Advertisement
oshkoshbagoshh

cpython_csv

Dec 5th, 2017
299
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 16.24 KB | None | 0 0
  1.  
  2. """
  3. csv.py - read/write/investigate CSV files
  4. """
  5.  
  6. import re
  7. from _csv import Error, __version__, writer, reader, register_dialect, \
  8.                  unregister_dialect, get_dialect, list_dialects, \
  9.                  field_size_limit, \
  10.                  QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \
  11.                  __doc__
  12. from _csv import Dialect as _Dialect
  13.  
  14. from collections import OrderedDict
  15. from io import StringIO
  16.  
  17. __all__ = ["QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE",
  18.            "Error", "Dialect", "__doc__", "excel", "excel_tab",
  19.            "field_size_limit", "reader", "writer",
  20.            "register_dialect", "get_dialect", "list_dialects", "Sniffer",
  21.            "unregister_dialect", "__version__", "DictReader", "DictWriter",
  22.            "unix_dialect"]
  23.  
  24. class Dialect:
  25.     """Describe a CSV dialect.
  26.  
  27.    This must be subclassed (see csv.excel).  Valid attributes are:
  28.    delimiter, quotechar, escapechar, doublequote, skipinitialspace,
  29.    lineterminator, quoting.
  30.  
  31.    """
  32.     _name = ""
  33.     _valid = False
  34.     # placeholders
  35.     delimiter = None
  36.     quotechar = None
  37.     escapechar = None
  38.     doublequote = None
  39.     skipinitialspace = None
  40.     lineterminator = None
  41.     quoting = None
  42.  
  43.     def __init__(self):
  44.         if self.__class__ != Dialect:
  45.             self._valid = True
  46.         self._validate()
  47.  
  48.     def _validate(self):
  49.         try:
  50.             _Dialect(self)
  51.         except TypeError as e:
  52.             # We do this for compatibility with py2.3
  53.             raise Error(str(e))
  54.  
  55. class excel(Dialect):
  56.     """Describe the usual properties of Excel-generated CSV files."""
  57.     delimiter = ','
  58.     quotechar = '"'
  59.     doublequote = True
  60.     skipinitialspace = False
  61.     lineterminator = '\r\n'
  62.     quoting = QUOTE_MINIMAL
  63. register_dialect("excel", excel)
  64.  
  65. class excel_tab(excel):
  66.     """Describe the usual properties of Excel-generated TAB-delimited files."""
  67.     delimiter = '\t'
  68. register_dialect("excel-tab", excel_tab)
  69.  
  70. class unix_dialect(Dialect):
  71.     """Describe the usual properties of Unix-generated CSV files."""
  72.     delimiter = ','
  73.     quotechar = '"'
  74.     doublequote = True
  75.     skipinitialspace = False
  76.     lineterminator = '\n'
  77.     quoting = QUOTE_ALL
  78. register_dialect("unix", unix_dialect)
  79.  
  80.  
  81. class DictReader:
  82.     def __init__(self, f, fieldnames=None, restkey=None, restval=None,
  83.                  dialect="excel", *args, **kwds):
  84.         self._fieldnames = fieldnames   # list of keys for the dict
  85.         self.restkey = restkey          # key to catch long rows
  86.         self.restval = restval          # default value for short rows
  87.         self.reader = reader(f, dialect, *args, **kwds)
  88.         self.dialect = dialect
  89.         self.line_num = 0
  90.  
  91.     def __iter__(self):
  92.         return self
  93.  
  94.     @property
  95.     def fieldnames(self):
  96.         if self._fieldnames is None:
  97.             try:
  98.                 self._fieldnames = next(self.reader)
  99.             except StopIteration:
  100.                 pass
  101.         self.line_num = self.reader.line_num
  102.         return self._fieldnames
  103.  
  104.     @fieldnames.setter
  105.     def fieldnames(self, value):
  106.         self._fieldnames = value
  107.  
  108.     def __next__(self):
  109.         if self.line_num == 0:
  110.             # Used only for its side effect.
  111.             self.fieldnames
  112.         row = next(self.reader)
  113.         self.line_num = self.reader.line_num
  114.  
  115.         # unlike the basic reader, we prefer not to return blanks,
  116.         # because we will typically wind up with a dict full of None
  117.         # values
  118.         while row == []:
  119.             row = next(self.reader)
  120.         d = OrderedDict(zip(self.fieldnames, row))
  121.         lf = len(self.fieldnames)
  122.         lr = len(row)
  123.         if lf < lr:
  124.             d[self.restkey] = row[lf:]
  125.         elif lf > lr:
  126.             for key in self.fieldnames[lr:]:
  127.                 d[key] = self.restval
  128.         return d
  129.  
  130.  
