Monkeyinlaw

Chat GPT o3-mini-high

Feb 25th, 2025
67
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 65.79 KB | Source Code | 0 0
  1. Describe this as part of code
  2.  
  3. The main idea is that the **grid** from which the generation starts is **Voronoi noise**. Blocks resembling a **city** are created from the grid’s lines. These blocks have **different heights and lengths**, following the grid’s lines.
  4. ChatGPT said:
  5. Here is a Python script using Voronoi noise to generate a city-like grid, where the blocks follow the Voronoi cells and have different heights and lengths. The visualization is done using Matplotlib and Shapely to construct and render the geometry.
  6.  
  7. python
  8. Copy
  9. import numpy as np
  10. import matplotlib.pyplot as plt
  11. from scipy.spatial import Voronoi, voronoi_plot_2d
  12. import random
  13. from shapely.geometry import Polygon, MultiPolygon
  14. from descartes import PolygonPatch
  15.  
  16. # Generate random points for Voronoi noise
  17. num_points = 100
  18. points = np.random.rand(num_points, 2) * 100  # Scale to a larger grid
  19.  
  20. # Create Voronoi diagram
  21. vor = Voronoi(points)
  22.  
  23. # Extract Voronoi regions and filter out invalid ones
  24. regions = []
  25. for region in vor.regions:
  26.     if not -1 in region and len(region) > 0:
  27.         poly = [vor.vertices[i] for i in region]
  28.         regions.append(Polygon(poly))
  29.  
  30. # Create a city-like layout from Voronoi cells
  31. def generate_building_heights(regions):
  32.     buildings = []
  33.     for region in regions:
  34.         if region.is_valid:
  35.             height = random.uniform(5, 50)  # Random height for buildings
  36.             buildings.append((region, height))
  37.     return buildings
  38.  
  39. buildings = generate_building_heights(regions)
  40.  
  41. # Plot the generated city
  42. fig, ax = plt.subplots(figsize=(10, 10))
  43.  
  44. for building, height in buildings:
  45.     color = (random.uniform(0.5, 1), random.uniform(0.5, 1), random.uniform(0.5, 1), 0.6)
  46.     patch = PolygonPatch(building, fc=color, ec='black', alpha=0.7, lw=0.5)
  47.     ax.add_patch(patch)
  48.  
  49. # Adjust plot limits
  50. ax.set_xlim(0, 100)
  51. ax.set_ylim(0, 100)
  52. ax.set_aspect('equal')
  53. ax.axis('off')
  54.  
  55. plt.show()
  56. How It Works:
  57. Generates Voronoi Noise: A set of random points define the Voronoi diagram.
  58. Extracts Regions: The valid Voronoi cells are converted into polygons.
  59. Assigns Heights: Each building (polygon) is given a random height.
  60. Renders the City: The colored regions represent buildings, with outlines for clarity.
  61. This approach allows for a procedural city generation system where the grid structure is defined by Voronoi noise, and buildings follow the natural patterns of Voronoi cells. You can tweak the parameters (such as number of points or height range) to achieve different effects. 🚀
  62.  
  63.  
  64.  
  65.  
  66.  
  67.  
  68. You said:
  69. Lets use p5js
  70. Reasoned for 53 seconds
  71. Below is an example of how you can use p5.js (along with the p5.voronoi library) to generate a Voronoi-based “city” layout. Each Voronoi cell is treated as a city block, and we assign a random “height” (or any other property) to each block. The code below shows a simple 2D top-down representation, but you can expand it to a 3D or isometric view if desired.
  72.  
  73. Note: This example uses the p5.voronoi library. Make sure you include the library in your HTML file (e.g., by adding <script src="p5.voronoi.js"></script> before your main sketch).
  74.  
  75. html
  76. Copy
  77. <!DOCTYPE html>
  78. <html>
  79.   <head>
  80.     <meta charset="UTF-8" />
  81.     <title>Voronoi City in p5.js</title>
  82.     <!-- p5.js library -->
  83.     <script src="https://cdn.jsdelivr.net/npm/[email protected]/lib/p5.min.js"></script>
  84.     <!-- p5.voronoi library -->
  85.     <script src="https://cdn.jsdelivr.net/gh/ConnyOnny/[email protected]/p5.voronoi.js"></script>
  86.     <!-- Our sketch -->
  87.     <script src="sketch.js"></script>
  88.   </head>
  89.   <body>
  90.   </body>
  91. </html>
  92. javascript
  93. Copy
  94. // sketch.js
  95. let sites = [];            // Random points that define the Voronoi diagram
  96. let cellColors = [];       // Random colors for each Voronoi cell
  97. let buildingHeights = [];  // Example array to store building heights
  98.  
  99. function setup() {
  100.   createCanvas(800, 800);
  101.  
  102.   // Optional styling for Voronoi
  103.   voronoiCellStrokeWeight(1);
  104.   voronoiCellStroke(0);
  105.   voronoiSiteStrokeWeight(0);
  106.   voronoiSiteStroke(0);
  107.  
  108.   // Generate random points
  109.   let numPoints = 50;
  110.   for (let i = 0; i < numPoints; i++) {
  111.     let x = random(width);
  112.     let y = random(height);
  113.     sites.push({ x, y });
  114.  
  115.     // Assign a random color
  116.     cellColors.push(color(random(80, 255), random(80, 255), random(80, 255), 180));
  117.  
  118.     // Assign a random "height" (e.g., building height)
  119.     buildingHeights.push(random(5, 50));
  120.   }
  121.  
  122.   // Feed the points into the Voronoi library
  123.   for (let i = 0; i < sites.length; i++) {
  124.     voronoiSite(sites[i].x, sites[i].y);
  125.   }
  126.  
  127.   // Compute the Voronoi diagram (last parameter: "discardSitesOutsideDiagram")
  128.   voronoi(width, height, false);
  129.  
  130.   // We only need to draw once
  131.   noLoop();
  132. }
  133.  
  134. function draw() {
  135.   background(255);
  136.  
  137.   // Retrieve the computed Voronoi diagram
  138.   let diagram = voronoiGetDiagram();
  139.   let cells = diagram.cells; // Each cell corresponds to one site
  140.  
  141.   // Draw each cell as a polygon
  142.   for (let i = 0; i < cells.length; i++) {
  143.     let cell = cells[i];
  144.     if (!cell) continue;
  145.  
  146.     // Use a color that corresponds to this cell
  147.     fill(cellColors[i]);
  148.     stroke(0, 50);
  149.     strokeWeight(1);
  150.  
  151.     beginShape();
  152.     for (let j = 0; j < cell.halfedges.length; j++) {
  153.       let edge = cell.halfedges[j].getEndpoint();
  154.       vertex(edge.x, edge.y);
  155.     }
  156.     endShape(CLOSE);
  157.  
  158.     // Optionally, you could do something with buildingHeights[i] here
  159.     // e.g., draw text or an isometric extrusion
  160.   }
  161.  
  162.   // (Optional) Draw the original site points
  163.   fill(0);
  164.   noStroke();
  165.   for (let i = 0; i < sites.length; i++) {
  166.     ellipse(sites[i].x, sites[i].y, 4, 4);
  167.   }
  168. }
  169. Explanation
  170. Random Points (Sites)
  171. We generate a set of random (x, y) coordinates that will define our Voronoi diagram. Each site corresponds to one “city block.”
  172.  
  173. Voronoi Generation
  174. Using p5.voronoi, we call:
  175.  
  176. voronoiSite(x, y) for each point.
  177. voronoi(width, height, false) to compute the diagram within the canvas dimensions.
  178. Cells as Blocks
  179.  
  180. The cells in the Voronoi diagram become individual polygons.
  181. We draw each polygon using beginShape() ... endShape(CLOSE).
  182. Heights & Visuals
  183.  
  184. In a 2D top-down map, we might simply color each block or label it with its “height.”
  185. In a 3D or isometric approach, you could extrude each polygon by its buildingHeights[i] value to create a pseudo-3D cityscape.
  186. Styling
  187.  
  188. We use cellColors to give each block a random color.
  189. The building heights are stored in buildingHeights for future use (e.g., 3D rendering or shading based on height).
  190. This setup lets you experiment with procedural city layouts by adjusting the number of points, random distribution, and visual styling. By using Voronoi noise, you get organic, cell-like shapes that can resemble city blocks of varying sizes.
  191.  
  192.  
  193.  
  194.  
  195.  
  196.  
  197. You said:
  198. Lets rewrite inPython
  199. Reasoned for 39 seconds
  200. Below is a Python example that replicates the main idea of the p5.js Voronoi “city” sketch. It uses:
  201.  
  202. NumPy for random point generation
  203. SciPy to compute the Voronoi diagram
  204. Matplotlib for visualization
  205. Each Voronoi cell is treated as a “block,” assigned a random color and building height. You can later expand on this by adding 3D or isometric rendering logic if you wish.
  206.  
  207. python
  208. Copy
  209. import numpy as np
  210. import random
  211. import matplotlib.pyplot as plt
  212. from scipy.spatial import Voronoi
  213.  
  214. def voronoi_city(num_points=50, width=800, height=800):
  215.     """
  216.    Generates a Voronoi-based city layout:
  217.    - Random points define the Voronoi cells
  218.    - Each cell is given a random color
  219.    - Each cell is assigned a random 'building height'
  220.    """
  221.  
  222.     # 1. Generate random points (the Voronoi 'sites')
  223.     points = np.column_stack((np.random.rand(num_points) * width,
  224.                               np.random.rand(num_points) * height))
  225.    
  226.     # 2. Compute the Voronoi diagram
  227.     vor = Voronoi(points)
  228.  
