L));
  196.     cout << win << endl;
  197.     return 0;
  198. }
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement