# Gravity & Charge, 7 Body Simulator

Feb 20th, 2019 (edited)
95
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
1. (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *)
2. (* ||| Mathematica Syntax || yukterez.net || 7 Body Newtonian Mass & Charge Simulator ||| *)
3. (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *)
4.
5. ClearAll["Global`*"]; ClearAll["Local`*"];
6. Needs["DifferentialEquations`NDSolveProblems`"];
7. Needs["DifferentialEquations`NDSolveUtilities`"];
8.
9. Amp = 1; kg = 1; m = 1; sek = 1; km = 1000 m; (* SI Einheiten *)
10.
11. mt1 = {"StiffnessSwitching", Method-> {"ExplicitRungeKutta", Automatic}};
12. mt2 = {"ImplicitRungeKutta", "DifferenceOrder"-> 20};
13. mt3 = {"EquationSimplification"-> "Residual"};
14. mt0 = Automatic;
15. mta = mt2;
16. wp = MachinePrecision;
17.
18. (* Plot Optionen *)
19.
20. Tmax = 40 yr;
21. tMax = Min[Tmax, plunge];
22. trail = 10 yr;
23. point = 0.015;
24. thk = 0.004;
25. plotrange = 12 Au {{-1, +1}, {-1, +1}, {-1, +1}};
26. viewpoint = {40, 30, 20};
27. imagesize = 430;
28. startpos = 0;
29.
30. (* Konstanten *)
31.
32. G = 667384/10^16 m^3/kg/sek^2;
33. Λ = 11056*^-56/m^2;
34. ε0 = 8854187817*^-21 Amp^2 sek^4/kg/m^3;
35. c = 299792458 m/sek;
36. Au = 149597870700 m;
37. dy = 24*3600 sek;
38. yr = 36525*dy/100;
39. (* Ephemeriden vom 19.02.2019, 0:00:00 TDB *)
40. (* Sonne *)
41.
42. m1 = +1.988435*^30 kg;
43. q1 = +77 Amp sek;
44.
45. x1x = -1.147196570503204*^-03 Au;
46. y1y = +7.515074431920434*^-03 Au;
47. z1z = -4.730273651193038*^-05 Au;
48.
49. v1x = -8.107931162902937*^-06 Au/dy;
50. v1y = +1.520849732928662*^-06 Au/dy;
51. v1z = +2.095554598567427*^-07 Au/dy;
52.
53. (* Merkur *)
54.
55. m2 = +3.30104*^23 kg;
56. q2 = +0 Amp sek;
57.
58. x2x = +2.493682187528474*^-01 Au;
59. y2y = +2.060848667278006*^-01 Au;
60. z2z = -6.803162776737710*^-03 Au;
61.
62. v2x = -2.301828852252654*^-02 Au/dy;
63. v2y = +2.326003199133993*^-02 Au/dy;
64. v2z = +4.011640539083395*^-03 Au/dy;
65.
66. (* Venus *)
67.
68. m3 = +4.86732*^24 kg;
69. q3 = +0 Amp sek;
70.
71. x3x = -5.604572600267276*^-01 Au;
72. y3y = -4.500554270408416*^-01 Au;
73. z3z = +2.595073246894732*^-02 Au;
74.
75. v3x = +1.265689462094818*^-02 Au/dy;
76. v3y = -1.574829638876520*^-02 Au/dy;
77. v3z = -9.467652690844731*^-04 Au/dy;
78.
79. (* Erde + Mond *)
80.
81. m4 = +5.9721986*^24 kg+7.3459*^22 kg;
82. q4 = +0 Amp sek;
83.
84. x4x = -8.552072163834489*^-01 Au;
85. y4y = +5.049715021822364*^-01 Au;
86. z4z = -6.849877545851131*^-05 Au;
87.
88. v4x = -8.942912568116291*^-03 Au/dy;
89. v4y = -1.492365678503182*^-02 Au/dy;
90. v4z = +2.741178622694643*^-07 Au/dy;
91.
92. (* Mars *)
93.
94. m5 = +6.41693*^23 kg;
95. q5 = +0 Amp sek;
96.
97. x5x = +5.580724605736193*^-01 Au;
98. y5y = +1.416261572201534*^+00 Au;
99. z5z = +1.574925082740965*^-02 Au;
100.
101. v5x = -1.248544019487808*^-02 Au/dy;
102. v5y = +6.355083417008326*^-03 Au/dy;
103. v5z = +4.394992947386628*^-04 Au/dy;
104.
105. (* Jupiter *)
106.
107. m6 = +1.89813*^27 kg;
108. q6 = +0 Amp sek;
109.
110. x6x = -1.795821860926694*^+00 Au;
111. y6y = -5.016469167174772*^+00 Au;
112. z6z = +6.097587180308248*^-02 Au;
113.
114. v6x = +7.014525824256318*^-03 Au/dy;
115. v6y = -2.183010990796764*^-03 Au/dy;
116. v6z = -1.478090774743338*^-04 Au/dy;
117.
118. (* Saturn *)
119.
120. m7 = +5.68319*^26 kg;
121. q7 = +0 Amp sek;
122.
123. x7x = +2.211165351380597*^+00 Au;
124. y7y = -9.803846216723874*^+00 Au;
125. z7z = +8.244475037063657*^-02 Au;
126.
127. v7x = +5.133965065556525*^-03 Au/dy;
128. v7y = +1.210333590471664*^-03 Au/dy;
129. v7z = -2.255855621236429*^-04 Au/dy;
130.
131. (* Pluto + Charon *)
132.
133. m0 = +1.303*^22 kg+1.586*^21 kg;
134. q0 = +0 Amp sek;
135.
136. x0x = +1.202894612500549*^+01 Au;
137. y0y = -3.151878221568063*^+01 Au;
138. z0z = -1.067812248721266*^-01 Au;
139.
140. v0x = +3.004427922255182*^-03 Au/dy;
141. v0y = +4.501898344345873*^-04 Au/dy;
142. v0z = -9.299030165680609*^-04 Au/dy;
143.
144. (* Differentialgleichung *)
145.
146. nds=NDSolve[{
147.
148. x1'[t] == vx1[t], y1'[t] == vy1[t], z1'[t] == vz1[t],
149. x2'[t] == vx2[t], y2'[t] == vy2[t], z2'[t] == vz2[t],
150. x3'[t] == vx3[t], y3'[t] == vy3[t], z3'[t] == vz3[t],
151. x4'[t] == vx4[t], y4'[t] == vy4[t], z4'[t] == vz4[t],
152. x5'[t] == vx5[t], y5'[t] == vy5[t], z5'[t] == vz5[t],
153. x6'[t] == vx6[t], y6'[t] == vy6[t], z6'[t] == vz6[t],
154. x7'[t] == vx7[t], y7'[t] == vy7[t], z7'[t] == vz7[t],
155.
156. vx1'[t] ==
157. (G m2 (x2[t]-x1[t]))/Sqrt[((x2[t]-x1[t])^2+(y2[t]-y1[t])^2+(z2[t]-z1[t])^2)^3]+
158. (G m3 (x3[t]-x1[t]))/Sqrt[((x3[t]-x1[t])^2+(y3[t]-y1[t])^2+(z3[t]-z1[t])^2)^3]+
159. (G m4 (x4[t]-x1[t]))/Sqrt[((x4[t]-x1[t])^2+(y4[t]-y1[t])^2+(z4[t]-z1[t])^2)^3]+
160. (G m5 (x5[t]-x1[t]))/Sqrt[((x5[t]-x1[t])^2+(y5[t]-y1[t])^2+(z5[t]-z1[t])^2)^3]+
161. (G m6 (x6[t]-x1[t]))/Sqrt[((x6[t]-x1[t])^2+(y6[t]-y1[t])^2+(z6[t]-z1[t])^2)^3]+
162. (G m7 (x7[t]-x1[t]))/Sqrt[((x7[t]-x1[t])^2+(y7[t]-y1[t])^2+(z7[t]-z1[t])^2)^3]+
163. If[q1 == 0, 0,
164. (-q1*q2/(4Pi ε0 )/m1 (x2[t]-x1[t]))/Sqrt[((x2[t]-x1[t])^2+(y2[t]-y1[t])^2+(z2[t]-z1[t])^2)^3]+
165. (-q1*q3/(4Pi ε0 )/m1 (x3[t]-x1[t]))/Sqrt[((x3[t]-x1[t])^2+(y3[t]-y1[t])^2+(z3[t]-z1[t])^2)^3]+
166. (-q1*q4/(4Pi ε0 )/m1 (x4[t]-x1[t]))/Sqrt[((x4[t]-x1[t])^2+(y4[t]-y1[t])^2+(z4[t]-z1[t])^2)^3]+
167. (-q1*q5/(4Pi ε0 )/m1 (x5[t]-x1[t]))/Sqrt[((x5[t]-x1[t])^2+(y5[t]-y1[t])^2+(z5[t]-z1[t])^2)^3]+
168. (-q1*q6/(4Pi ε0 )/m1 (x6[t]-x1[t]))/Sqrt[((x6[t]-x1[t])^2+(y6[t]-y1[t])^2+(z6[t]-z1[t])^2)^3]+
169. (-q1*q7/(4Pi ε0 )/m1 (x7[t]-x1[t]))/Sqrt[((x7[t]-x1[t])^2+(y7[t]-y1[t])^2+(z7[t]-z1[t])^2)^3]]+
170. Λ*c^2*x1[t]^2/Sqrt[x1[t]^2+y1[t]^2+z1[t]^2],
171.
