Guest User

Untitled

a guest
Sep 26th, 2018
90
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 5.16 KB | None | 0 0
  1. \input{latex_template.tex}
  2. \title{Astrophysics Final Exam}
  3. \begin{document}
  4. \maketitle
  5.  
  6. \section{Helium-burning stars}
  7. \begin{enumerate}
  8. \item To find the energy liberated in the reaction, we must find the mass lost
  9. in the reaction, then use $E=mc^2$ to find the equivalent quantity of energy
  10. released.
  11. \begin{align*}
  12. E_R &= c^2(4m_{\mathrm{He}} - m_\mathrm{O}) \\
  13. E_R &= (3 \times 10^{10} \textrm{cm s}^{-1})^2
  14. (4 \cdot 4.002603 m_p - 15.994915 m_p) \\
  15. E_R &= 9 \times 10^{20} \mathrm{cm}^2 \mathrm{s}^{-2}
  16. \cdot 0.015497 m_p \\
  17. E_R &= 9 \times 10^{20} \mathrm{cm}^2 \mathrm{s}^{-2}
  18. \cdot 2.5880 \times 10^{-26} \mathrm{g} \\
  19. E_R &= 2.3292 \times 10^{-5} \mathrm{erg}
  20. \end{align*}
  21. \item To find the number of reactions, we first take the luminosity and divide
  22. by the amount of energy released in every reaction to get the number of
  23. reactions per unit time.
  24. \begin{align*}
  25. r &= \frac{L}{E_R} \\
  26. r &= \frac{3 \times 10^{38} \,\mathrm{erg} \, \mathrm{s}^{-1}}{
  27. 2.3292 \times 10^{-5} \,\mathrm{erg}} \\
  28. r &= 1.288 \times 10^{43} \,\mathrm{s}^{-1}
  29. \end{align*}
  30. Then multiply by the amount of time passed to get the number of oxygen atoms
  31. generated:
  32. \begin{align*}
  33. n_\mathrm{O} &= tr = 3.15569 \times 10^{13} \,\mathrm{s}
  34. \cdot 1.288 \times 10^{43} \,\mathrm{s}^{-1} \\
  35. n_\mathrm{O} &= 4.0645 \times 10^{56}
  36. \end{align*}
  37. \item First, find the number of Hydrogen atoms present in the star at the start
  38. of its lifetime by dividing its mass by the mass of a Hydrogen atom.
  39. \begin{align*}
  40. n_\mathrm{H} &= \frac{20 \sol{M}}{m_\mathrm{H}} \\
  41. n_\mathrm{H} &= \frac{20 \cdot 2 \times 10^{33} \mathrm{g}}{1.67 \cdot 10^{-24}} \\
  42. n_\mathrm{H} &= 2.3952 \times 10^{58}
  43. \end{align*}
  44. Then divide the number of Oxygen atoms by this value to get the number of Oxygen
  45. atoms created per Hydrogen atom
  46. \begin{equation*}
  47. \frac{n_\mathrm{O}}{n_\mathrm{H}}
  48. = \frac{4.0645 \times 10^{56}}{2.3952 \times 10^{58}} = 0.0169
  49. \end{equation*}
  50. The star generates one Oxygen atom for every 100 Hydrogen atoms.
  51. \end{enumerate}
  52.  
  53. \section{White dwarf stars}
  54. \begin{enumerate}
  55. \item Assume that the mass of the electrons are negligable, and all of the white
  56. dwarf's mass is due to the ion gas of Carbon. To find the number of Carbon atoms
  57. in the white dwarf, divide the mass of the white dwarf by the mass of a Carbon
  58. atom
  59. \begin{equation*}
  60. N_i = \frac{0.5 \sol{M}}{12 m_p} =
  61. \frac{0.5 \cdot 2 \times 10^{33}}{12 \cdot 1.67 \times 10^{-24}} =
  62. 5.988 \times 10^{56}
  63. \end{equation*}
  64. The total amount of kinetic energy in the white dwarf star is therefore
  65. \begin{align*}
  66. K &= N_i \cdot 1.5kT \\
  67. &= 5.988 \times 10^{56} \cdot 1.5
  68. \cdot 1.38 \times 10^{-16} \textrm{erg K}^{-1}
  69. \cdot 10^8 \mathrm{K} \\
  70. &= 1.2395 \times 10^{49} \mathrm{erg}
  71. \end{align*}
  72.  