  131. class DictWriter:
  132.     def __init__(self, f, fieldnames, restval="", extrasaction="raise",
  133.                  dialect="excel", *args, **kwds):
  134.         self.fieldnames = fieldnames    # list of keys for the dict
  135.         self.restval = restval          # for writing short dicts
  136.         if extrasaction.lower() not in ("raise", "ignore"):
  137.             raise ValueError("extrasaction (%s) must be 'raise' or 'ignore'"
  138.                              % extrasaction)
  139.         self.extrasaction = extrasaction
  140.         self.writer = writer(f, dialect, *args, **kwds)
  141.  
  142.     def writeheader(self):
  143.         header = dict(zip(self.fieldnames, self.fieldnames))
  144.         self.writerow(header)
  145.  
  146.     def _dict_to_list(self, rowdict):
  147.         if self.extrasaction == "raise":
  148.             wrong_fields = rowdict.keys() - self.fieldnames
  149.             if wrong_fields:
  150.                 raise ValueError("dict contains fields not in fieldnames: "
  151.                                  + ", ".join([repr(x) for x in wrong_fields]))
  152.         return (rowdict.get(key, self.restval) for key in self.fieldnames)
  153.  
  154.     def writerow(self, rowdict):
  155.         return self.writer.writerow(self._dict_to_list(rowdict))
  156.  
  157.     def writerows(self, rowdicts):
  158.         return self.writer.writerows(map(self._dict_to_list, rowdicts))
  159.  
  160. # Guard Sniffer's type checking against builds that exclude complex()
  161. try:
  162.     complex
  163. except NameError:
  164.     complex = float
  165.  
  166. class Sniffer:
  167.     '''
  168.    "Sniffs" the format of a CSV file (i.e. delimiter, quotechar)
  169.    Returns a Dialect object.
  170.    '''
  171.     def __init__(self):
  172.         # in case there is more than one possible delimiter
  173.         self.preferred = [',', '\t', ';', ' ', ':']
  174.  
  175.  
  176.     def sniff(self, sample, delimiters=None):
  177.         """
  178.        Returns a dialect (or None) corresponding to the sample
  179.        """
  180.  
  181.         quotechar, doublequote, delimiter, skipinitialspace = \
  182.                    self._guess_quote_and_delimiter(sample, delimiters)
  183.         if not delimiter:
  184.             delimiter, skipinitialspace = self._guess_delimiter(sample,
  185.                                                                 delimiters)
  186.  
  187.         if not delimiter:
  188.             raise Error("Could not determine delimiter")
  189.  
  190.         class dialect(Dialect):
  191.             _name = "sniffed"
  192.             lineterminator = '\r\n'
  193.             quoting = QUOTE_MINIMAL
  194.             # escapechar = ''
  195.  
  196.         dialect.doublequote = doublequote
  197.         dialect.delimiter = delimiter
  198.         # _csv.reader won't accept a quotechar of ''
  199.         dialect.quotechar = quotechar or '"'
  200.         dialect.skipinitialspace = skipinitialspace
  201.  
  202.         return dialect
  203.  
  204.  
  205.     def _guess_quote_and_delimiter(self, data, delimiters):
  206.         """
  207.        Looks for text enclosed between two identical quotes
  208.        (the probable quotechar) which are preceded and followed
  209.        by the same character (the probable delimiter).
  210.        For example:
  211.                         ,'some text',
  212.        The quote with the most wins, same with the delimiter.
  213.        If there is no quotechar the delimiter can't be determined
  214.        this way.
  215.        """
  216.  
  217.         matches = []
  218.         for restr in (r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?",
  219.                       r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)',   #  ".*?",
  220.                       r'(?P<delim>>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)',  # ,".*?"
  221.                       r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'):                            #  ".*?" (no delim, no space)
  222.             regexp = re.compile(restr, re.DOTALL | re.MULTILINE)
  223.             matches = regexp.findall(data)
  224.             if matches:
  225.                 break
  226.  
  227.         if not matches:
  228.             # (quotechar, doublequote, delimiter, skipinitialspace)
  229.             return ('', False, None, 0)
  230.         quotes = {}
  231.         delims = {}
  232.         spaces = 0
  233.         groupindex = regexp.groupindex
  234.         for m in matches:
  235.             n = groupindex['quote'] - 1
  236.             key = m[n]
  237.             if key:
  238.                 quotes[key] = quotes.get(key, 0) + 1
  239.             try:
  240.                 n = groupindex['delim'] - 1
  241.                 key = m[n]
  242.             except KeyError:
  243.                 continue
  244.             if key and (delimiters is None or key in delimiters):
  245.                 delims[key] = delims.get(key, 0) + 1
  246.             try:
  247.                 n = groupindex['space'] - 1
  248.             except KeyError:
  249.                 continue
  250.             if m[n]:
  251.                 spaces += 1
  252.  