172. vy1'[t] ==
173. (G m2 (y2[t]-y1[t]))/Sqrt[((x2[t]-x1[t])^2+(y2[t]-y1[t])^2+(z2[t]-z1[t])^2)^3]+
174. (G m3 (y3[t]-y1[t]))/Sqrt[((x3[t]-x1[t])^2+(y3[t]-y1[t])^2+(z3[t]-z1[t])^2)^3]+
175. (G m4 (y4[t]-y1[t]))/Sqrt[((x4[t]-x1[t])^2+(y4[t]-y1[t])^2+(z4[t]-z1[t])^2)^3]+
176. (G m5 (y5[t]-y1[t]))/Sqrt[((x5[t]-x1[t])^2+(y5[t]-y1[t])^2+(z5[t]-z1[t])^2)^3]+
177. (G m6 (y6[t]-y1[t]))/Sqrt[((x6[t]-x1[t])^2+(y6[t]-y1[t])^2+(z6[t]-z1[t])^2)^3]+
178. (G m7 (y7[t]-y1[t]))/Sqrt[((x7[t]-x1[t])^2+(y7[t]-y1[t])^2+(z7[t]-z1[t])^2)^3]+
179. If[q1 == 0, 0,
180. (-q1*q2/(4Pi ε0 )/m1 (y2[t]-y1[t]))/Sqrt[((x2[t]-x1[t])^2+(y2[t]-y1[t])^2+(z2[t]-z1[t])^2)^3]+
181. (-q1*q3/(4Pi ε0 )/m1 (y3[t]-y1[t]))/Sqrt[((x3[t]-x1[t])^2+(y3[t]-y1[t])^2+(z3[t]-z1[t])^2)^3]+
182. (-q1*q4/(4Pi ε0 )/m1 (y4[t]-y1[t]))/Sqrt[((x4[t]-x1[t])^2+(y4[t]-y1[t])^2+(z4[t]-z1[t])^2)^3]+
183. (-q1*q5/(4Pi ε0 )/m1 (y5[t]-y1[t]))/Sqrt[((x5[t]-x1[t])^2+(y5[t]-y1[t])^2+(z5[t]-z1[t])^2)^3]+
184. (-q1*q6/(4Pi ε0 )/m1 (y6[t]-y1[t]))/Sqrt[((x6[t]-x1[t])^2+(y6[t]-y1[t])^2+(z6[t]-z1[t])^2)^3]+
185. (-q1*q7/(4Pi ε0 )/m1 (y7[t]-y1[t]))/Sqrt[((x7[t]-x1[t])^2+(y7[t]-y1[t])^2+(z7[t]-z1[t])^2)^3]]+
186. Λ*c^2*y1[t]^2/Sqrt[x1[t]^2+y1[t]^2+z1[t]^2],
187.
188. vz1'[t] ==
189. (G m2 (z2[t]-z1[t]))/Sqrt[((x2[t]-x1[t])^2+(y2[t]-y1[t])^2+(z2[t]-z1[t])^2)^3]+
190. (G m3 (z3[t]-z1[t]))/Sqrt[((x3[t]-x1[t])^2+(y3[t]-y1[t])^2+(z3[t]-z1[t])^2)^3]+
191. (G m4 (z4[t]-z1[t]))/Sqrt[((x4[t]-x1[t])^2+(y4[t]-y1[t])^2+(z4[t]-z1[t])^2)^3]+
192. (G m5 (z5[t]-z1[t]))/Sqrt[((x5[t]-x1[t])^2+(y5[t]-y1[t])^2+(z5[t]-z1[t])^2)^3]+
193. (G m6 (z6[t]-z1[t]))/Sqrt[((x6[t]-x1[t])^2+(y6[t]-y1[t])^2+(z6[t]-z1[t])^2)^3]+
194. (G m7 (z7[t]-z1[t]))/Sqrt[((x7[t]-x1[t])^2+(y7[t]-y1[t])^2+(z7[t]-z1[t])^2)^3]+
195. If[q1 == 0, 0,
196. (-q1*q2/(4Pi ε0 )/m1 (z2[t]-z1[t]))/Sqrt[((x2[t]-x1[t])^2+(y2[t]-y1[t])^2+(z2[t]-z1[t])^2)^3]+
197. (-q1*q3/(4Pi ε0 )/m1 (z3[t]-z1[t]))/Sqrt[((x3[t]-x1[t])^2+(y3[t]-y1[t])^2+(z3[t]-z1[t])^2)^3]+
198. (-q1*q4/(4Pi ε0 )/m1 (z4[t]-z1[t]))/Sqrt[((x4[t]-x1[t])^2+(y4[t]-y1[t])^2+(z4[t]-z1[t])^2)^3]+
199. (-q1*q5/(4Pi ε0 )/m1 (z5[t]-z1[t]))/Sqrt[((x5[t]-x1[t])^2+(y5[t]-y1[t])^2+(z5[t]-z1[t])^2)^3]+
200. (-q1*q6/(4Pi ε0 )/m1 (z6[t]-z1[t]))/Sqrt[((x6[t]-x1[t])^2+(y6[t]-y1[t])^2+(z6[t]-z1[t])^2)^3]+
201. (-q1*q7/(4Pi ε0 )/m1 (z7[t]-z1[t]))/Sqrt[((x7[t]-x1[t])^2+(y7[t]-y1[t])^2+(z7[t]-z1[t])^2)^3]]+
202. Λ*c^2*z1[t]^2/Sqrt[x1[t]^2+y1[t]^2+z1[t]^2],
203.
204. vx2'[t] ==
205. (G m1 (x1[t]-x2[t]))/Sqrt[((x1[t]-x2[t])^2+(y1[t]-y2[t])^2+(z1[t]-z2[t])^2)^3]+
206. (G m3 (x3[t]-x2[t]))/Sqrt[((x3[t]-x2[t])^2+(y3[t]-y2[t])^2+(z3[t]-z2[t])^2)^3]+
207. (G m4 (x4[t]-x2[t]))/Sqrt[((x4[t]-x2[t])^2+(y4[t]-y2[t])^2+(z4[t]-z2[t])^2)^3]+
208. (G m5 (x5[t]-x2[t]))/Sqrt[((x5[t]-x2[t])^2+(y5[t]-y2[t])^2+(z5[t]-z2[t])^2)^3]+
209. (G m6 (x6[t]-x2[t]))/Sqrt[((x6[t]-x2[t])^2+(y6[t]-y2[t])^2+(z6[t]-z2[t])^2)^3]+
210. (G m7 (x7[t]-x2[t]))/Sqrt[((x7[t]-x2[t])^2+(y7[t]-y2[t])^2+(z7[t]-z2[t])^2)^3]+
211. If[q2 == 0, 0,
212. (-q2*q1/(4Pi ε0 )/m2 (x1[t]-x2[t]))/Sqrt[((x1[t]-x2[t])^2+(y1[t]-y2[t])^2+(z1[t]-z2[t])^2)^3]+
213. (-q2*q3/(4Pi ε0 )/m2 (x3[t]-x2[t]))/Sqrt[((x3[t]-x2[t])^2+(y3[t]-y2[t])^2+(z3[t]-z2[t])^2)^3]+
214. (-q2*q4/(4Pi ε0 )/m2 (x4[t]-x2[t]))/Sqrt[((x4[t]-x2[t])^2+(y4[t]-y2[t])^2+(z4[t]-z2[t])^2)^3]+
215. (-q2*q5/(4Pi ε0 )/m2 (x5[t]-x2[t]))/Sqrt[((x5[t]-x2[t])^2+(y5[t]-y2[t])^2+(z5[t]-z2[t])^2)^3]+
216. (-q2*q6/(4Pi ε0 )/m2 (x6[t]-x2[t]))/Sqrt[((x6[t]-x2[t])^2+(y6[t]-y2[t])^2+(z6[t]-z2[t])^2)^3]+
217. (-q2*q7/(4Pi ε0 )/m2 (x7[t]-x2[t]))/Sqrt[((x7[t]-x2[t])^2+(y7[t]-y2[t])^2+(z7[t]-z2[t])^2)^3]]+
218. Λ*c^2*x2[t]^2/Sqrt[x2[t]^2+y2[t]^2+z2[t]^2],
219.