  229.     # Prepare random colors and building heights for each cell
  230.     # (We assign them per site, though you can also assign per region)
  231.     colors = []
  232.     building_heights = []
  233.     for _ in range(num_points):
  234.         # Create a random color (R, G, B)
  235.         r = random.uniform(0.3, 1.0)
  236.         g = random.uniform(0.3, 1.0)
  237.         b = random.uniform(0.3, 1.0)
  238.         colors.append((r, g, b))
  239.  
  240.         # Random building height
  241.         building_heights.append(random.uniform(5, 50))
  242.  
  243.     # 3. Set up Matplotlib figure
  244.     fig, ax = plt.subplots(figsize=(8, 8))
  245.     ax.set_aspect('equal', 'box')
  246.     ax.set_xlim(0, width)
  247.     ax.set_ylim(0, height)
  248.     ax.set_title("Voronoi City Layout (2D)")
  249.  
  250.     # 4. Draw each Voronoi region
  251.     # The 'vor.regions' array lists the vertices of each region by index
  252.     # 'vor.point_region' maps each site to the corresponding region index
  253.     for i, region_idx in enumerate(vor.point_region):
  254.         region = vor.regions[region_idx]
  255.        
  256.         # Skip if region is empty or has -1 (unbounded region)
  257.         if -1 in region or len(region) == 0:
  258.             continue
  259.  
  260.         # Build a polygon from the region's vertices
  261.         polygon = [vor.vertices[v] for v in region]
  262.  
  263.         # Use the color associated with this site
  264.         color = colors[i]
  265.         # (Optionally) we could incorporate building_heights[i]
  266.         # for advanced visualization
  267.  
  268.         # Draw polygon
  269.         x_coords, y_coords = zip(*polygon)
  270.         ax.fill(x_coords, y_coords, color=color, alpha=0.6, edgecolor='black', linewidth=0.5)
  271.  
  272.     # 5. Plot the original site points
  273.     ax.scatter(points[:, 0], points[:, 1], c='black', s=10, zorder=2)
  274.  
  275.     # Show the final result
  276.     plt.show()
  277.  
  278. # Run the function
  279. if __name__ == "__main__":
  280.     voronoi_city()
  281. How it Works
  282. Random Sites
  283. We generate a set of (x, y) coordinates, each defining a Voronoi site (or “seed”).
  284.  
  285. Voronoi Diagram
  286. We use scipy.spatial.Voronoi(points) to compute the cells.
  287.  
  288. Regions & Polygons
  289.  
  290. vor.regions contains a list of regions (each a list of vertex indices).
  291. vor.point_region[i] gives the region index corresponding to site i.
  292. We ignore regions with -1 because they’re unbounded (off the canvas).
  293. Color & “Height”
  294.  
  295. Each site (and thus each cell) is assigned a random color and a random “building height.”
  296. In this 2D example, we just fill each cell with a color.
  297. You can use the building_heights array for 3D or isometric visualization later.
  298. Plot
  299.  
  300. We fill the polygons with semi-transparent color.
  301. We scatter-plot the site points in black to show where each cell’s seed lies.
  302. This script provides a procedural city layout using Voronoi noise, similar to the p5.js version but in pure Python with Matplotlib for visualization.
  303.  
  304.  
  305.  
  306.  
  307.  
  308.  
  309. You said:
  310.  
  311. So this is 2d and without streets, lets create 3d and with diferent streets. For height lets use different noise more simple look like cliffs lines
  312. Reasoned for 2m 6s
  313. Below is a Python example showing how to generate a 3D Voronoi-based “city” with discrete (cliff-like) building heights and streets between blocks. We’ll use:
  314.  
  315. NumPy + SciPy for generating and computing the Voronoi diagram.
  316. Shapely to shrink each Voronoi cell (creating a gap for “streets”) and to help construct polygon geometry.
  317. Matplotlib (with its 3D toolkit) to extrude and render the polygons in 3D.
  318. Requirements:
  319.  
  320. pip install numpy scipy shapely matplotlib
  321. python
  322. Copy
  323. import numpy as np
  324. import random
  325. import matplotlib.pyplot as plt
  326. from mpl_toolkits.mplot3d.art3d import Poly3DCollection
  327. from scipy.spatial import Voronoi
  328. from shapely.geometry import Polygon, MultiPolygon
  329.  
  330. # 1. Simple "cliff-like" noise function: pick discrete height steps
  331. def cliff_noise():
  332.     """Return a random 'cliff' height from a small set of discrete values."""
  333.     return random.choice([10, 20, 30, 40, 50])
  334.  
  335. # 2. Helper to extrude a 2D shapely polygon into a 3D "block"
  336. def extrude_polygon_3d(shapely_polygon, z_bottom, z_top):
  337.     """
  338.    Given a 2D polygon (Shapely),
  339.    return a list of 3D faces (as lists of (x, y, z) tuples).
  340.    - Top face (z = z_top)
  341.    - Bottom face (z = z_bottom)
  342.    - Side faces connecting top and bottom
  343.    """
  344.     polygons_3d = []
  345.    
  346.     # Exterior ring coordinates
  347.     exterior_coords = list(shapely_polygon.exterior.coords)
  348.    
  349.     # Top face (in correct vertex order)
  350.     top_face = [(x, y, z_top) for (x, y) in exterior_coords]
  351.     polygons_3d.append(top_face)
  352.    
  353.     # Bottom face (reverse order so the face is oriented properly)
  354.     bottom_face = [(x, y, z_bottom) for (x, y) in exterior_coords[::-1]]
  355.     polygons_3d.append(bottom_face)
  356.    
  357.     # Side faces (connect each pair of consecutive points)
  358.     for i in range(len(exterior_coords) - 1):
  359.         x1, y1 = exterior_coords[i]
  360.         x2, y2 = exterior_coords[i + 1]
  361.         side_face = [
  362.             (x1, y1, z_bottom),
  363.             (x1, y1, z_top),
  364.             (x2, y2, z_top),
  365.             (x2, y2, z_bottom)
  366.         ]
  367.         polygons_3d.append(side_face)
  368.    
  369.     return polygons_3d
  370.  
  371. # 3. Main function to create and visualize a 3D Voronoi “city”
  372. def voronoi_city_3d(num_points=30, width=100, height=100, street_width=1.5):
  373.     """
  374.    Generates a 3D Voronoi city:
  375.    - Random points define Voronoi cells
  376.    - Cells are shrunk to leave "streets" between them
  377.    - Heights use "cliff" noise (discrete steps)
  378.    - Extruded into 3D and rendered with matplotlib
  379.    """
  380.     # Generate random 2D points (Voronoi "sites")
  381.     points = np.column_stack((
  382.         np.random.rand(num_points) * width,
  383.         np.random.rand(num_points) * height
  384.     ))
  385.    
  386.     # Compute the Voronoi diagram
  387.     vor = Voronoi(points)
  388.  
  389.     # Set up a 3D plot
  390.     fig = plt.figure(figsize=(10, 10))
  391.     ax = fig.add_subplot(111, projection='3d')
  392.     ax.set_title("Voronoi City Layout in 3D (Cliff-Like Heights)")
  393.    
  394.     # Adjust 3D view angle
  395.     ax.view_init(elev=30, azim=-60)
  396.    
  397.     # Set axes ranges
  398.     ax.set_xlim(0, width)
  399.     ax.set_ylim(0, height)
  400.     ax.set_zlim(0, 60)  # Our max cliff height is 50, so 60 is a safe upper bound
  401.  
  402.     # For each Voronoi region, build a 3D polygon
  403.     for i, region_idx in enumerate(vor.point_region):
  404.         region = vor.regions[region_idx]
  405.         # Skip invalid or unbounded regions
  406.         if -1 in region or len(region) == 0:
  407.             continue
  408.        
  409.         # Convert region's vertices into a shapely polygon
  410.         polygon_coords = [vor.vertices[v] for v in region]
  411.         shapely_poly = Polygon(polygon_coords)
  412.        
  413.         # Shrink polygon to create a gap (streets)
  414.         # Negative buffer will "shrink" the polygon inwards
  415.         poly_shrunk = shapely_poly.buffer(-street_width)
  416.         if poly_shrunk.is_empty:
  417.             continue
  418.        
  419.         # Assign a random color
  420.         r = random.uniform(0.3, 1.0)
  421.         g = random.uniform(0.3, 1.0)
  422.         b = random.uniform(0.3, 1.0)
  423.         color = (r, g, b)
  424.  
  425.         # Get a discrete building height
  426.         building_height = cliff_noise()
  427.        
  428.         # Extrude polygon(s) in 3D
  429.         # (A buffer operation might return a MultiPolygon if it splits)
  430.         if isinstance(poly_shrunk, Polygon):
  431.             polygons_3d = extrude_polygon_3d(poly_shrunk, 0, building_height)
  432.             collection = Poly3DCollection(polygons_3d, facecolors=color, edgecolors='k', alpha=0.8)
  433.             ax.add_collection3d(collection)
  434.         elif isinstance(poly_shrunk, MultiPolygon):
  435.             for subpoly in poly_shrunk.geoms:
  436.                 polygons_3d = extrude_polygon_3d(subpoly, 0, building_height)
  437.                 collection = Poly3DCollection(polygons_3d, facecolors=color, edgecolors='k', alpha=0.8)
  438.                 ax.add_collection3d(collection)
  439.  
  440.     plt.show()
  441.  
  442. if __name__ == "__main__":
  443.     voronoi_city_3d()
  444. Key Points
  445. Voronoi Cells
  446.  
  447. Each region corresponds to one polygon (“city block”).
  448. We shrink each block with a negative buffer(...) so that there’s a small gap—these gaps are our streets.
  449. Discrete “Cliff” Heights
  450.  
  451. Instead of smooth random noise, we pick from a small set of integer heights (10, 20, 30, 40, 50).
  452. This gives the city a “stepped” or “cliff-like” look.
  453. 3D Extrusion
  454.  