  73. \item To find the amount of time the white dwarf will take to radiate this
  74. energy at a luminosity of $L = 10^{-4} \sol{L}$, divide the total kinetic energy
  75. by the luminosity of the white dwarf
  76. \begin{align*}
  77. t &= \frac{K}{L} = \frac{K}{10^{-4} \sol{L}} \\
  78. t &= \frac{1.2395 \times 10^{49} \mathrm{erg}}
  79. {10^{-4} \cdot 4 \times 10^{33} \textrm{erg s}^{-1}} \\
  80. t &= 3.0988 \times 10^{19} \mathrm{s} = 9.826 \times 10^{11} \mathrm{yrs}
  81. \end{align*}
  82.  
  83. \item The galaxy is not old enough for any of these white dwarves to have formed
  84. yet.
  85. \end{enumerate}
  86.  
  87. \section{Neutrino astronomy}
  88. \begin{enumerate}
  89. \item First, find the amount of energy which passed through the detector
  90. \begin{align*}
  91. E_D &= 20 \cdot 1.6 \times 10^{-6} \textrm{ erg} \cdot 3 \times 10^8 \\
  92. E_D &= 9.6 \times 10^3 \textrm{ erg}
  93. \end{align*}
  94. Now, calculate the proportion of the energy which passed through the detector,
  95. by comparing the surface area of the detector to the surface area of the sphere
  96. centered at the location of the supernova whose boundary passes through the
  97. detector. Note, this assumes that the area of the detector orthogonal to the
  98. radius of this imaginary sphere is 1 $\mathrm{cm}^2$.
  99. \begin{align*}
  100. \frac{1 \mathrm{cm}^2}{4 \pi r^2} =
  101. \frac{1 \mathrm{cm}^2}{4 \pi (3.1 \times 10^{21} \mathrm{cm})^2}
  102. = 8.2807 \times 10^{-45}
  103. \end{align*}
  104. If we divide the energy the detector found by this quantity, we will get an
  105. estimate for the amount of energy released by the supernova:
  106. \begin{align*}
  107. E &= \frac{9.6 \times 10^{3}}{8.2807 \times 10^{-45}} \\
  108. &= 1.1593 \times 10^{48} \mathrm{erg}
  109. \end{align*}
  110.  
  111. \item We can calculate the approximate gravitational energy released in the
  112. collapse by taking the absolute value of the gravitational binding energy
  113. \begin{align*}
  114. E_\mathrm{grav} &= \left| \frac{-GM^2}{R} \right| \\
  115. E_\mathrm{grav} &= \left| \frac{-6.67 \times 10^{-8} \cdot
  116. (1.5 \cdot 2 \times 10^{33})^2}{10^7 \mathrm{cm}} \right| \\
  117. E_\mathrm{grav} &= 6.00 \times 10^{52} \mathrm{erg}
  118. \end{align*}
  119.  
  120. \item These results suggest that most of the energy is not released by
  121. neutrinos, as the estimated amount of energy carried away by neutrinos is four
  122. orders of magnitude less than the gravitational energy that must have been
  123. released. However, there's a significant amount of error present in our estimate
  124. for the energy carried away by neutrinos, because we have to estimate both the
  125. energy of the neutrinos detected on Earth and the distance between us and the
  126. supernova, so this result could be due to error.
  127. \end{enumerate}
  128. \end{document}
Add Comment
Please, Sign In to add comment