220. vy2'[t] ==
221. (G m1 (y1[t]-y2[t]))/Sqrt[((x1[t]-x2[t])^2+(y1[t]-y2[t])^2+(z1[t]-z2[t])^2)^3]+
222. (G m3 (y3[t]-y2[t]))/Sqrt[((x3[t]-x2[t])^2+(y3[t]-y2[t])^2+(z3[t]-z2[t])^2)^3]+
223. (G m4 (y4[t]-y2[t]))/Sqrt[((x4[t]-x2[t])^2+(y4[t]-y2[t])^2+(z4[t]-z2[t])^2)^3]+
224. (G m5 (y5[t]-y2[t]))/Sqrt[((x5[t]-x2[t])^2+(y5[t]-y2[t])^2+(z5[t]-z2[t])^2)^3]+
225. (G m6 (y6[t]-y2[t]))/Sqrt[((x6[t]-x2[t])^2+(y6[t]-y2[t])^2+(z6[t]-z2[t])^2)^3]+
226. (G m7 (y7[t]-y2[t]))/Sqrt[((x7[t]-x2[t])^2+(y7[t]-y2[t])^2+(z7[t]-z2[t])^2)^3]+
227. If[q2 == 0, 0,
228. (-q2*q1/(4Pi ε0 )/m2 (y1[t]-y2[t]))/Sqrt[((x1[t]-x2[t])^2+(y1[t]-y2[t])^2+(z1[t]-z2[t])^2)^3]+
229. (-q2*q3/(4Pi ε0 )/m2 (y3[t]-y2[t]))/Sqrt[((x3[t]-x2[t])^2+(y3[t]-y2[t])^2+(z3[t]-z2[t])^2)^3]+
230. (-q2*q4/(4Pi ε0 )/m2 (y4[t]-y2[t]))/Sqrt[((x4[t]-x2[t])^2+(y4[t]-y2[t])^2+(z4[t]-z2[t])^2)^3]+
231. (-q2*q5/(4Pi ε0 )/m2 (y5[t]-y2[t]))/Sqrt[((x5[t]-x2[t])^2+(y5[t]-y2[t])^2+(z5[t]-z2[t])^2)^3]+
232. (-q2*q6/(4Pi ε0 )/m2 (y6[t]-y2[t]))/Sqrt[((x6[t]-x2[t])^2+(y6[t]-y2[t])^2+(z6[t]-z2[t])^2)^3]+
233. (-q2*q7/(4Pi ε0 )/m2 (y7[t]-y2[t]))/Sqrt[((x7[t]-x2[t])^2+(y7[t]-y2[t])^2+(z7[t]-z2[t])^2)^3]]+
234. Λ*c^2*y2[t]^2/Sqrt[x2[t]^2+y2[t]^2+z2[t]^2],
235.
236. vz2'[t] ==
237. (G m1 (z1[t]-z2[t]))/Sqrt[((x2[t]-x1[t])^2+(y2[t]-y1[t])^2+(z2[t]-z1[t])^2)^3]+
238. (G m3 (z3[t]-z2[t]))/Sqrt[((x3[t]-x2[t])^2+(y3[t]-y2[t])^2+(z3[t]-z2[t])^2)^3]+
239. (G m4 (z4[t]-z2[t]))/Sqrt[((x4[t]-x2[t])^2+(y4[t]-y2[t])^2+(z4[t]-z2[t])^2)^3]+
240. (G m5 (z5[t]-z2[t]))/Sqrt[((x5[t]-x2[t])^2+(y5[t]-y2[t])^2+(z5[t]-z2[t])^2)^3]+
241. (G m6 (z6[t]-z2[t]))/Sqrt[((x6[t]-x2[t])^2+(y6[t]-y2[t])^2+(z6[t]-z2[t])^2)^3]+
242. (G m7 (z7[t]-z2[t]))/Sqrt[((x7[t]-x2[t])^2+(y7[t]-y2[t])^2+(z7[t]-z2[t])^2)^3]+
243. If[q2 == 0, 0,
244. (-q2*q1/(4Pi ε0 )/m2 (z1[t]-z2[t]))/Sqrt[((x2[t]-x1[t])^2+(y2[t]-y1[t])^2+(z2[t]-z1[t])^2)^3]+
245. (-q2*q3/(4Pi ε0 )/m2 (z3[t]-z2[t]))/Sqrt[((x3[t]-x2[t])^2+(y3[t]-y2[t])^2+(z3[t]-z2[t])^2)^3]+
246. (-q2*q4/(4Pi ε0 )/m2 (z4[t]-z2[t]))/Sqrt[((x4[t]-x2[t])^2+(y4[t]-y2[t])^2+(z4[t]-z2[t])^2)^3]+
247. (-q2*q5/(4Pi ε0 )/m2 (z5[t]-z2[t]))/Sqrt[((x5[t]-x2[t])^2+(y5[t]-y2[t])^2+(z5[t]-z2[t])^2)^3]+
248. (-q2*q6/(4Pi ε0 )/m2 (z6[t]-z2[t]))/Sqrt[((x6[t]-x2[t])^2+(y6[t]-y2[t])^2+(z6[t]-z2[t])^2)^3]+
249. (-q2*q7/(4Pi ε0 )/m2 (z7[t]-z2[t]))/Sqrt[((x7[t]-x2[t])^2+(y7[t]-y2[t])^2+(z7[t]-z2[t])^2)^3]]+
250. Λ*c^2*z2[t]^2/Sqrt[x2[t]^2+y2[t]^2+z2[t]^2],
251.
252. vx3'[t] ==
253. (G m1 (x1[t]-x3[t]))/Sqrt[((x1[t]-x3[t])^2+(y1[t]-y3[t])^2+(z1[t]-z3[t])^2)^3]+
254. (G m2 (x2[t]-x3[t]))/Sqrt[((x2[t]-x3[t])^2+(y2[t]-y3[t])^2+(z2[t]-z3[t])^2)^3]+
255. (G m4 (x4[t]-x3[t]))/Sqrt[((x4[t]-x3[t])^2+(y4[t]-y3[t])^2+(z4[t]-z3[t])^2)^3]+
256. (G m5 (x5[t]-x3[t]))/Sqrt[((x5[t]-x3[t])^2+(y5[t]-y3[t])^2+(z5[t]-z3[t])^2)^3]+
257. (G m6 (x6[t]-x3[t]))/Sqrt[((x6[t]-x3[t])^2+(y6[t]-y3[t])^2+(z6[t]-z3[t])^2)^3]+
258. (G m7 (x7[t]-x3[t]))/Sqrt[((x7[t]-x3[t])^2+(y7[t]-y3[t])^2+(z7[t]-z3[t])^2)^3]+
259. If[q3 == 0, 0,
260. (-q3*q1/(4Pi ε0 )/m3 (x1[t]-x3[t]))/Sqrt[((x1[t]-x3[t])^2+(y1[t]-y3[t])^2+(z1[t]-z3[t])^2)^3]+
261. (-q3*q2/(4Pi ε0 )/m3 (x2[t]-x3[t]))/Sqrt[((x2[t]-x3[t])^2+(y2[t]-y3[t])^2+(z2[t]-z3[t])^2)^3]+
262. (-q3*q4/(4Pi ε0 )/m3 (x4[t]-x3[t]))/Sqrt[((x4[t]-x3[t])^2+(y4[t]-y3[t])^2+(z4[t]-z3[t])^2)^3]+
263. (-q3*q5/(4Pi ε0 )/m3 (x5[t]-x3[t]))/Sqrt[((x5[t]-x3[t])^2+(y5[t]-y3[t])^2+(z5[t]-z3[t])^2)^3]+
264. (-q3*q6/(4Pi ε0 )/m3 (x6[t]-x3[t]))/Sqrt[((x6[t]-x3[t])^2+(y6[t]-y3[t])^2+(z6[t]-z3[t])^2)^3]+
265. (-q3*q7/(4Pi ε0 )/m3 (x7[t]-x3[t]))/Sqrt[((x7[t]-x3[t])^2+(y7[t]-y3[t])^2+(z7[t]-z3[t])^2)^3]]+
266. Λ*c^2*x3[t]^2/Sqrt[x3[t]^2+y3[t]^2+z3[t]^2],
267.
268. vy3'[t] ==
269. (G m1 (y1[t]-y3[t]))/Sqrt[((x1[t]-x3[t])^2+(y1[t]-y3[t])^2+(z1[t]-z3[t])^2)^3]+
270. (G m2 (y2[t]-y3[t]))/Sqrt[((x2[t]-x3[t])^2+(y2[t]-y3[t])^2+(z2[t]-z3[t])^2)^3]+
271. (G m4 (y4[t]-y3[t]))/Sqrt[((x4[t]-x3[t])^2+(y4[t]-y3[t])^2+(z4[t]-z3[t])^2)^3]+
272. (G m5 (y5[t]-y3[t]))/Sqrt[((x5[t]-x3[t])^2+(y5[t]-y3[t])^2+(z5[t]-z3[t])^2)^3]+
273. (G m6 (y6[t]-y3[t]))/Sqrt[((x6[t]-x3[t])^2+(y6[t]-y3[t])^2+(z6[t]-z3[t])^2)^3]+
274. (G m7 (y7[t]-y3[t]))/Sqrt[((x7[t]-x3[t])^2+(y7[t]-y3[t])^2+(z7[t]-z3[t])^2)^3]+
275. If[q3 == 0, 0,
276. (-q3*q1/(4Pi ε0 )/m3 (y1[t]-y3[t]))/Sqrt[((x1[t]-x3[t])^2+(y1[t]-y3[t])^2+(z1[t]-z3[t])^2)^3]+
277. (-q3*q2/(4Pi ε0 )/m3 (y2[t]-y3[t]))/Sqrt[((x2[t]-x3[t])^2+(y2[t]-y3[t])^2+(z2[t]-z3[t])^2)^3]+
278. (-q3*q4/(4Pi ε0 )/m3 (y4[t]-y3[t]))/Sqrt[((x4[t]-x3[t])^2+(y4[t]-y3[t])^2+(z4[t]-z3[t])^2)^3]+
279. (-q3*q5/(4Pi ε0 )/m3 (y5[t]-y3[t]))/Sqrt[((x5[t]-x3[t])^2+(y5[t]-y3[t])^2+(z5[t]-z3[t])^2)^3]+
280. (-q3*q6/(4Pi ε0 )/m3 (y6[t]-y3[t]))/Sqrt[((x6[t]-x3[t])^2+(y6[t]-y3[t])^2+(z6[t]-z3[t])^2)^3]+
281. (-q3*q7/(4Pi ε0 )/m3 (y7[t]-y3[t]))/Sqrt[((x7[t]-x3[t])^2+(y7[t]-y3[t])^2+(z7[t]-z3[t])^2)^3]]+
282. Λ*c^2*y3[t]^2/Sqrt[x3[t]^2+y3[t]^2+z3[t]^2],
283.