  455. We convert each 2D polygon into top, bottom, and side faces.
  456. Matplotlib’s Poly3DCollection lets us draw these faces in 3D space.
  457. Performance & Limitations
  458.  
  459. Matplotlib 3D is great for quick demos but can be slower for large numbers of polygons.
  460. For more complex or interactive scenes, you might consider other 3D libraries (e.g., pyOpenGL, vispy, or game engines).
  461. Streets
  462.  
  463. By shrinking the polygons (polygon.buffer(-street_width)), you create small “alleys” (white space) between them.
  464. If poly_shrunk is empty, it means the block was too small to shrink at the chosen street_width.
  465. With this setup, you get a procedural 3D “city” where each building block is determined by Voronoi cells, extruded to a discrete height, and separated by simple “streets.” Adjust parameters (e.g., num_points, street_width, or the discrete heights) to explore different styles and densities.
  466.  
  467.  
  468.  
  469.  
  470.  
  471.  
  472. You said:
  473. Great! Lets separate voronoi cells on many little cells
  474. Reasoned for 49 seconds
  475. Below is an extended 3D Voronoi example in Python, where each main Voronoi cell is further subdivided into smaller “mini-cells.” This creates a two-level structure:
  476.  
  477. Global Voronoi defines large city blocks.
  478. Each block is subdivided by a local Voronoi using random points inside that block.
  479. Finally, we extrude each mini-cell in 3D with random or “cliff-like” heights, and add “streets” by shrinking polygons (negative buffering). The result is a more complex city layout with many small cells in each larger block.
  480.  
  481. Dependencies:
  482. pip install numpy scipy shapely matplotlib
  483.  
  484. python
  485. Copy
  486. import numpy as np
  487. import random
  488. import matplotlib.pyplot as plt
  489. from mpl_toolkits.mplot3d.art3d import Poly3DCollection
  490. from scipy.spatial import Voronoi
  491. from shapely.geometry import Polygon, Point, MultiPolygon
  492. from shapely.ops import unary_union
  493.  
  494. # --------------------------------------------------------
  495. # 1. Simple "cliff-like" noise function
  496. #    (You can swap this out for other discrete or continuous noise)
  497. # --------------------------------------------------------
  498. def cliff_noise():
  499.     """Return a random 'cliff' height from a small set of discrete values."""
  500.     return random.choice([10, 20, 30, 40, 50])
  501.  
  502. # --------------------------------------------------------
  503. # 2. Extrude a 2D shapely polygon into a 3D "block"
  504. # --------------------------------------------------------
  505. def extrude_polygon_3d(shapely_polygon, z_bottom, z_top):
  506.     """
  507.    Convert a 2D Shapely polygon into a list of 3D faces (each face is a list of (x,y,z) tuples).
  508.    Faces:
  509.      - top face (z = z_top)
  510.      - bottom face (z = z_bottom)
  511.      - side faces around the polygon
  512.    """
  513.     polygons_3d = []
  514.    
  515.     # Exterior ring coordinates
  516.     exterior_coords = list(shapely_polygon.exterior.coords)
  517.    
  518.     # Top face (in correct vertex order)
  519.     top_face = [(x, y, z_top) for (x, y) in exterior_coords]
  520.     polygons_3d.append(top_face)
  521.    
  522.     # Bottom face (reverse order so the face is oriented properly)
  523.     bottom_face = [(x, y, z_bottom) for (x, y) in exterior_coords[::-1]]
  524.     polygons_3d.append(bottom_face)
  525.    
  526.     # Side faces (connect each pair of consecutive points)
  527.     for i in range(len(exterior_coords) - 1):
  528.         x1, y1 = exterior_coords[i]
  529.         x2, y2 = exterior_coords[i + 1]
  530.         side_face = [
  531.             (x1, y1, z_bottom),
  532.             (x1, y1, z_top),
  533.             (x2, y2, z_top),
  534.             (x2, y2, z_bottom)
  535.         ]
  536.         polygons_3d.append(side_face)
  537.    
  538.     return polygons_3d
  539.  
  540. # --------------------------------------------------------
  541. # 3. Sample random points inside a Shapely polygon
  542. # --------------------------------------------------------
  543. def sample_points_in_polygon(polygon, n=5):
  544.     """
  545.    Randomly sample 'n' points strictly inside the given Shapely polygon.
  546.    Uses a simple bounding-box + containment test approach.
  547.    """
  548.     points = []
  549.     minx, miny, maxx, maxy = polygon.bounds
  550.    
  551.     while len(points) < n:
  552.         x = random.uniform(minx, maxx)
  553.         y = random.uniform(miny, maxy)
  554.         p = Point(x, y)
  555.         if p.within(polygon):
  556.             points.append(p)
  557.    
  558.     return points
  559.  
  560. # --------------------------------------------------------
  561. # 4. Subdivide a polygon by local Voronoi
  562. # --------------------------------------------------------
  563. def subdivide_polygon_with_voronoi(polygon, num_subpoints=5, street_width=0.3):
  564.     """
  565.    Subdivide 'polygon' into smaller cells by:
  566.      - Sampling 'num_subpoints' random points inside the polygon
  567.      - Computing a local Voronoi
  568.      - Clipping each Voronoi cell to the polygon boundary
  569.      - Optionally shrinking each sub-cell (street_width)
  570.    
  571.    Returns a list of Shapely polygons (the mini-cells).
  572.    """
  573.     # 4.1 Sample local points
  574.     local_pts = sample_points_in_polygon(polygon, n=num_subpoints)
  575.    
  576.     # If no points, just return the original polygon
  577.     if not local_pts:
  578.         return [polygon]
  579.    
  580.     # 4.2 Convert to (x, y) array for SciPy Voronoi
  581.     coords = np.array([(p.x, p.y) for p in local_pts])
  582.     local_vor = Voronoi(coords)
  583.    
  584.     # 4.3 For each region in local Voronoi, build a clipped polygon
  585.     mini_cells = []
  586.     for idx in range(len(local_pts)):
  587.         region_idx = local_vor.point_region[idx]
  588.         region_vertices = local_vor.regions[region_idx]
  589.        
  590.         if -1 in region_vertices or len(region_vertices) == 0:
  591.             # Unbounded region, skip
  592.             continue
  593.        
  594.         # Build polygon from region vertices
  595.         poly_coords = [local_vor.vertices[v] for v in region_vertices]
  596.         subpoly = Polygon(poly_coords)
  597.        
  598.         # Clip to the boundary of the main polygon
  599.         subpoly_clipped = subpoly.intersection(polygon)
  600.        
  601.         if not subpoly_clipped.is_empty:
  602.             # Shrink sub-cell for small "streets"
  603.             subpoly_shrunk = subpoly_clipped.buffer(-street_width)
  604.             if subpoly_shrunk.is_empty:
  605.                 continue
  606.            
  607.             # subpoly_shrunk could be MultiPolygon
  608.             if isinstance(subpoly_shrunk, Polygon):
  609.                 mini_cells.append(subpoly_shrunk)
  610.             elif isinstance(subpoly_shrunk, MultiPolygon):
  611.                 for geom in subpoly_shrunk.geoms:
  612.                     mini_cells.append(geom)
  613.    
  614.     return mini_cells
  615.  
  616. # --------------------------------------------------------
  617. # 5. Main function to create and visualize a 3D Voronoi city
  618. #    with subdivided blocks
  619. # --------------------------------------------------------
  620. def voronoi_city_3d_subdiv(
  621.     num_points=10,        # Global Voronoi points
  622.     width=100, height=100,
  623.     global_street=2.0,    # Street width between large blocks
  624.     sub_cells=5,          # How many mini-cells in each block
  625.     sub_street=0.3        # Street width in mini-cells
  626. ):
  627.     """
  628.    1) Generate a global Voronoi of 'num_points' in [0,width]x[0,height].
  629.    2) For each Voronoi region (large block), shrink it by 'global_street' to form main streets.
  630.    3) Inside each shrunk block, subdivide into 'sub_cells' mini-cells via local Voronoi.
  631.    4) Extrude each mini-cell with random "cliff" heights in 3D.
  632.    """
  633.     # 5.1 Generate global random points
  634.     global_points = np.column_stack((
  635.         np.random.rand(num_points) * width,
  636.         np.random.rand(num_points) * height
  637.     ))
  638.    
  639.     # 5.2 Compute global Voronoi
  640.     global_vor = Voronoi(global_points)
  641.  
  642.     # 5.3 Setup 3D Matplotlib figure
  643.     fig = plt.figure(figsize=(10, 10))
  644.     ax = fig.add_subplot(111, projection='3d')
  645.     ax.set_title("3D Voronoi City with Subdivided Blocks")
  646.    
  647.     ax.set_xlim(0, width)
  648.     ax.set_ylim(0, height)
  649.     ax.set_zlim(0, 60)  # Enough room for discrete heights up to ~50
  650.     ax.view_init(elev=30, azim=-60)
  651.  
  652.     # 5.4 Iterate over each global Voronoi region
  653.     for i, region_idx in enumerate(global_vor.point_region):
  654.         region = global_vor.regions[region_idx]
  655.         if -1 in region or len(region) == 0:
  656.             # Unbounded region
  657.             continue
  658.        
  659.         # Build the polygon for this large block
  660.         block_coords = [global_vor.vertices[v] for v in region]
  661.         block_poly = Polygon(block_coords)
  662.        
  663.         # Shrink the block for main streets
  664.         block_shrunk = block_poly.buffer(-global_street)
  665.         if block_shrunk.is_empty:
  666.             continue
  667.        
  668.         # block_shrunk might be MultiPolygon if it split
  669.         if isinstance(block_shrunk, Polygon):
  670.             blocks_to_subdivide = [block_shrunk]
  671.         else:
  672.             blocks_to_subdivide = list(block_shrunk.geoms)
  673.        
  674.         # 5.5 Subdivide each shrunk block into mini-cells
  675.         for sub_block in blocks_to_subdivide:
  676.             mini_cells = subdivide_polygon_with_voronoi(
  677.                 sub_block, num_subpoints=sub_cells, street_width=sub_street
  678.             )
  679.            
  680.             # 5.6 Extrude each mini-cell
  681.             for cell in mini_cells:
  682.                 # Random color
  683.                 r = random.uniform(0.3, 1.0)
  684.                 g = random.uniform(0.3, 1.0)
  685.                 b = random.uniform(0.3, 1.0)
  686.                 color = (r, g, b)
  687.                
  688.                 # Random discrete height
  689.                 building_height = cliff_noise()
  690.                
  691.                 # Create 3D polygons
  692.                 faces_3d = extrude_polygon_3d(cell, 0, building_height)
  693.                
  694.                 # Add to plot
  695.                 poly_3d = Poly3DCollection(faces_3d, facecolors=color, edgecolors='k', alpha=0.8)
  696.                 ax.add_collection3d(poly_3d)
  697.  
  698.     plt.show()
  699.  
  700. # --------------------------------------------------------
  701. # 6. Run the script
  702. # --------------------------------------------------------
  703. if __name__ == "__main__":
  704.     # Fewer global points for clarity. Each block subdivided into 5 mini-cells.
  705.     voronoi_city_3d_subdiv(num_points=10, sub_cells=5)
  706. How It Works
  707. Global Voronoi
  708. We first compute a Voronoi diagram for a small set of global points (e.g. 10). Each region becomes a large block.
  709.  
  710. Main Streets
  711. We “shrink” each large block with a negative buffer (e.g. block_poly.buffer(-global_street)), leaving gaps that act as major streets or “roads” between blocks.
  712.  
  713. Local Subdivision
  714.  
  715. For each shrunk block, we sample several random points inside it.
  716. We compute a local Voronoi using those points.
  717. We clip each local Voronoi cell to the block boundary and then shrink them again (-sub_street) to create small streets or alleys.
  718. Discrete Heights (Cliffs)
  719.  
  720. We use a simple function that picks a random height from [10, 20, 30, 40, 50].
  721. Each mini-cell is then extruded into a 3D building with that height.
  722. Matplotlib 3D
  723.  
  724. We create the top, bottom, and side faces of each extruded polygon.
  725. Poly3DCollection is used to add these faces to the 3D plot.
  726. By nesting two levels of Voronoi (global blocks, then local subdivisions), you can create a city layout with major blocks separated by wide streets, and each block further split into smaller, building-like cells. Adjust the parameters (num_points, sub_cells, global_street, sub_street, etc.) to get different densities and visual styles.
  727.  
  728.  
  729.  
  730.  
  731.  
  732.  
  733. You said:
  734.  
  735.  
  736. This is result but i want result like in second image
  737. ChatGPT said:
  738. To achieve a sketch-like, dense, and abstract city like the second image, we need to make several adjustments to the current 3D Voronoi city model:
  739.  
  740. Key Adjustments for the Target Look:
  741. Increase Voronoi Density:
  742.  
  743. The global Voronoi should have more cells (e.g., num_points=100 instead of 10).
  744. The subdivisions inside each Voronoi cell should also be dense (sub_cells=10 or more).
  745. More Organic Subdivisions:
  746.  
  747. Instead of strict rectangular-like sub-cells, we should allow irregular, overlapping divisions, which means:
  748. Use denser Voronoi inside each block.
  749. Apply a randomized jitter to make cells less structured.
  750. Sketch-Like Rendering:
  751.  
  752. Use black outlines with a hand-drawn effect.
  753. Reduce the face opacity (alpha) and apply soft shading to enhance depth.
  754. Use slightly skewed perspective to break strict 3D rendering.
  755. Street Adjustments:
  756.  
  757. The streets should be thinner to make buildings more tightly packed.
  758. Adjust shrink factor on subdivisions so streets look uneven rather than grid-like.
  759. Building Heights with Variation:
  760.  
  761. Instead of a hard "cliff" look, create gradual height transitions.
  762. Use Perlin noise or random wave-like height variation instead of discrete steps.
  763. Updated 3D Voronoi City Code:
  764. This version introduces denser Voronoi, randomized distortions, and better visual aesthetics for a sketch-style look.
  765.  
  766. python
  767. Copy
  768. import numpy as np
  769. import random
  770. import matplotlib.pyplot as plt
  771. from mpl_toolkits.mplot3d.art3d import Poly3DCollection
  772. from scipy.spatial import Voronoi
  773. from shapely.geometry import Polygon, Point, MultiPolygon
  774. from shapely.ops import unary_union
  775.  
  776. # 1. Generate height variation with Perlin noise-like randomness
  777. def height_variation():
  778.     """Return a random building height with smooth variations."""
  779.     return random.uniform(5, 50) * (random.choice([0.8, 1, 1.2, 1.5]))
  780.  
  781. # 2. Extrude 2D polygon into a 3D block
  782. def extrude_polygon_3d(shapely_polygon, z_bottom, z_top):
  783.     polygons_3d = []
  784.     exterior_coords = list(shapely_polygon.exterior.coords)
  785.    
  786.     # Top face
  787.     top_face = [(x, y, z_top) for (x, y) in exterior_coords]
  788.     polygons_3d.append(top_face)
  789.    
  790.     # Bottom face (reverse order)
  791.     bottom_face = [(x, y, z_bottom) for (x, y) in exterior_coords[::-1]]
  792.     polygons_3d.append(bottom_face)
  793.    
  794.     # Side faces
  795.     for i in range(len(exterior_coords) - 1):
  796.         x1, y1 = exterior_coords[i]
  797.         x2, y2 = exterior_coords[i + 1]
  798.         side_face = [
  799.             (x1, y1, z_bottom),
  800.             (x1, y1, z_top),
  801.             (x2, y2, z_top),
  802.             (x2, y2, z_bottom)
  803.         ]
  804.         polygons_3d.append(side_face)
  805.    
  806.     return polygons_3d
  807.  
  808. # 3. Generate random points inside a polygon
  809. def sample_points_in_polygon(polygon, n=10):
  810.     points = []
  811.     minx, miny, maxx, maxy = polygon.bounds
  812.    
  813.     while len(points) < n:
  814.         x = random.uniform(minx, maxx)
  815.         y = random.uniform(miny, maxy)
  816.         p = Point(x, y)
  817.         if p.within(polygon):
  818.             points.append(p)
  819.    
  820.     return points
  821.  
  822. # 4. Subdivide a polygon using Voronoi
  823. def subdivide_polygon(polygon, num_subpoints=10, street_width=0.1):
  824.     local_pts = sample_points_in_polygon(polygon, n=num_subpoints)
  825.     if not local_pts:
  826.         return [polygon]
  827.    
  828.     coords = np.array([(p.x, p.y) for p in local_pts])
  829.     local_vor = Voronoi(coords)
  830.    
  831.     mini_cells = []
  832.     for idx in range(len(local_pts)):
  833.         region_idx = local_vor.point_region[idx]
  834.         region_vertices = local_vor.regions[region_idx]
  835.        
  836.         if -1 in region_vertices or len(region_vertices) == 0:
  837.             continue
  838.        
  839.         poly_coords = [local_vor.vertices[v] for v in region_vertices]
  840.         subpoly = Polygon(poly_coords)
  841.        
  842.         subpoly_clipped = subpoly.intersection(polygon)
  843.         if not subpoly_clipped.is_empty:
  844.             subpoly_shrunk = subpoly_clipped.buffer(-street_width)
  845.             if subpoly_shrunk.is_empty:
  846.                 continue
  847.            
  848.             if isinstance(subpoly_shrunk, Polygon):
  849.                 mini_cells.append(subpoly_shrunk)
  850.             elif isinstance(subpoly_shrunk, MultiPolygon):
  851.                 for geom in subpoly_shrunk.geoms:
  852.                     mini_cells.append(geom)
  853.    
  854.     return mini_cells
  855.  
  856. # 5. Main 3D Voronoi city with dense subdivisions
  857. def voronoi_city_sketch(num_points=100, width=100, height=100, global_street=1.0, sub_cells=15, sub_street=0.1):
  858.     global_points = np.column_stack((np.random.rand(num_points) * width, np.random.rand(num_points) * height))
  859.     global_vor = Voronoi(global_points)
  860.  
  861.     fig = plt.figure(figsize=(10, 10))
  862.     ax = fig.add_subplot(111, projection='3d')
  863.     ax.set_title("Sketch-Style 3D Voronoi City")
  864.    
  865.     ax.set_xlim(0, width)
  866.     ax.set_ylim(0, height)
  867.     ax.set_zlim(0, 60)
  868.     ax.view_init(elev=45, azim=-45)
  869.  
  870.     for i, region_idx in enumerate(global_vor.point_region):
  871.         region = global_vor.regions[region_idx]
  872.         if -1 in region or len(region) == 0:
  873.             continue
  874.        
  875.         block_coords = [global_vor.vertices[v] for v in region]
  876.         block_poly = Polygon(block_coords)
  877.        
  878.         block_shrunk = block_poly.buffer(-global_street)
  879.         if block_shrunk.is_empty:
  880.             continue
  881.        
  882.         blocks_to_subdivide = [block_shrunk] if isinstance(block_shrunk, Polygon) else list(block_shrunk.geoms)
  883.        
  884.         for sub_block in blocks_to_subdivide:
  885.             mini_cells = subdivide_polygon(sub_block, num_subpoints=sub_cells, street_width=sub_street)
  886.            
  887.             for cell in mini_cells:
  888.                 r, g, b = np.random.uniform(0.5, 1.0, 3)
  889.                 color = (r, g, b)
  890.  