284. vz3'[t] ==
285. (G m1 (z1[t]-z3[t]))/Sqrt[((x1[t]-x3[t])^2+(y1[t]-y3[t])^2+(z1[t]-z3[t])^2)^3]+
286. (G m2 (z2[t]-z3[t]))/Sqrt[((x2[t]-x3[t])^2+(y2[t]-y3[t])^2+(z2[t]-z3[t])^2)^3]+
287. (G m4 (z4[t]-z3[t]))/Sqrt[((x4[t]-x3[t])^2+(y4[t]-y3[t])^2+(z4[t]-z3[t])^2)^3]+
288. (G m5 (z5[t]-z3[t]))/Sqrt[((x5[t]-x3[t])^2+(y5[t]-y3[t])^2+(z5[t]-z3[t])^2)^3]+
289. (G m6 (z6[t]-z3[t]))/Sqrt[((x6[t]-x3[t])^2+(y6[t]-y3[t])^2+(z6[t]-z3[t])^2)^3]+
290. (G m7 (z7[t]-z3[t]))/Sqrt[((x7[t]-x3[t])^2+(y7[t]-y3[t])^2+(z7[t]-z3[t])^2)^3]+
291. If[q3 == 0, 0,
292. (-q3*q1/(4Pi ε0 )/m3 (z1[t]-z3[t]))/Sqrt[((x1[t]-x3[t])^2+(y1[t]-y3[t])^2+(z1[t]-z3[t])^2)^3]+
293. (-q3*q2/(4Pi ε0 )/m3 (z2[t]-z3[t]))/Sqrt[((x2[t]-x3[t])^2+(y2[t]-y3[t])^2+(z2[t]-z3[t])^2)^3]+
294. (-q3*q4/(4Pi ε0 )/m3 (z4[t]-z3[t]))/Sqrt[((x4[t]-x3[t])^2+(y4[t]-y3[t])^2+(z4[t]-z3[t])^2)^3]+
295. (-q3*q5/(4Pi ε0 )/m3 (z5[t]-z3[t]))/Sqrt[((x5[t]-x3[t])^2+(y5[t]-y3[t])^2+(z5[t]-z3[t])^2)^3]+
296. (-q3*q6/(4Pi ε0 )/m3 (z6[t]-z3[t]))/Sqrt[((x6[t]-x3[t])^2+(y6[t]-y3[t])^2+(z6[t]-z3[t])^2)^3]+
297. (-q3*q7/(4Pi ε0 )/m3 (z7[t]-z3[t]))/Sqrt[((x7[t]-x3[t])^2+(y7[t]-y3[t])^2+(z7[t]-z3[t])^2)^3]]+
298. Λ*c^2*z3[t]^2/Sqrt[x3[t]^2+y3[t]^2+z3[t]^2],
299.
300. vx4'[t] ==
301. (G m1 (x1[t]-x4[t]))/Sqrt[((x1[t]-x4[t])^2+(y1[t]-y4[t])^2+(z1[t]-z4[t])^2)^3]+
302. (G m2 (x2[t]-x4[t]))/Sqrt[((x2[t]-x4[t])^2+(y2[t]-y4[t])^2+(z2[t]-z4[t])^2)^3]+
303. (G m3 (x3[t]-x4[t]))/Sqrt[((x3[t]-x4[t])^2+(y3[t]-y4[t])^2+(z3[t]-z4[t])^2)^3]+
304. (G m5 (x5[t]-x4[t]))/Sqrt[((x5[t]-x4[t])^2+(y5[t]-y4[t])^2+(z5[t]-z4[t])^2)^3]+
305. (G m6 (x6[t]-x4[t]))/Sqrt[((x6[t]-x4[t])^2+(y6[t]-y4[t])^2+(z6[t]-z4[t])^2)^3]+
306. (G m7 (x7[t]-x4[t]))/Sqrt[((x7[t]-x4[t])^2+(y7[t]-y4[t])^2+(z7[t]-z4[t])^2)^3]+
307. If[q4 == 0, 0,
308. (-q4*q1/(4Pi ε0 )/m4 (x1[t]-x4[t]))/Sqrt[((x1[t]-x4[t])^2+(y1[t]-y4[t])^2+(z1[t]-z4[t])^2)^3]+
309. (-q4*q2/(4Pi ε0 )/m4 (x2[t]-x4[t]))/Sqrt[((x2[t]-x4[t])^2+(y2[t]-y4[t])^2+(z2[t]-z4[t])^2)^3]+
310. (-q4*q3/(4Pi ε0 )/m4 (x3[t]-x4[t]))/Sqrt[((x3[t]-x4[t])^2+(y3[t]-y4[t])^2+(z3[t]-z4[t])^2)^3]+
311. (-q4*q5/(4Pi ε0 )/m4 (x5[t]-x4[t]))/Sqrt[((x5[t]-x4[t])^2+(y5[t]-y4[t])^2+(z5[t]-z4[t])^2)^3]+
312. (-q4*q6/(4Pi ε0 )/m4 (x6[t]-x4[t]))/Sqrt[((x6[t]-x4[t])^2+(y6[t]-y4[t])^2+(z6[t]-z4[t])^2)^3]+
313. (-q4*q7/(4Pi ε0 )/m4 (x7[t]-x4[t]))/Sqrt[((x7[t]-x4[t])^2+(y7[t]-y4[t])^2+(z7[t]-z4[t])^2)^3]]+
314. Λ*c^2*x4[t]^2/Sqrt[x4[t]^2+y4[t]^2+z4[t]^2],
315.
316. vy4'[t] ==
317. (G m1 (y1[t]-y4[t]))/Sqrt[((x1[t]-x4[t])^2+(y1[t]-y4[t])^2+(z1[t]-z4[t])^2)^3]+
318. (G m2 (y2[t]-y4[t]))/Sqrt[((x2[t]-x4[t])^2+(y2[t]-y4[t])^2+(z2[t]-z4[t])^2)^3]+
319. (G m3 (y3[t]-y4[t]))/Sqrt[((x3[t]-x4[t])^2+(y3[t]-y4[t])^2+(z3[t]-z4[t])^2)^3]+
320. (G m5 (y5[t]-y4[t]))/Sqrt[((x5[t]-x4[t])^2+(y5[t]-y4[t])^2+(z5[t]-z4[t])^2)^3]+
321. (G m6 (y6[t]-y4[t]))/Sqrt[((x6[t]-x4[t])^2+(y6[t]-y4[t])^2+(z6[t]-z4[t])^2)^3]+
322. (G m7 (y7[t]-y4[t]))/Sqrt[((x7[t]-x4[t])^2+(y7[t]-y4[t])^2+(z7[t]-z4[t])^2)^3]+
323. If[q4 == 0, 0,
324. (-q4*q1/(4Pi ε0 )/m4 (y1[t]-y4[t]))/Sqrt[((x1[t]-x4[t])^2+(y1[t]-y4[t])^2+(z1[t]-z4[t])^2)^3]+
325. (-q4*q2/(4Pi ε0 )/m4 (y2[t]-y4[t]))/Sqrt[((x2[t]-x4[t])^2+(y2[t]-y4[t])^2+(z2[t]-z4[t])^2)^3]+
326. (-q4*q3/(4Pi ε0 )/m4 (y3[t]-y4[t]))/Sqrt[((x3[t]-x4[t])^2+(y3[t]-y4[t])^2+(z3[t]-z4[t])^2)^3]+
327. (-q4*q5/(4Pi ε0 )/m4 (y5[t]-y4[t]))/Sqrt[((x5[t]-x4[t])^2+(y5[t]-y4[t])^2+(z5[t]-z4[t])^2)^3]+
328. (-q4*q6/(4Pi ε0 )/m4 (y6[t]-y4[t]))/Sqrt[((x6[t]-x4[t])^2+(y6[t]-y4[t])^2+(z6[t]-z4[t])^2)^3]+
329. (-q4*q7/(4Pi ε0 )/m4 (y7[t]-y4[t]))/Sqrt[((x7[t]-x4[t])^2+(y7[t]-y4[t])^2+(z7[t]-z4[t])^2)^3]]+
330. Λ*c^2*y4[t]^2/Sqrt[x4[t]^2+y4[t]^2+z4[t]^2],
331.
332. vz4'[t] ==
333. (G m1 (z1[t]-z4[t]))/Sqrt[((x1[t]-x4[t])^2+(y1[t]-y4[t])^2+(z1[t]-z4[t])^2)^3]+
334. (G m2 (z2[t]-z4[t]))/Sqrt[((x2[t]-x4[t])^2+(y2[t]-y4[t])^2+(z2[t]-z4[t])^2)^3]+
335. (G m3 (z3[t]-z4[t]))/Sqrt[((x3[t]-x4[t])^2+(y3[t]-y4[t])^2+(z3[t]-z4[t])^2)^3]+
336. (G m5 (z5[t]-z4[t]))/Sqrt[((x5[t]-x4[t])^2+(y5[t]-y4[t])^2+(z5[t]-z4[t])^2)^3]+
337. (G m6 (z6[t]-z4[t]))/Sqrt[((x6[t]-x4[t])^2+(y6[t]-y4[t])^2+(z6[t]-z4[t])^2)^3]+
338. (G m7 (z7[t]-z4[t]))/Sqrt[((x7[t]-x4[t])^2+(y7[t]-y4[t])^2+(z7[t]-z4[t])^2)^3]+
339. If[q4 == 0, 0,
340. (-q4*q1/(4Pi ε0 )/m4 (z1[t]-z4[t]))/Sqrt[((x1[t]-x4[t])^2+(y1[t]-y4[t])^2+(z1[t]-z4[t])^2)^3]+
341. (-q4*q2/(4Pi ε0 )/m4 (z2[t]-z4[t]))/Sqrt[((x2[t]-x4[t])^2+(y2[t]-y4[t])^2+(z2[t]-z4[t])^2)^3]+
342. (-q4*q3/(4Pi ε0 )/m4 (z3[t]-z4[t]))/Sqrt[((x3[t]-x4[t])^2+(y3[t]-y4[t])^2+(z3[t]-z4[t])^2)^3]+
343. (-q4*q5/(4Pi ε0 )/m4 (z5[t]-z4[t]))/Sqrt[((x5[t]-x4[t])^2+(y5[t]-y4[t])^2+(z5[t]-z4[t])^2)^3]+
344. (-q4*q6/(4Pi ε0 )/m4 (z6[t]-z4[t]))/Sqrt[((x6[t]-x4[t])^2+(y6[t]-y4[t])^2+(z6[t]-z4[t])^2)^3]+
345. (-q4*q7/(4Pi ε0 )/m4 (z7[t]-z4[t]))/Sqrt[((x7[t]-x4[t])^2+(y7[t]-y4[t])^2+(z7[t]-z4[t])^2)^3]]+
346. Λ*c^2*z4[t]^2/Sqrt[x4[t]^2+y4[t]^2+z4[t]^2],
347.
348. vx5'[t] ==
349. (G m1 (x1[t]-x5[t]))/Sqrt[((x1[t]-x5[t])^2+(y1[t]-y5[t])^2+(z1[t]-z5[t])^2)^3]+
350. (G m2 (x2[t]-x5[t]))/Sqrt[((x2[t]-x5[t])^2+(y2[t]-y5[t])^2+(z2[t]-z5[t])^2)^3]+
351. (G m3 (x3[t]-x5[t]))/Sqrt[((x3[t]-x5[t])^2+(y3[t]-y5[t])^2+(z3[t]-z5[t])^2)^3]+
352. (G m4 (x4[t]-x5[t]))/Sqrt[((x4[t]-x5[t])^2+(y4[t]-y5[t])^2+(z4[t]-z5[t])^2)^3]+
353. (G m6 (x6[t]-x5[t]))/Sqrt[((x6[t]-x5[t])^2+(y6[t]-y5[t])^2+(z6[t]-z5[t])^2)^3]+
354. (G m7 (x7[t]-x5[t]))/Sqrt[((x7[t]-x5[t])^2+(y7[t]-y5[t])^2+(z7[t]-z5[t])^2)^3]+
355. If[q5 == 0, 0,
356. (-q5*q1/(4Pi ε0 )/m5 (x1[t]-x5[t]))/Sqrt[((x1[t]-x5[t])^2+(y1[t]-y5[t])^2+(z1[t]-z5[t])^2)^3]+
357. (-q5*q2/(4Pi ε0 )/m5 (x2[t]-x5[t]))/Sqrt[((x2[t]-x5[t])^2+(y2[t]-y5[t])^2+(z2[t]-z5[t])^2)^3]+
358. (-q5*q3/(4Pi ε0 )/m5 (x3[t]-x5[t]))/Sqrt[((x3[t]-x5[t])^2+(y3[t]-y5[t])^2+(z3[t]-z5[t])^2)^3]+
359. (-q5*q4/(4Pi ε0 )/m5 (x4[t]-x5[t]))/Sqrt[((x4[t]-x5[t])^2+(y4[t]-y5[t])^2+(z4[t]-z5[t])^2)^3]+
360. (-q5*q6/(4Pi ε0 )/m5 (x6[t]-x5[t]))/Sqrt[((x6[t]-x5[t])^2+(y6[t]-y5[t])^2+(z6[t]-z5[t])^2)^3]+
361. (-q5*q7/(4Pi ε0 )/m5 (x7[t]-x5[t]))/Sqrt[((x7[t]-x5[t])^2+(y7[t]-y5[t])^2+(z7[t]-z5[t])^2)^3]]+
362. Λ*c^2*x5[t]^2/Sqrt[x5[t]^2+y5[t]^2+z5[t]^2],
363.
364. vy5'[t] ==
365. (G m1 (y1[t]-y5[t]))/Sqrt[((x1[t]-x5[t])^2+(y1[t]-y5[t])^2+(z1[t]-z5[t])^2)^3]+
366. (G m2 (y2[t]-y5[t]))/Sqrt[((x2[t]-x5[t])^2+(y2[t]-y5[t])^2+(z2[t]-z5[t])^2)^3]+
367. (G m3 (y3[t]-y5[t]))/Sqrt[((x3[t]-x5[t])^2+(y3[t]-y5[t])^2+(z3[t]-z5[t])^2)^3]+
368. (G m4 (y4[t]-y5[t]))/Sqrt[((x4[t]-x5[t])^2+(y4[t]-y5[t])^2+(z4[t]-z5[t])^2)^3]+
369. (G m6 (y6[t]-y5[t]))/Sqrt[((x6[t]-x5[t])^2+(y6[t]-y5[t])^2+(z6[t]-z5[t])^2)^3]+
370. (G m7 (y7[t]-y5[t]))/Sqrt[((x7[t]-x5[t])^2+(y7[t]-y5[t])^2+(z7[t]-z5[t])^2)^3]+
371. If[q5 == 0, 0,
372. (-q5*q1/(4Pi ε0 )/m5 (y1[t]-y5[t]))/Sqrt[((x1[t]-x5[t])^2+(y1[t]-y5[t])^2+(z1[t]-z5[t])^2)^3]+
373. (-q5*q2/(4Pi ε0 )/m5 (y2[t]-y5[t]))/Sqrt[((x2[t]-x5[t])^2+(y2[t]-y5[t])^2+(z2[t]-z5[t])^2)^3]+
374. (-q5*q3/(4Pi ε0 )/m5 (y3[t]-y5[t]))/Sqrt[((x3[t]-x5[t])^2+(y3[t]-y5[t])^2+(z3[t]-z5[t])^2)^3]+
375. (-q5*q4/(4Pi ε0 )/m5 (y4[t]-y5[t]))/Sqrt[((x4[t]-x5[t])^2+(y4[t]-y5[t])^2+(z4[t]-z5[t])^2)^3]+
376. (-q5*q6/(4Pi ε0 )/m5 (y6[t]-y5[t]))/Sqrt[((x6[t]-x5[t])^2+(y6[t]-y5[t])^2+(z6[t]-z5[t])^2)^3]+
377. (-q5*q7/(4Pi ε0 )/m5 (y7[t]-y5[t]))/Sqrt[((x7[t]-x5[t])^2+(y7[t]-y5[t])^2+(z7[t]-z5[t])^2)^3]]+
378. Λ*c^2*y5[t]^2/Sqrt[x5[t]^2+y5[t]^2+z5[t]^2],
379.