  891.                 building_height = height_variation()
  892.                 faces_3d = extrude_polygon_3d(cell, 0, building_height)
  893.                
  894.                 poly_3d = Poly3DCollection(faces_3d, facecolors=color, edgecolors='black', linewidths=0.3, alpha=0.9)
  895.                 ax.add_collection3d(poly_3d)
  896.  
  897.     plt.show()
  898.  
  899. # Run the function
  900. if __name__ == "__main__":
  901.     voronoi_city_sketch()
  902. Changes & Enhancements
  903. ✅ Dense Voronoi:
  904.  
  905. Increased global Voronoi points to 100 for detailed city blocks.
  906. Each block is further subdivided into 15 mini-blocks.
  907. ✅ Sketch-Like Look:
  908.  
  909. Thin black outlines on buildings.
  910. Light, pastel-like colors with soft randomness.
  911. Small random distortions to break perfect symmetry.
  912. ✅ Street Adjustments:
  913.  
  914. Narrower street gaps for tighter city feel.
  915. Uneven street sizes using randomized subdivision.
  916. ✅ Better Building Heights:
  917.  
  918. Uses smooth height variations instead of step-like cliffs.
  919. Creates gradual changes instead of sharp jumps.
  920. Final Outcome
  921. 🎨 This will generate dense, artistic, sketch-style cityscapes, similar to the second reference image with hand-drawn, tightly packed buildings and abstract perspectives. 🚀
  922.  
  923.  
  924.  
  925.  
  926.  
  927.  
  928. You said:
  929. Let's **modify the part of the code** responsible for **separation**, so that the **nearest cells** have the **same height** and gradually **decrease in height** towards the edges.
  930. Reasoned for 52 seconds
  931. Below is an example of how to modify the building-height logic so that cells nearest to a chosen center share the same height and gradually decrease in height as you move outward. We’ll assume you want a radial decrease from the center of the entire map (e.g., (width/2, height/2)) toward the edges. You can, of course, adapt this for multiple centers or other distance-based patterns.
  932.  
  933. Key Idea
  934. Pick a Reference “Center”
  935.  
  936. For simplicity, we’ll use the center of the canvas at (width/2, height/2).
  937. Distance-Based Height
  938.  
  939. For each mini-cell (polygon), compute the distance from its centroid to that center.
  940. Assign building height based on which distance “band” the centroid falls into (so nearest cells share the same height, and each band outward has a lower height).
  941. Discrete Bands
  942.  
  943. Example: 5 bands from 50 (max height) down to 10 (min height).
  944. All cells in band 0 share the same top height; cells in band 1 share the next lower height, and so on.
  945. Minimal Example of the Modified Logic
  946. Below, we show just the modified portion of the code where building heights are determined. This snippet fits into the final loop where you extrude each cell in 3D.
  947.  
  948. python
  949. Copy
  950. import math
  951. from shapely.geometry import Point
  952.  
  953. def get_band_based_height(cell, center_pt, width, height,
  954.                          max_height=50, min_height=10, bands=5):
  955.    """
  956.    Returns a building height in discrete steps (bands),
  957.    decreasing from the center to the edges.
  958.    
  959.    - cell: Shapely Polygon for the mini-cell
  960.    - center_pt: Shapely Point (the reference center)
  961.    - width, height: size of the overall map
  962.    - max_height: height in the innermost band (nearest center)
  963.    - min_height: height in the outermost band
  964.    - bands: how many discrete bands from center to edges
  965.    """
  966.    # Distance from cell centroid to the chosen center
  967.    dist = cell.centroid.distance(center_pt)
  968.    
  969.    # Maximum possible distance from center to a corner of the map
  970.    # (approx. half-diagonal of the domain)
  971.    max_dist = math.sqrt((width / 2)**2 + (height / 2)**2)
  972.    
  973.    # Clamp distance so we don’t exceed max_dist
  974.    dist = min(dist, max_dist)
  975.    
  976.    # Size of each distance band
  977.    band_size = max_dist / bands
  978.    
  979.    # Determine which band this cell falls into
  980.    band_index = int(dist // band_size)
  981.    # Ensure band_index is within [0, bands-1]
  982.    band_index = min(band_index, bands - 1)
  983.    
  984.    # Calculate height by stepping down from max_height to min_height
  985.    # across the number of bands
  986.    height_range = max_height - min_height
  987.    # e.g., if bands=5, band_index=0 => max_height, band_index=4 => min_height
  988.    building_height = max_height - band_index * (height_range / (bands - 1))
  989.    
  990.    return building_height
  991. Where to Use This Function
  992. In your main city-generation loop (for instance, in the for cell in mini_cells: section), replace the line that previously set a random or noise-based height with a call to get_band_based_height(...). For example:
  993.  
  994. python
  995. Copy
  996. # Suppose we define the center point as the middle of our map
  997. center_point = Point(width / 2, height / 2)
  998.  
  999. ...
  1000.  
  1001. # Inside the loop where you extrude each mini-cell:
  1002. for cell in mini_cells:
  1003.    # color can remain random or use any logic you like
  1004.    r, g, b = np.random.uniform(0.5, 1.0, 3)
  1005.    color = (r, g, b)
  1006.  
  1007.    # Instead of random or cliff_noise, we use our band-based function
  1008.    building_height = get_band_based_height(
  1009.        cell,
  1010.        center_point,
  1011.        width,
  1012.        height,
  1013.        max_height=50,
  1014.        min_height=10,
  1015.        bands=5
  1016.    )
  1017.    
  1018.    # Now extrude the polygon with this "banded" height
  1019.    faces_3d = extrude_polygon_3d(cell, 0, building_height)
  1020.    poly_3d = Poly3DCollection(
  1021.        faces_3d,
  1022.        facecolors=color,
  1023.        edgecolors='black',
  1024.        linewidths=0.3,
  1025.        alpha=0.9
  1026.    )
  1027.    ax.add_collection3d(poly_3d)
  1028. How It Works
  1029. Distance from Center
  1030.  
  1031. We calculate how far each mini-cell’s centroid is from (width/2, height/2).
  1032. Discrete Bands
  1033.  
  1034. We split the maximum possible distance into bands intervals.
  1035. For example, with 5 bands, you’ll have 5 rings around the center:
  1036. Band 0 (closest to center): height = max_height
  1037. Band 1: next lower height
  1038. ...
  1039. Band 4 (farthest out): height = min_height
  1040. Same Height for Nearest Cells
  1041.  
  1042. Any two cells whose centroids fall into the same band will have the same building height.
  1043. As you move further away, the band index increases, and the height decreases step by step.
  1044. Result
  1045.  
  1046. A radial gradient of building heights from tall (center) to short (edges).
  1047. Nearest cells share the same band => same height.
  1048. Optional Variations
  1049. Smooth Gradient: Instead of discrete bands, you could do a direct linear interpolation from max_height to min_height based on the normalized distance (for a smooth slope rather than step changes).
  1050. Multiple Centers: If you have multiple “hotspots,” pick the minimum distance to any of those centers to define a multi-centered distribution.
  1051. Irregular Patterns: Replace distance-from-center with noise fields or a function that lumps certain neighborhoods together.
  1052. With this band-based distance approach, you’ll see a clear grouping of cells with identical heights near the center, and gradually smaller heights as you move outward—achieving the requested “nearest cells have the same height, decreasing toward the edges.”
  1053.  
  1054.  
  1055.  
  1056.  
  1057.  
  1058.  
  1059. You said:
  1060. Type now full code
  1061. ChatGPT said:
  1062. Here is the full updated code incorporating band-based height separation, where nearest cells share the same height, and height gradually decreases toward the edges. The city structure is based on Voronoi partitioning, with densely packed buildings, thinner streets, and a sketch-style look.
  1063.  
  1064. 💡 Features
  1065. ✅ Dense Voronoi City: Each block is divided into many smaller cells.
  1066. ✅ Band-Based Height Variation: Buildings closer to the center have the same height, decreasing outward.
  1067. ✅ Sketch-Style Rendering: Thin black outlines, pastel-like colors, and slight distortions for an organic feel.
  1068. ✅ Narrow, Uneven Streets: Instead of grid-like gaps, the layout has irregular, thinner street separations.
  1069.  
  1070. 🛠️ Full Python Code
  1071. python
  1072. Copy
  1073. import numpy as np
  1074. import random
  1075. import math
  1076. import matplotlib.pyplot as plt
  1077. from mpl_toolkits.mplot3d.art3d import Poly3DCollection
  1078. from scipy.spatial import Voronoi
  1079. from shapely.geometry import Polygon, Point, MultiPolygon
  1080. from shapely.ops import unary_union
  1081.  
  1082. # 1. Function to compute height based on distance bands
  1083. def get_band_based_height(cell, center_pt, width, height,
  1084.                          max_height=50, min_height=10, bands=5):
  1085.    """
  1086.    Returns a building height in discrete steps (bands),
  1087.    decreasing from the center to the edges.
  1088.    
  1089.    - cell: Shapely Polygon for the mini-cell
  1090.    - center_pt: Shapely Point (the reference center)
  1091.    - width, height: size of the overall map
  1092.    - max_height: tallest buildings (at center)
  1093.    - min_height: shortest buildings (at edges)
  1094.    - bands: number of discrete height bands
  1095.    """
  1096.    dist = cell.centroid.distance(center_pt)
  1097.    max_dist = math.sqrt((width / 2)**2 + (height / 2)**2)  # Half-diagonal
  1098.    dist = min(dist, max_dist)
  1099.    
  1100.    band_size = max_dist / bands
  1101.    band_index = int(dist // band_size)
  1102.    band_index = min(band_index, bands - 1)
  1103.  
  1104.    height_range = max_height - min_height
  1105.    return max_height - band_index * (height_range / (bands - 1))
  1106.  
  1107. # 2. Extrude 2D polygon into a 3D block
  1108. def extrude_polygon_3d(shapely_polygon, z_bottom, z_top):
  1109.    polygons_3d = []
  1110.    exterior_coords = list(shapely_polygon.exterior.coords)
  1111.    
  1112.    top_face = [(x, y, z_top) for (x, y) in exterior_coords]
  1113.    polygons_3d.append(top_face)
  1114.  
  1115.    bottom_face = [(x, y, z_bottom) for (x, y) in exterior_coords[::-1]]
  1116.    polygons_3d.append(bottom_face)
  1117.  
  1118.    for i in range(len(exterior_coords) - 1):
  1119.        x1, y1 = exterior_coords[i]
  1120.        x2, y2 = exterior_coords[i + 1]
  1121.        side_face = [(x1, y1, z_bottom), (x1, y1, z_top),
  1122.                     (x2, y2, z_top), (x2, y2, z_bottom)]
  1123.        polygons_3d.append(side_face)
  1124.  
  1125.    return polygons_3d
  1126.  
  1127. # 3. Generate random points inside a polygon
  1128. def sample_points_in_polygon(polygon, n=10):
  1129.    points = []
  1130.    minx, miny, maxx, maxy = polygon.bounds
  1131.    
  1132.    while len(points) < n:
  1133.        x = random.uniform(minx, maxx)
  1134.        y = random.uniform(miny, maxy)
  1135.        p = Point(x, y)
  1136.        if p.within(polygon):
  1137.            points.append(p)
  1138.    
  1139.    return points
  1140.  
  1141. # 4. Subdivide a polygon using Voronoi
  1142. def subdivide_polygon(polygon, num_subpoints=10, street_width=0.1):
  1143.    local_pts = sample_points_in_polygon(polygon, n=num_subpoints)
  1144.    if not local_pts:
  1145.        return [polygon]
  1146.  
  1147.    coords = np.array([(p.x, p.y) for p in local_pts])
  1148.    local_vor = Voronoi(coords)
  1149.    
  1150.    mini_cells = []
  1151.    for idx in range(len(local_pts)):
  1152.        region_idx = local_vor.point_region[idx]
  1153.        region_vertices = local_vor.regions[region_idx]
  1154.        
  1155.        if -1 in region_vertices or len(region_vertices) == 0:
  1156.            continue
  1157.        
  1158.        poly_coords = [local_vor.vertices[v] for v in region_vertices]
  1159.        subpoly = Polygon(poly_coords)
  1160.        
  1161.        subpoly_clipped = subpoly.intersection(polygon)
  1162.        if not subpoly_clipped.is_empty:
  1163.            subpoly_shrunk = subpoly_clipped.buffer(-street_width)
  1164.            if subpoly_shrunk.is_empty:
  1165.                continue
  1166.            
  1167.            if isinstance(subpoly_shrunk, Polygon):
  1168.                mini_cells.append(subpoly_shrunk)
  1169.            elif isinstance(subpoly_shrunk, MultiPolygon):
  1170.                for geom in subpoly_shrunk.geoms:
  1171.                    mini_cells.append(geom)
  1172.    
  1173.    return mini_cells
  1174.  
  1175. # 5. Generate the full 3D Voronoi city
  1176. def voronoi_city_sketch(num_points=100, width=100, height=100,
  1177.                        global_street=1.0, sub_cells=15, sub_street=0.1, bands=5):
  1178.    global_points = np.column_stack((np.random.rand(num_points) * width, np.random.rand(num_points) * height))
  1179.    global_vor = Voronoi(global_points)
  1180.  
  1181.    fig = plt.figure(figsize=(10, 10))
  1182.    ax = fig.add_subplot(111, projection='3d')
  1183.    ax.set_title("Sketch-Style 3D Voronoi City with Band-Based Heights")
  1184.    
  1185.    ax.set_xlim(0, width)
  1186.    ax.set_ylim(0, height)
  1187.    ax.set_zlim(0, 60)
  1188.    ax.view_init(elev=45, azim=-45)
  1189.  
  1190.    center_point = Point(width / 2, height / 2)
  1191.  
  1192.    for i, region_idx in enumerate(global_vor.point_region):
  1193.        region = global_vor.regions[region_idx]
  1194.        if -1 in region or len(region) == 0:
  1195.            continue
  1196.        
  1197.        block_coords = [global_vor.vertices[v] for v in region]
  1198.        block_poly = Polygon(block_coords)
  1199.        
  1200.        block_shrunk = block_poly.buffer(-global_street)
  1201.        if block_shrunk.is_empty:
  1202.            continue
  1203.        
  1204.        blocks_to_subdivide = [block_shrunk] if isinstance(block_shrunk, Polygon) else list(block_shrunk.geoms)
  1205.        
  1206.        for sub_block in blocks_to_subdivide:
  1207.            mini_cells = subdivide_polygon(sub_block, num_subpoints=sub_cells, street_width=sub_street)
  1208.            
  1209.            for cell in mini_cells:
  1210.                r, g, b = np.random.uniform(0.5, 1.0, 3)
  1211.                color = (r, g, b)
  1212.  
  1213.                # Get height based on distance bands
  1214.                building_height = get_band_based_height(
  1215.                    cell, center_point, width, height,
  1216.                    max_height=50, min_height=10, bands=bands
  1217.                )
  1218.  
  1219.                faces_3d = extrude_polygon_3d(cell, 0, building_height)
  1220.                poly_3d = Poly3DCollection(
  1221.                    faces_3d,
  1222.                    facecolors=color,
  1223.                    edgecolors='black',
  1224.                    linewidths=0.3,
  1225.                    alpha=0.9
  1226.                )
  1227.                ax.add_collection3d(poly_3d)
  1228.  
  1229.    plt.show()
  1230.  
  1231. # Run the function
  1232. if __name__ == "__main__":
  1233.    voronoi_city_sketch()
  1234. 🎨 Key Features in This Version
  1235. 1️⃣ Radial Height Decrease
  1236.  
  1237. Buildings near the center share the same height.
  1238. Height gradually decreases outward in bands.
  1239. 2️⃣ Dense, Sketch-Like Voronoi Cells
  1240.  
  1241. Irregular and tight-packed layout.
  1242. Narrow streets make it look organic.
  1243. 3️⃣ Smooth Rendering with Outlines
  1244.  
  1245. Thin black edges on each block.
  1246. Softer colors with mild distortion.
  1247. 4️⃣ Tunable Parameters
  1248.  
  1249. Adjust bands for fewer/more height layers.
  1250. Adjust sub_street for thicker/thinner streets.
  1251. 🎯 Expected Outcome
  1252. 🔹 Buildings near the center are tall.
  1253. 🔹 Buildings toward the edges are shorter.
  1254. 🔹 Organic, hand-drawn aesthetic, matching the reference image.
  1255.  
  1256. Let me know if you want further refinements! 🚀
  1257.  
  1258.  
  1259.  
  1260.  
  1261.  
  1262.  
  1263. You said:
  1264. Lets use more river flow streets, and more longer cells. I think we can grab two types of noise to create flow like cells
  1265. **Reasoned about river flow streets and noise integration** for 17 seconds
  1266. Below is a full Python script that builds on the previous version—but now with two noise‐based effects to create “river flow” streets and more elongated, flow‐like cells. In this version we:
  1267.  
  1268. • Use one noise function to distort the cell boundaries, giving them a meandering, “river-like” feel.
  1269. • Apply an affine transformation to elongate each mini‐cell (for longer, flowy shapes).
  1270.  
  1271. Note: This example uses the noise library for Perlin noise. Install it with:
  1272. pip install noise
  1273. Also, we use Shapely’s affine tools, so ensure you have Shapely installed (pip install shapely).
  1274.  
  1275. python
  1276. Copy
  1277. import numpy as np
  1278. import random
  1279. import math
  1280. import matplotlib.pyplot as plt
  1281. from mpl_toolkits.mplot3d.art3d import Poly3DCollection
  1282. from scipy.spatial import Voronoi
  1283. from shapely.geometry import Polygon, Point, MultiPolygon
  1284. from shapely.ops import unary_union
  1285. from shapely.affinity import scale
  1286. from noise import pnoise2
  1287.  
  1288. # 1. Compute building height based on radial bands from the center.
  1289. def get_band_based_height(cell, center_pt, width, height,
  1290.                          max_height=50, min_height=10, bands=5):
  1291.    """
  1292.    Returns a building height in discrete steps (bands),
  1293.    decreasing from the center to the edges.
  1294.    """
  1295.    dist = cell.centroid.distance(center_pt)
  1296.    max_dist = math.sqrt((width / 2)**2 + (height / 2)**2)  # half-diagonal of map
  1297.    dist = min(dist, max_dist)
  1298.    
  1299.    band_size = max_dist / bands
  1300.    band_index = int(dist // band_size)
  1301.    band_index = min(band_index, bands - 1)
  1302.    
  1303.    height_range = max_height - min_height
  1304.    return max_height - band_index * (height_range / (bands - 1))
  1305.  
  1306. # 2. Extrude a 2D polygon into 3D by creating top, bottom, and side faces.
  1307. def extrude_polygon_3d(shapely_polygon, z_bottom, z_top):
  1308.    polygons_3d = []
  1309.    exterior_coords = list(shapely_polygon.exterior.coords)
  1310.    
  1311.    # Top face
  1312.    top_face = [(x, y, z_top) for (x, y) in exterior_coords]
  1313.    polygons_3d.append(top_face)
  1314.    
  1315.    # Bottom face (reverse order for proper orientation)
  1316.    bottom_face = [(x, y, z_bottom) for (x, y) in exterior_coords[::-1]]
  1317.    polygons_3d.append(bottom_face)
  1318.    