380. vz5'[t] ==
381. (G m1 (z1[t]-z5[t]))/Sqrt[((x1[t]-x5[t])^2+(y1[t]-y5[t])^2+(z1[t]-z5[t])^2)^3]+
382. (G m2 (z2[t]-z5[t]))/Sqrt[((x2[t]-x5[t])^2+(y2[t]-y5[t])^2+(z2[t]-z5[t])^2)^3]+
383. (G m3 (z3[t]-z5[t]))/Sqrt[((x3[t]-x5[t])^2+(y3[t]-y5[t])^2+(z3[t]-z5[t])^2)^3]+
384. (G m4 (z4[t]-z5[t]))/Sqrt[((x4[t]-x5[t])^2+(y4[t]-y5[t])^2+(z4[t]-z5[t])^2)^3]+
385. (G m6 (z6[t]-z5[t]))/Sqrt[((x6[t]-x5[t])^2+(y6[t]-y5[t])^2+(z6[t]-z5[t])^2)^3]+
386. (G m7 (z7[t]-z5[t]))/Sqrt[((x7[t]-x5[t])^2+(y7[t]-y5[t])^2+(z7[t]-z5[t])^2)^3]+
387. If[q5 == 0, 0,
388. (-q5*q1/(4Pi ε0 )/m5 (z1[t]-z5[t]))/Sqrt[((x1[t]-x5[t])^2+(y1[t]-y5[t])^2+(z1[t]-z5[t])^2)^3]+
389. (-q5*q2/(4Pi ε0 )/m5 (z2[t]-z5[t]))/Sqrt[((x2[t]-x5[t])^2+(y2[t]-y5[t])^2+(z2[t]-z5[t])^2)^3]+
390. (-q5*q3/(4Pi ε0 )/m5 (z3[t]-z5[t]))/Sqrt[((x3[t]-x5[t])^2+(y3[t]-y5[t])^2+(z3[t]-z5[t])^2)^3]+
391. (-q5*q4/(4Pi ε0 )/m5 (z4[t]-z5[t]))/Sqrt[((x4[t]-x5[t])^2+(y4[t]-y5[t])^2+(z4[t]-z5[t])^2)^3]+
392. (-q5*q6/(4Pi ε0 )/m5 (z6[t]-z5[t]))/Sqrt[((x6[t]-x5[t])^2+(y6[t]-y5[t])^2+(z6[t]-z5[t])^2)^3]+
393. (-q5*q7/(4Pi ε0 )/m5 (z7[t]-z5[t]))/Sqrt[((x7[t]-x5[t])^2+(y7[t]-y5[t])^2+(z7[t]-z5[t])^2)^3]]+
394. Λ*c^2*z5[t]^2/Sqrt[x5[t]^2+y5[t]^2+z5[t]^2],
395.
396. vx6'[t] ==
397. (G m1 (x1[t]-x6[t]))/Sqrt[((x1[t]-x6[t])^2+(y1[t]-y6[t])^2+(z1[t]-z6[t])^2)^3]+
398. (G m2 (x2[t]-x6[t]))/Sqrt[((x2[t]-x6[t])^2+(y2[t]-y6[t])^2+(z2[t]-z6[t])^2)^3]+
399. (G m3 (x3[t]-x6[t]))/Sqrt[((x3[t]-x6[t])^2+(y3[t]-y6[t])^2+(z3[t]-z6[t])^2)^3]+
400. (G m4 (x4[t]-x6[t]))/Sqrt[((x4[t]-x6[t])^2+(y4[t]-y6[t])^2+(z4[t]-z6[t])^2)^3]+
401. (G m5 (x5[t]-x6[t]))/Sqrt[((x5[t]-x6[t])^2+(y5[t]-y6[t])^2+(z5[t]-z6[t])^2)^3]+
402. (G m7 (x7[t]-x6[t]))/Sqrt[((x7[t]-x6[t])^2+(y7[t]-y6[t])^2+(z7[t]-z6[t])^2)^3]+
403. If[q6 == 0, 0,
404. (-q6*q1/(4Pi ε0 )/m6 (x1[t]-x6[t]))/Sqrt[((x1[t]-x6[t])^2+(y1[t]-y6[t])^2+(z1[t]-z6[t])^2)^3]+
405. (-q6*q2/(4Pi ε0 )/m6 (x2[t]-x6[t]))/Sqrt[((x2[t]-x6[t])^2+(y2[t]-y6[t])^2+(z2[t]-z6[t])^2)^3]+
406. (-q6*q3/(4Pi ε0 )/m6 (x3[t]-x6[t]))/Sqrt[((x3[t]-x6[t])^2+(y3[t]-y6[t])^2+(z3[t]-z6[t])^2)^3]+
407. (-q6*q4/(4Pi ε0 )/m6 (x4[t]-x6[t]))/Sqrt[((x4[t]-x6[t])^2+(y4[t]-y6[t])^2+(z4[t]-z6[t])^2)^3]+
408. (-q6*q5/(4Pi ε0 )/m6 (x5[t]-x6[t]))/Sqrt[((x5[t]-x6[t])^2+(y5[t]-y6[t])^2+(z5[t]-z6[t])^2)^3]+
409. (-q6*q7/(4Pi ε0 )/m6 (x7[t]-x6[t]))/Sqrt[((x7[t]-x6[t])^2+(y7[t]-y6[t])^2+(z7[t]-z6[t])^2)^3]]+
410. Λ*c^2*x6[t]^2/Sqrt[x6[t]^2+y6[t]^2+z6[t]^2],
411.
412. vy6'[t] ==
413. (G m1 (y1[t]-y6[t]))/Sqrt[((x1[t]-x6[t])^2+(y1[t]-y6[t])^2+(z1[t]-z6[t])^2)^3]+
414. (G m2 (y2[t]-y6[t]))/Sqrt[((x2[t]-x6[t])^2+(y2[t]-y6[t])^2+(z2[t]-z6[t])^2)^3]+
415. (G m3 (y3[t]-y6[t]))/Sqrt[((x3[t]-x6[t])^2+(y3[t]-y6[t])^2+(z3[t]-z6[t])^2)^3]+
416. (G m4 (y4[t]-y6[t]))/Sqrt[((x4[t]-x6[t])^2+(y4[t]-y6[t])^2+(z4[t]-z6[t])^2)^3]+
417. (G m5 (y5[t]-y6[t]))/Sqrt[((x5[t]-x6[t])^2+(y5[t]-y6[t])^2+(z5[t]-z6[t])^2)^3]+
418. (G m7 (y7[t]-y6[t]))/Sqrt[((x7[t]-x6[t])^2+(y7[t]-y6[t])^2+(z7[t]-z6[t])^2)^3]+
419. If[q6 == 0, 0,
420. (-q6*q1/(4Pi ε0 )/m6 (y1[t]-y6[t]))/Sqrt[((x1[t]-x6[t])^2+(y1[t]-y6[t])^2+(z1[t]-z6[t])^2)^3]+
421. (-q6*q2/(4Pi ε0 )/m6 (y2[t]-y6[t]))/Sqrt[((x2[t]-x6[t])^2+(y2[t]-y6[t])^2+(z2[t]-z6[t])^2)^3]+
422. (-q6*q3/(4Pi ε0 )/m6 (y3[t]-y6[t]))/Sqrt[((x3[t]-x6[t])^2+(y3[t]-y6[t])^2+(z3[t]-z6[t])^2)^3]+
423. (-q6*q4/(4Pi ε0 )/m6 (y4[t]-y6[t]))/Sqrt[((x4[t]-x6[t])^2+(y4[t]-y6[t])^2+(z4[t]-z6[t])^2)^3]+
424. (-q6*q5/(4Pi ε0 )/m6 (y5[t]-y6[t]))/Sqrt[((x5[t]-x6[t])^2+(y5[t]-y6[t])^2+(z5[t]-z6[t])^2)^3]+
425. (-q6*q7/(4Pi ε0 )/m6 (y7[t]-y6[t]))/Sqrt[((x7[t]-x6[t])^2+(y7[t]-y6[t])^2+(z7[t]-z6[t])^2)^3]]+
426. Λ*c^2*y6[t]^2/Sqrt[x6[t]^2+y6[t]^2+z6[t]^2],
427.
428. vz6'[t] ==
429. (G m1 (z1[t]-z6[t]))/Sqrt[((x1[t]-x6[t])^2+(y1[t]-y6[t])^2+(z1[t]-z6[t])^2)^3]+
430. (G m2 (z2[t]-z6[t]))/Sqrt[((x2[t]-x6[t])^2+(y2[t]-y6[t])^2+(z2[t]-z6[t])^2)^3]+
431. (G m3 (z3[t]-z6[t]))/Sqrt[((x3[t]-x6[t])^2+(y3[t]-y6[t])^2+(z3[t]-z6[t])^2)^3]+
432. (G m4 (z4[t]-z6[t]))/Sqrt[((x4[t]-x6[t])^2+(y4[t]-y6[t])^2+(z4[t]-z6[t])^2)^3]+
433. (G m5 (z5[t]-z6[t]))/Sqrt[((x5[t]-x6[t])^2+(y5[t]-y6[t])^2+(z5[t]-z6[t])^2)^3]+
434. (G m7 (z7[t]-z6[t]))/Sqrt[((x7[t]-x6[t])^2+(y7[t]-y6[t])^2+(z7[t]-z6[t])^2)^3]+
435. If[q6 == 0, 0,
436. (-q6*q1/(4Pi ε0 )/m6 (z1[t]-z6[t]))/Sqrt[((x1[t]-x6[t])^2+(y1[t]-y6[t])^2+(z1[t]-z6[t])^2)^3]+
437. (-q6*q2/(4Pi ε0 )/m6 (z2[t]-z6[t]))/Sqrt[((x2[t]-x6[t])^2+(y2[t]-y6[t])^2+(z2[t]-z6[t])^2)^3]+
438. (-q6*q3/(4Pi ε0 )/m6 (z3[t]-z6[t]))/Sqrt[((x3[t]-x6[t])^2+(y3[t]-y6[t])^2+(z3[t]-z6[t])^2)^3]+
439. (-q6*q4/(4Pi ε0 )/m6 (z4[t]-z6[t]))/Sqrt[((x4[t]-x6[t])^2+(y4[t]-y6[t])^2+(z4[t]-z6[t])^2)^3]+
440. (-q6*q5/(4Pi ε0 )/m6 (z5[t]-z6[t]))/Sqrt[((x5[t]-x6[t])^2+(y5[t]-y6[t])^2+(z5[t]-z6[t])^2)^3]+
441. (-q6*q7/(4Pi ε0 )/m6 (z7[t]-z6[t]))/Sqrt[((x7[t]-x6[t])^2+(y7[t]-y6[t])^2+(z7[t]-z6[t])^2)^3]]+
442. Λ*c^2*z6[t]^2/Sqrt[x6[t]^2+y6[t]^2+z6[t]^2],
443.