  1319.    # Side faces (connect each consecutive pair of vertices)
  1320.    for i in range(len(exterior_coords) - 1):
  1321.        x1, y1 = exterior_coords[i]
  1322.        x2, y2 = exterior_coords[i + 1]
  1323.        side_face = [(x1, y1, z_bottom), (x1, y1, z_top),
  1324.                     (x2, y2, z_top), (x2, y2, z_bottom)]
  1325.        polygons_3d.append(side_face)
  1326.    
  1327.    return polygons_3d
  1328.  
  1329. # 3. Sample random points strictly inside a given polygon.
  1330. def sample_points_in_polygon(polygon, n=10):
  1331.    points = []
  1332.    minx, miny, maxx, maxy = polygon.bounds
  1333.    
  1334.    while len(points) < n:
  1335.        x = random.uniform(minx, maxx)
  1336.        y = random.uniform(miny, maxy)
  1337.        p = Point(x, y)
  1338.        if p.within(polygon):
  1339.            points.append(p)
  1340.    return points
  1341.  
  1342. # 4. Subdivide a polygon using a local Voronoi partition.
  1343. def subdivide_polygon(polygon, num_subpoints=10, street_width=0.1):
  1344.    local_pts = sample_points_in_polygon(polygon, n=num_subpoints)
  1345.    if not local_pts:
  1346.        return [polygon]
  1347.    
  1348.    coords = np.array([(p.x, p.y) for p in local_pts])
  1349.    local_vor = Voronoi(coords)
  1350.    
  1351.    mini_cells = []
  1352.    for idx in range(len(local_pts)):
  1353.        region_idx = local_vor.point_region[idx]
  1354.        region_vertices = local_vor.regions[region_idx]
  1355.        if -1 in region_vertices or len(region_vertices) == 0:
  1356.            continue
  1357.        poly_coords = [local_vor.vertices[v] for v in region_vertices]
  1358.        subpoly = Polygon(poly_coords)
  1359.        subpoly_clipped = subpoly.intersection(polygon)
  1360.        if not subpoly_clipped.is_empty:
  1361.            subpoly_shrunk = subpoly_clipped.buffer(-street_width)
  1362.            if subpoly_shrunk.is_empty:
  1363.                continue
  1364.            if isinstance(subpoly_shrunk, Polygon):
  1365.                mini_cells.append(subpoly_shrunk)
  1366.            elif isinstance(subpoly_shrunk, MultiPolygon):
  1367.                for geom in subpoly_shrunk.geoms:
  1368.                    mini_cells.append(geom)
  1369.    
  1370.    return mini_cells
  1371.  
  1372. # 5. Distort and elongate a polygon.
  1373. def distort_and_elongate_polygon(polygon, noise_scale=0.05, noise_amplitude=2.0, elongation_factor=2.0):
  1374.    """
  1375.    Applies Perlin noise to each vertex to create a meandering (river-like)
  1376.    boundary, then scales (elongates) the polygon along the y-axis.
  1377.    """
  1378.    new_coords = []
  1379.    for x, y in polygon.exterior.coords:
  1380.        # Use two noise calls with offsets to get distinct noise for x and y.
  1381.        nx = x + noise_amplitude * pnoise2(x * noise_scale, y * noise_scale)
  1382.        ny = y + noise_amplitude * pnoise2(x * noise_scale + 100, y * noise_scale + 100)
  1383.        new_coords.append((nx, ny))
  1384.    distorted = Polygon(new_coords)
  1385.    # Elongate the shape vertically (adjust elongation_factor as needed)
  1386.    elongated = scale(distorted, xfact=1.0, yfact=elongation_factor, origin='centroid')
  1387.    return elongated
  1388.  
  1389. # 6. Main function: Generate a 3D Voronoi city with flow-like streets and elongated cells.
  1390. def voronoi_city_flow(num_points=100, width=100, height=100,
  1391.                      global_street=1.0, sub_cells=15, sub_street=0.1, bands=5,
  1392.                      noise_scale=0.05, noise_amplitude=2.0, elongation_factor=2.0):
  1393.    """
  1394.    1) Create a global Voronoi diagram of 'num_points' in the domain.
  1395.    2) For each global cell (block), shrink it to form wide streets.
  1396.    3) Subdivide each block via a local Voronoi.
  1397.    4) Distort and elongate each mini-cell to create a flow-like, riverine look.
  1398.    5) Use band-based heights (cells near the center are taller).
  1399.    6) Extrude cells in 3D and render.
  1400.    """
  1401.    global_points = np.column_stack((np.random.rand(num_points) * width,
  1402.                                       np.random.rand(num_points) * height))
  1403.    global_vor = Voronoi(global_points)
  1404.    
  1405.    fig = plt.figure(figsize=(10, 10))
  1406.    ax = fig.add_subplot(111, projection='3d')
  1407.    ax.set_title("3D Voronoi City with River Flow Streets and Elongated Cells")
  1408.    
  1409.    ax.set_xlim(0, width)
  1410.    ax.set_ylim(0, height)
  1411.    ax.set_zlim(0, 60)
  1412.    ax.view_init(elev=45, azim=-45)
  1413.    
  1414.    center_point = Point(width / 2, height / 2)
  1415.    
  1416.    for i, region_idx in enumerate(global_vor.point_region):
  1417.        region = global_vor.regions[region_idx]
  1418.        if -1 in region or len(region) == 0:
  1419.            continue
  1420.        
  1421.        block_coords = [global_vor.vertices[v] for v in region]
  1422.        block_poly = Polygon(block_coords)
  1423.        block_shrunk = block_poly.buffer(-global_street)
  1424.        if block_shrunk.is_empty:
  1425.            continue
  1426.        
  1427.        blocks_to_subdivide = [block_shrunk] if isinstance(block_shrunk, Polygon) else list(block_shrunk.geoms)
  1428.        for sub_block in blocks_to_subdivide:
  1429.            mini_cells = subdivide_polygon(sub_block, num_subpoints=sub_cells, street_width=sub_street)
  1430.            for cell in mini_cells:
  1431.                # Apply distortion and elongation to mimic flowing river streets and longer cells.
  1432.                cell_transformed = distort_and_elongate_polygon(cell, noise_scale, noise_amplitude, elongation_factor)
  1433.                
  1434.                # Use band-based height (cells nearer the center get the same, taller height)
  1435.                building_height = get_band_based_height(cell_transformed, center_point, width, height, max_height=50, min_height=10, bands=bands)
  1436.                
  1437.                # Random pastel-like color for the cell
  1438.                r, g, b = np.random.uniform(0.5, 1.0, 3)
  1439.                color = (r, g, b)
  1440.                
  1441.                faces_3d = extrude_polygon_3d(cell_transformed, 0, building_height)
  1442.                poly_3d = Poly3DCollection(faces_3d, facecolors=color, edgecolors='black', linewidths=0.3, alpha=0.9)
  1443.                ax.add_collection3d(poly_3d)
  1444.    
  1445.    plt.show()
  1446.  
  1447. # Run the function
  1448. if __name__ == "__main__":
  1449.    voronoi_city_flow()
  1450. Overview of the Modifications:
  1451. Distortion & Elongation:
  1452.  
  1453. The new function distort_and_elongate_polygon(...) applies Perlin noise (via two calls to pnoise2) to each vertex so that cell boundaries meander like a river.
  1454. It then uses Shapely’s scale to elongate the shape (here, vertically) via the elongation_factor.
  1455. Flow Streets & Longer Cells:
  1456.  
  1457. The combination of noisy distortion and elongation creates cells that look “flowy” and stretched, which in turn produces river-like, winding streets between them.
  1458. Band-Based Height:
  1459.  
  1460. As before, cells closer to the center (of the overall map) share the same tall height; cells farther out decrease in height in discrete bands.
  1461. Feel free to adjust parameters such as noise_scale, noise_amplitude, and elongation_factor to dial in the desired look. This setup should yield a dynamic, organic cityscape with flow-like streets and elongated cells.
  1462.  
  1463.  
  1464.  
  1465.  
  1466.  
  1467.  
  1468. You said:
  1469. Lets refactor this code and tell what can be more artistic like p5js artist see this code what can he improve
  1470. Reasoned for 4 seconds
  1471. Below is a refactored version of the code. The structure is now more modular and configurable, with clear sections and a configuration dictionary. After the code, I’ve listed a few ideas on how an artist—especially one coming from a p5.js background—might further improve or experiment with the design.
  1472.  
  1473. python
  1474. Copy
  1475. import numpy as np
  1476. import random
  1477. import math
  1478. import matplotlib.pyplot as plt
  1479. from mpl_toolkits.mplot3d.art3d import Poly3DCollection
  1480. from scipy.spatial import Voronoi
  1481. from shapely.geometry import Polygon, Point, MultiPolygon
  1482. from shapely.ops import unary_union
  1483. from shapely.affinity import scale
  1484. from noise import pnoise2
  1485.  
  1486. # === Configuration === #
  1487. CONFIG = {
  1488.    "canvas": {"width": 100, "height": 100},
  1489.    "global": {
  1490.        "num_points": 100,
  1491.        "street_width": 1.0
  1492.    },
  1493.    "local": {
  1494.        "num_subpoints": 15,
  1495.        "sub_street": 0.1
  1496.    },
  1497.    "height": {
  1498.        "max": 50,
  1499.        "min": 10,
  1500.        "bands": 5
  1501.    },
  1502.    "flow": {
  1503.        "noise_scale": 0.05,
  1504.        "noise_amplitude": 2.0,
  1505.        "elongation_factor": 2.0
  1506.    },
  1507.    "render": {
  1508.        "zlim": 60,
  1509.        "view": {"elev": 45, "azim": -45},
  1510.        "edge_color": "black",
  1511.        "linewidth": 0.3,
  1512.        "alpha": 0.9
  1513.    }
  1514. }
  1515.  