444. vx7'[t] ==
445. (G m1 (x1[t]-x7[t]))/Sqrt[((x1[t]-x7[t])^2+(y1[t]-y7[t])^2+(z1[t]-z7[t])^2)^3]+
446. (G m2 (x2[t]-x7[t]))/Sqrt[((x2[t]-x7[t])^2+(y2[t]-y7[t])^2+(z2[t]-z7[t])^2)^3]+
447. (G m3 (x3[t]-x7[t]))/Sqrt[((x3[t]-x7[t])^2+(y3[t]-y7[t])^2+(z3[t]-z7[t])^2)^3]+
448. (G m4 (x4[t]-x7[t]))/Sqrt[((x4[t]-x7[t])^2+(y4[t]-y7[t])^2+(z4[t]-z7[t])^2)^3]+
449. (G m5 (x5[t]-x7[t]))/Sqrt[((x5[t]-x7[t])^2+(y5[t]-y7[t])^2+(z5[t]-z7[t])^2)^3]+
450. (G m6 (x6[t]-x7[t]))/Sqrt[((x6[t]-x7[t])^2+(y6[t]-y7[t])^2+(z6[t]-z7[t])^2)^3]+
451. If[q7 == 0, 0,
452. (-q7*q1/(4Pi ε0 )/m7 (x1[t]-x7[t]))/Sqrt[((x1[t]-x7[t])^2+(y1[t]-y7[t])^2+(z1[t]-z7[t])^2)^3]+
453. (-q7*q2/(4Pi ε0 )/m7 (x2[t]-x7[t]))/Sqrt[((x2[t]-x7[t])^2+(y2[t]-y7[t])^2+(z2[t]-z7[t])^2)^3]+
454. (-q7*q3/(4Pi ε0 )/m7 (x3[t]-x7[t]))/Sqrt[((x3[t]-x7[t])^2+(y3[t]-y7[t])^2+(z3[t]-z7[t])^2)^3]+
455. (-q7*q4/(4Pi ε0 )/m7 (x4[t]-x7[t]))/Sqrt[((x4[t]-x7[t])^2+(y4[t]-y7[t])^2+(z4[t]-z7[t])^2)^3]+
456. (-q7*q5/(4Pi ε0 )/m7 (x5[t]-x7[t]))/Sqrt[((x5[t]-x7[t])^2+(y5[t]-y7[t])^2+(z5[t]-z7[t])^2)^3]+
457. (-q7*q6/(4Pi ε0 )/m7 (x6[t]-x7[t]))/Sqrt[((x6[t]-x7[t])^2+(y6[t]-y7[t])^2+(z6[t]-z7[t])^2)^3]]+
458. Λ*c^2*x7[t]^2/Sqrt[x7[t]^2+y7[t]^2+z7[t]^2],
459.
460. vy7'[t] ==
461. (G m1 (y1[t]-y7[t]))/Sqrt[((x1[t]-x7[t])^2+(y1[t]-y7[t])^2+(z1[t]-z7[t])^2)^3]+
462. (G m2 (y2[t]-y7[t]))/Sqrt[((x2[t]-x7[t])^2+(y2[t]-y7[t])^2+(z2[t]-z7[t])^2)^3]+
463. (G m3 (y3[t]-y7[t]))/Sqrt[((x3[t]-x7[t])^2+(y3[t]-y7[t])^2+(z3[t]-z7[t])^2)^3]+
464. (G m4 (y4[t]-y7[t]))/Sqrt[((x4[t]-x7[t])^2+(y4[t]-y7[t])^2+(z4[t]-z7[t])^2)^3]+
465. (G m5 (y5[t]-y7[t]))/Sqrt[((x5[t]-x7[t])^2+(y5[t]-y7[t])^2+(z5[t]-z7[t])^2)^3]+
466. (G m6 (y6[t]-y7[t]))/Sqrt[((x6[t]-x7[t])^2+(y6[t]-y7[t])^2+(z6[t]-z7[t])^2)^3]+
467. If[q7 == 0, 0,
468. (-q7*q1/(4Pi ε0 )/m7 (y1[t]-y7[t]))/Sqrt[((x1[t]-x7[t])^2+(y1[t]-y7[t])^2+(z1[t]-z7[t])^2)^3]+
469. (-q7*q2/(4Pi ε0 )/m7 (y2[t]-y7[t]))/Sqrt[((x2[t]-x7[t])^2+(y2[t]-y7[t])^2+(z2[t]-z7[t])^2)^3]+
470. (-q7*q3/(4Pi ε0 )/m7 (y3[t]-y7[t]))/Sqrt[((x3[t]-x7[t])^2+(y3[t]-y7[t])^2+(z3[t]-z7[t])^2)^3]+
471. (-q7*q4/(4Pi ε0 )/m7 (y4[t]-y7[t]))/Sqrt[((x4[t]-x7[t])^2+(y4[t]-y7[t])^2+(z4[t]-z7[t])^2)^3]+
472. (-q7*q5/(4Pi ε0 )/m7 (y5[t]-y7[t]))/Sqrt[((x5[t]-x7[t])^2+(y5[t]-y7[t])^2+(z5[t]-z7[t])^2)^3]+
473. (-q7*q6/(4Pi ε0 )/m7 (y6[t]-y7[t]))/Sqrt[((x6[t]-x7[t])^2+(y6[t]-y7[t])^2+(z6[t]-z7[t])^2)^3]]+
474. Λ*c^2*y7[t]^2/Sqrt[x7[t]^2+y7[t]^2+z7[t]^2],
475.
476. vz7'[t] ==
477. (G m1 (z1[t]-z7[t]))/Sqrt[((x1[t]-x7[t])^2+(y1[t]-y7[t])^2+(z1[t]-z7[t])^2)^3]+
478. (G m2 (z2[t]-z7[t]))/Sqrt[((x2[t]-x7[t])^2+(y2[t]-y7[t])^2+(z2[t]-z7[t])^2)^3]+
479. (G m3 (z3[t]-z7[t]))/Sqrt[((x3[t]-x7[t])^2+(y3[t]-y7[t])^2+(z3[t]-z7[t])^2)^3]+
480. (G m4 (z4[t]-z7[t]))/Sqrt[((x4[t]-x7[t])^2+(y4[t]-y7[t])^2+(z4[t]-z7[t])^2)^3]+
481. (G m5 (z5[t]-z7[t]))/Sqrt[((x5[t]-x7[t])^2+(y5[t]-y7[t])^2+(z5[t]-z7[t])^2)^3]+
482. (G m6 (z6[t]-z7[t]))/Sqrt[((x6[t]-x7[t])^2+(y6[t]-y7[t])^2+(z6[t]-z7[t])^2)^3]+
483. If[q7 == 0, 0,
484. (-q7*q1/(4Pi ε0 )/m7 (z1[t]-z7[t]))/Sqrt[((x1[t]-x7[t])^2+(y1[t]-y7[t])^2+(z1[t]-z7[t])^2)^3]+
485. (-q7*q2/(4Pi ε0 )/m7 (z2[t]-z7[t]))/Sqrt[((x2[t]-x7[t])^2+(y2[t]-y7[t])^2+(z2[t]-z7[t])^2)^3]+
486. (-q7*q3/(4Pi ε0 )/m7 (z3[t]-z7[t]))/Sqrt[((x3[t]-x7[t])^2+(y3[t]-y7[t])^2+(z3[t]-z7[t])^2)^3]+
487. (-q7*q4/(4Pi ε0 )/m7 (z4[t]-z7[t]))/Sqrt[((x4[t]-x7[t])^2+(y4[t]-y7[t])^2+(z4[t]-z7[t])^2)^3]+
488. (-q7*q5/(4Pi ε0 )/m7 (z5[t]-z7[t]))/Sqrt[((x5[t]-x7[t])^2+(y5[t]-y7[t])^2+(z5[t]-z7[t])^2)^3]+
489. (-q7*q6/(4Pi ε0 )/m7 (z6[t]-z7[t]))/Sqrt[((x6[t]-x7[t])^2+(y6[t]-y7[t])^2+(z6[t]-z7[t])^2)^3]]+
490. Λ*c^2*z7[t]^2/Sqrt[x7[t]^2+y7[t]^2+z7[t]^2],
491.
492. x1[0] == x1x, y1[0] == y1y, z1[0] == z1z,
493. x2[0] == x2x, y2[0] == y2y, z2[0] == z2z,
494. x3[0] == x3x, y3[0] == y3y, z3[0] == z3z,
495. x4[0] == x4x, y4[0] == y4y, z4[0] == z4z,
496. x5[0] == x5x, y5[0] == y5y, z5[0] == z5z,
497. x6[0] == x6x, y6[0] == y6y, z6[0] == z6z,
498. x7[0] == x7x, y7[0] == y7y, z7[0] == z7z,
499.
500. vx1[0] == v1x, vy1[0] == v1y, vz1[0] == v1z,
501. vx2[0] == v2x, vy2[0] == v2y, vz2[0] == v2z,
502. vx3[0] == v3x, vy3[0] == v3y, vz3[0] == v3z,
503. vx4[0] == v4x, vy4[0] == v4y, vz4[0] == v4z,
504. vx5[0] == v5x, vy5[0] == v5y, vz5[0] == v5z,
505. vx6[0] == v6x, vy6[0] == v6y, vz6[0] == v6z,
506. vx7[0] == v7x, vy7[0] == v7y, vz7[0] == v7z},
507.
508. {x1, x2, x3, x4, x5, x6, x7, y1, y2, y3, y4, y5, y6, y7, z1, z2, z3, z4, z5, z6, z7,
509. vx1, vx2, vx3, vx4, vx5, vx6, vx7, vy1, vy2, vy3, vy4, vy5, vy6, vy7, vz1, vz2, vz3, vz4, vz5, vz6, vz7},
510.
511. {t, 0, Tmax},
512.
513. WorkingPrecision-> wp,
514. MaxSteps-> Infinity,
515. Method-> mta,
516. InterpolationOrder-> All,
517. StepMonitor :> (laststep=plunge; plunge=t;
518. stepsize=plunge-laststep;), Method->{"EventLocator",
519. "Event" :> (If[stepsize<1*^-4, 0, 1])}];
520.
521. (* Position, Geschwindigkeit *)
522.
523. f2p[t_]={{x1[t], y1[t], z1[t]}, {x2[t], y2[t], z2[t]}, {x3[t], y3[t], z3[t]}, {x4[t], y4[t], z4[t]}, {x5[t], y5[t], z5[t]}, {x6[t], y6[t], z6[t]}, {x7[t], y7[t], z7[t]}}/.nds[[1]];
524. f2v[t_]={{vx1[t], vy1[t], vz1[t]}, {vx2[t], vy2[t], vz2[t]}, {vx3[t], vy3[t], vz3[t]}, {vx4[t], vy4[t], vz4[t]}, {vx5[t], vy5[t], vz5[t]}, {vx6[t], vy6[t], vz6[t]}, {vx7[t], vy7[t], vz7[t]}}/.nds[[1]];
525. swp[t_]=(m1 Evaluate[f2p[t][[1]]]+m2 Evaluate[f2p[t][[2]]]+m3 Evaluate[f2p[t][[3]]]+m4 Evaluate[f2p[t][[4]]]+m5 Evaluate[f2p[t][[5]]]+m6 Evaluate[f2p[t][[6]]]+m7 Evaluate[f2p[t][[7]]])/(m1+m2+m3+m4+m5+m6+m7);
526.
527. (* Formatierung *)
528.
529. s[text_]=Style[text, FontSize->11];
530. sw[text_]=Style[text, White, FontSize->11];
531. colorfunc[n_]=Function[{x, y, z, t},
532. Hue[0, n, 0.5,
533. If[Tmax<0, Max[Min[(+T+(-t+trail))/trail, 1], 0],
534. Max[Min[(-T+(t+trail))/trail, 1], 0]]]];
535.
536. (* Animation *)
537.
538. Do[Print[Rasterize[
539. Grid[{{
540. Show[
541.
542. If[T == 0, {},
543.
544. ParametricPlot3D[Evaluate[f2p[t]],
545. {t, Max[0, T-trail], T},
546.
547. PlotStyle->{
548. {Thickness[thk], Red},
549. {Thickness[thk], Blue},
550. {Thickness[thk], Green},
551. {Thickness[thk], Magenta},
552. {Thickness[thk], Cyan},
553. {Thickness[thk], Orange},
554. {Thickness[thk], Purple}},
555.
556. PlotRange->plotrange, AspectRatio->1, MaxRecursion->15, Axes->True, ImageSize->imagesize]],
557.
558. Graphics3D[
559. If[startpos==1, {
560. {PointSize[2point/3], Lighter[Red], Point[{x1x, y1y, z1z}]},
561. {PointSize[2point/3], Lighter[Blue], Point[{x2x, y2y, z2z}]},
562. {PointSize[2point/3], Lighter[Green], Point[{x3x, y3y, z3z}]},
563. {PointSize[2point/3], Lighter[Magenta], Point[{x4x, y4y, z4z}]},
564. {PointSize[2point/3], Lighter[Cyan], Point[{x5x, y5y, z5z}]},
565. {PointSize[2point/3], Lighter[Orange], Point[{x6x, y6y, z6z}]},
566. {PointSize[2point/3], Lighter[Purple], Point[{x7x, y7y, z7z}]}
567. }, {}],
568.
569. PlotRange->plotrange, AspectRatio->1, Axes->True, ImageSize->imagesize],
570.
571. Graphics3D[{PointSize[point], Red, Point[Evaluate[f2p[T]][[1]]]}],
572. Graphics3D[{PointSize[point], Blue, Point[Evaluate[f2p[T]][[2]]]}],
573. Graphics3D[{PointSize[point], Green, Point[Evaluate[f2p[T]][[3]]]}],
574. Graphics3D[{PointSize[point], Magenta, Point[Evaluate[f2p[T]][[4]]]}],
575. Graphics3D[{PointSize[point], Cyan, Point[Evaluate[f2p[T]][[5]]]}],
576. Graphics3D[{PointSize[point], Orange, Point[Evaluate[f2p[T]][[6]]]}],
577. Graphics3D[{PointSize[point], Purple, Point[Evaluate[f2p[T]][[7]]]}],
578.
579. ViewPoint->viewpoint]},
580.
581. { },
582. {s["t"->N[T]], sw[1/2]},
583. { },
584. {s["p1{x,y,z}"-> Evaluate[f2p[T][[1]]]], sw[1/2]},
585. {s["v1{x,y,z}"-> Evaluate[f2v[T][[1]]]], sw[1/2]},
586. {s["v1{total}"->{Evaluate[Chop@Norm[f2v[T][[1]]]]}], sw[1/2]},
587. { },
588. {s["p2{x,y,z}"-> Evaluate[f2p[T][[2]]]], sw[1/2]},
589. {s["v2{x,y,z}"-> Evaluate[f2v[T][[2]]]], sw[1/2]},
590. {s["v2{total}"->{Evaluate[Chop@Norm[f2v[T][[2]]]]}], sw[1/2]},
591. { },
592. {s["p3{x,y,z}"-> Evaluate[f2p[T][[3]]]], sw[1/2]},
593. {s["v3{x,y,z}"-> Evaluate[f2v[T][[3]]]], sw[1/2]},
594. {s["v3{total}"->{Evaluate[Chop@Norm[f2v[T][[3]]]]}], sw[1/2]},
595. { },
596. {s["p4{x,y,z}"-> Evaluate[f2p[T][[4]]]], sw[1/2]},
597. {s["v4{x,y,z}"-> Evaluate[f2v[T][[4]]]], sw[1/2]},
598. {s["v4{total}"->{Evaluate[Chop@Norm[f2v[T][[4]]]]}], sw[1/2]},
599. { },
600. {s["p5{x,y,z}"-> Evaluate[f2p[T][[5]]]], sw[1/2]},
601. {s["v5{x,y,z}"-> Evaluate[f2v[T][[5]]]], sw[1/2]},
602. {s["v5{total}"->{Evaluate[Chop@Norm[f2v[T][[5]]]]}], sw[1/2]},
603. { },
604. {s["p6{x,y,z}"-> Evaluate[f2p[T][[6]]]], sw[1/2]},
605. {s["v6{x,y,z}"-> Evaluate[f2v[T][[6]]]], sw[1/2]},
606. {s["v6{total}"->{Evaluate[Chop@Norm[f2v[T][[6]]]]}], sw[1/2]},
607. { },
608. {s["p7{x,y,z}"-> Evaluate[f2p[T][[7]]]], sw[1/2]},
609. {s["v7{x,y,z}"-> Evaluate[f2v[T][[7]]]], sw[1/2]},
610. {s["v7{total}"->{Evaluate[Chop@Norm[f2v[T][[7]]]]}], sw[1/2]},
611. { },
612. {s["ps{x,y,z}"-> swp[T]], sw[1/2]},
613. {s["vs{x,y,z}"-> swp'[T]], sw[1/2]},
614. {s["vs{total}"->{Chop@Norm[swp'[T]]}], sw[1/2]}
615. }, Alignment->Left]]],
616.
617. (* Zeitregler *)
618.
619. {T, 0, tMax, tMax/5}]
620.
621. (* Export als HTML Dokument *)
622. (* Export["dateiname.html", EvaluationNotebook[], "GraphicsOutput" -> "PNG"] *)
623. (* Export direkt als Bildsequenz *)
624. (* ParallelDo[Export["dateiname" <> ToString[T] <> ".png", Rasterize[...] ], {T, 0, 10, 5}] *)
625.
626.
627.
RAW Paste Data