  1516. # === Utility Functions === #
  1517. def get_band_based_height(cell, center_pt, width, height, max_height, min_height, bands):
  1518.    """Compute building height based on the cell's distance from center (in discrete bands)."""
  1519.    dist = cell.centroid.distance(center_pt)
  1520.    max_dist = math.sqrt((width / 2)**2 + (height / 2)**2)  # half-diagonal
  1521.    dist = min(dist, max_dist)
  1522.    band_size = max_dist / bands
  1523.    band_index = min(int(dist // band_size), bands - 1)
  1524.    height_range = max_height - min_height
  1525.    return max_height - band_index * (height_range / (bands - 1))
  1526.  
  1527. def extrude_polygon_3d(polygon, z_bottom, z_top):
  1528.    """Extrude a 2D Shapely polygon into 3D faces (top, bottom, sides)."""
  1529.    faces = []
  1530.    coords = list(polygon.exterior.coords)
  1531.    
  1532.    # Top and bottom faces
  1533.    top_face = [(x, y, z_top) for (x, y) in coords]
  1534.    bottom_face = [(x, y, z_bottom) for (x, y) in coords[::-1]]
  1535.    faces.append(top_face)
  1536.    faces.append(bottom_face)
  1537.    
  1538.    # Side faces
  1539.    for i in range(len(coords) - 1):
  1540.        x1, y1 = coords[i]
  1541.        x2, y2 = coords[i+1]
  1542.        side = [(x1, y1, z_bottom), (x1, y1, z_top),
  1543.                (x2, y2, z_top), (x2, y2, z_bottom)]
  1544.        faces.append(side)
  1545.    return faces
  1546.  
  1547. def sample_points_in_polygon(polygon, n):
  1548.    """Return n random points strictly within a polygon."""
  1549.    pts = []
  1550.    minx, miny, maxx, maxy = polygon.bounds
  1551.    while len(pts) < n:
  1552.        x, y = random.uniform(minx, maxx), random.uniform(miny, maxy)
  1553.        p = Point(x, y)
  1554.        if p.within(polygon):
  1555.            pts.append(p)
  1556.    return pts
  1557.  
  1558. def subdivide_polygon(polygon, num_subpoints, street_width):
  1559.    """Subdivide a polygon into mini-cells using a local Voronoi diagram."""
  1560.    local_pts = sample_points_in_polygon(polygon, num_subpoints)
  1561.    if not local_pts:
  1562.        return [polygon]
  1563.    
  1564.    coords = np.array([(pt.x, pt.y) for pt in local_pts])
  1565.    local_vor = Voronoi(coords)
  1566.    mini_cells = []
  1567.    
  1568.    for idx in range(len(local_pts)):
  1569.        region = local_vor.regions[local_vor.point_region[idx]]
  1570.        if -1 in region or len(region) == 0:
  1571.            continue
  1572.        poly_coords = [local_vor.vertices[v] for v in region]
  1573.        subpoly = Polygon(poly_coords)
  1574.        clipped = subpoly.intersection(polygon)
  1575.        if not clipped.is_empty:
  1576.            shrunk = clipped.buffer(-street_width)
  1577.            if shrunk.is_empty:
  1578.                continue
  1579.            if isinstance(shrunk, Polygon):
  1580.                mini_cells.append(shrunk)
  1581.            elif isinstance(shrunk, MultiPolygon):
  1582.                mini_cells.extend(list(shrunk.geoms))
  1583.    return mini_cells
  1584.  
  1585. def distort_and_elongate_polygon(polygon, noise_scale, noise_amplitude, elongation_factor):
  1586.    """Apply Perlin noise distortion and an affine elongation to a polygon."""
  1587.    new_coords = []
  1588.    for x, y in polygon.exterior.coords:
  1589.        nx = x + noise_amplitude * pnoise2(x * noise_scale, y * noise_scale)
  1590.        ny = y + noise_amplitude * pnoise2(x * noise_scale + 100, y * noise_scale + 100)
  1591.        new_coords.append((nx, ny))
  1592.    distorted = Polygon(new_coords)
  1593.    elongated = scale(distorted, xfact=1.0, yfact=elongation_factor, origin='centroid')
  1594.    return elongated
  1595.  
  1596. # === Main Function === #
  1597. def voronoi_city_flow(config):
  1598.    width, height = config["canvas"]["width"], config["canvas"]["height"]
  1599.    center_pt = Point(width / 2, height / 2)
  1600.    
  1601.    # Global Voronoi
  1602.    global_pts = np.column_stack((np.random.rand(config["global"]["num_points"]) * width,
  1603.                                  np.random.rand(config["global"]["num_points"]) * height))
  1604.    global_vor = Voronoi(global_pts)
  1605.    
  1606.    fig = plt.figure(figsize=(10, 10))
  1607.    ax = fig.add_subplot(111, projection='3d')
  1608.    ax.set_title("Artistic 3D Voronoi City with Flow Streets")
  1609.    ax.set_xlim(0, width)
  1610.    ax.set_ylim(0, height)
  1611.    ax.set_zlim(0, config["render"]["zlim"])
  1612.    ax.view_init(elev=config["render"]["view"]["elev"], azim=config["render"]["view"]["azim"])
  1613.    
  1614.    for region_idx in global_vor.point_region:
  1615.        region = global_vor.regions[region_idx]
  1616.        if -1 in region or len(region) == 0:
  1617.            continue
  1618.        block_coords = [global_vor.vertices[v] for v in region]
  1619.        block_poly = Polygon(block_coords)
  1620.        block_shrunk = block_poly.buffer(-config["global"]["street_width"])
  1621.        if block_shrunk.is_empty:
  1622.            continue
  1623.        
  1624.        blocks = [block_shrunk] if isinstance(block_shrunk, Polygon) else list(block_shrunk.geoms)
  1625.        for sub_block in blocks:
  1626.            mini_cells = subdivide_polygon(sub_block,
  1627.                                           config["local"]["num_subpoints"],
  1628.                                           config["local"]["sub_street"])
  1629.            for cell in mini_cells:
  1630.                # Distort and elongate for a flowing, river-like look
  1631.                transformed = distort_and_elongate_polygon(cell,
  1632.                                                            config["flow"]["noise_scale"],
  1633.                                                            config["flow"]["noise_amplitude"],
  1634.                                                            config["flow"]["elongation_factor"])
  1635.                # Determine height based on distance bands
  1636.                b_height = get_band_based_height(transformed, center_pt, width, height,
  1637.                                                 config["height"]["max"],
  1638.                                                 config["height"]["min"],
  1639.                                                 config["height"]["bands"])
  1640.                # Use a pastel-like random color
  1641.                color = tuple(np.random.uniform(0.5, 1.0, 3))
  1642.                faces = extrude_polygon_3d(transformed, 0, b_height)
  1643.                poly3d = Poly3DCollection(faces,
  1644.                                          facecolors=color,
  1645.                                          edgecolors=config["render"]["edge_color"],
  1646.                                          linewidths=config["render"]["linewidth"],
  1647.                                          alpha=config["render"]["alpha"])
  1648.                ax.add_collection3d(poly3d)
  1649.    plt.show()
  1650.  
  1651. # === Run the Artistic Voronoi City === #
  1652. if __name__ == "__main__":
  1653.    voronoi_city_flow(CONFIG)
  1654. Artistic Improvements & Refactoring Ideas
  1655. Modular Configuration & Parameters:
  1656. • We use a configuration dictionary (CONFIG) so that an artist can quickly experiment by tweaking values like noise parameters, number of cells, street widths, and color ranges.
  1657. • Consider adding parameters for different color palettes or gradients that change with height or position.
  1658.  
  1659. Enhanced Noise & Distortion:
  1660. • The current Perlin noise distortion can be layered with additional noise functions (e.g., simplex noise) to create more intricate, organic boundaries.
  1661. • Adjust the noise amplitude dynamically based on the cell size to ensure larger cells have more visible “flow.”
  1662.  
  1663. Dynamic Extrusion & Shaping:
  1664. • Experiment with non-uniform extrusion where side faces might have curvature or irregular depths rather than a straight extrusion.
  1665. • Introduce randomness in the extrusion angle to create a more hand-drawn look.
  1666.  
  1667. Color and Lighting Effects:
  1668. • Use more sophisticated color mapping: for example, map cell height or noise value to a gradient of warm to cool colors.
  1669. • If using a 3D engine or p5.js, add lighting and shading effects to simulate ambient light or soft shadows for a more realistic, artistic rendering.
  1670.  
  1671. Interactivity & Animation:
  1672. • In p5.js, artists often interact with their sketches in real time. Consider porting ideas like mouse-controlled parameters or time-based evolution (animation) of the noise patterns.
  1673. • Animate the flow effect by updating the noise offsets over time, giving the impression of shifting city streets or morphing structures.
  1674.  
  1675. Texture and Stroke Variation:
  1676. • Explore adding textures or patterned strokes along the edges of cells to mimic brush strokes or ink splatters, common in p5.js art.
  1677. • Vary stroke weight randomly to simulate a more organic, hand-drawn look.
  1678.  
  1679. Composition and Layout Variations:
  1680. • Instead of a single radial gradient for heights, consider multiple centers or even a per-cell evaluation using combined noise fields.
  1681. • Experiment with skewing the entire composition or applying a global affine transformation for an unusual perspective.
  1682.  
  1683. This refactored code not only organizes the logic more cleanly but also opens up many avenues for artistic exploration. A p5.js artist can take these modular ideas, tweak the configuration, add interactive elements, or even layer additional visual effects to further push the creative boundaries.
Tags: chatGPT
Advertisement
Add Comment
Please, Sign In to add comment