  253.         quotechar = max(quotes, key=quotes.get)
  254.  
  255.         if delims:
  256.             delim = max(delims, key=delims.get)
  257.             skipinitialspace = delims[delim] == spaces
  258.             if delim == '\n': # most likely a file with a single column
  259.                 delim = ''
  260.         else:
  261.             # there is *no* delimiter, it's a single column of quoted data
  262.             delim = ''
  263.             skipinitialspace = 0
  264.  
  265.         # if we see an extra quote between delimiters, we've got a
  266.         # double quoted format
  267.         dq_regexp = re.compile(
  268.                                r"((%(delim)s)|^)\W*%(quote)s[^%(delim)s\n]*%(quote)s[^%(delim)s\n]*%(quote)s\W*((%(delim)s)|$)" % \
  269.                                {'delim':re.escape(delim), 'quote':quotechar}, re.MULTILINE)
  270.  
  271.  
  272.  
  273.         if dq_regexp.search(data):
  274.             doublequote = True
  275.         else:
  276.             doublequote = False
  277.  
  278.         return (quotechar, doublequote, delim, skipinitialspace)
  279.  
  280.  
  281.     def _guess_delimiter(self, data, delimiters):
  282.         """
  283.        The delimiter /should/ occur the same number of times on
  284.        each row. However, due to malformed data, it may not. We don't want
  285.        an all or nothing approach, so we allow for small variations in this
  286.        number.
  287.          1) build a table of the frequency of each character on every line.
  288.          2) build a table of frequencies of this frequency (meta-frequency?),
  289.             e.g.  'x occurred 5 times in 10 rows, 6 times in 1000 rows,
  290.             7 times in 2 rows'
  291.          3) use the mode of the meta-frequency to determine the /expected/
  292.             frequency for that character
  293.          4) find out how often the character actually meets that goal
  294.          5) the character that best meets its goal is the delimiter
  295.        For performance reasons, the data is evaluated in chunks, so it can
  296.        try and evaluate the smallest portion of the data possible, evaluating
  297.        additional chunks as necessary.
  298.        """
  299.  
  300.         data = list(filter(None, data.split('\n')))
  301.  
  302.         ascii = [chr(c) for c in range(127)] # 7-bit ASCII
  303.  
  304.         # build frequency tables
  305.         chunkLength = min(10, len(data))
  306.         iteration = 0
  307.         charFrequency = {}
  308.         modes = {}
  309.         delims = {}
  310.         start, end = 0, min(chunkLength, len(data))
  311.         while start < len(data):
  312.             iteration += 1
  313.             for line in data[start:end]:
  314.                 for char in ascii:
  315.                     metaFrequency = charFrequency.get(char, {})
  316.                     # must count even if frequency is 0
  317.                     freq = line.count(char)
  318.                     # value is the mode
  319.                     metaFrequency[freq] = metaFrequency.get(freq, 0) + 1
  320.                     charFrequency[char] = metaFrequency
  321.  
  322.             for char in charFrequency.keys():
  323.                 items = list(charFrequency[char].items())
  324.                 if len(items) == 1 and items[0][0] == 0:
  325.                     continue
  326.                 # get the mode of the frequencies
  327.                 if len(items) > 1:
  328.                     modes[char] = max(items, key=lambda x: x[1])
  329.                     # adjust the mode - subtract the sum of all
  330.                     # other frequencies
  331.                     items.remove(modes[char])
  332.                     modes[char] = (modes[char][0], modes[char][1]
  333.                                    - sum(item[1] for item in items))
  334.                 else:
  335.                     modes[char] = items[0]
  336.  
  337.             # build a list of possible delimiters
  338.             modeList = modes.items()
  339.             total = float(chunkLength * iteration)
  340.             # (rows of consistent data) / (number of rows) = 100%
  341.             consistency = 1.0
  342.             # minimum consistency threshold
  343.             threshold = 0.9
  344.             while len(delims) == 0 and consistency >= threshold:
  345.                 for k, v in modeList:
  346.                     if v[0] > 0 and v[1] > 0:
  347.                         if ((v[1]/total) >= consistency and
  348.                             (delimiters is None or k in delimiters)):
  349.                             delims[k] = v
  350.                 consistency -= 0.01
  351.  
  352.             if len(delims) == 1:
  353.                 delim = list(delims.keys())[0]
  354.                 skipinitialspace = (data[0].count(delim) ==
  355.                                     data[0].count("%c " % delim))
  356.                 return (delim, skipinitialspace)
  357.  
  358.             # analyze another chunkLength lines
  359.             start = end
  360.             end += chunkLength
  361.  
  362.         if not delims:
  363.             return ('', 0)
  364.  
  365.         # if there's more than one, fall back to a 'preferred' list
  366.         if len(delims) > 1:
  367.             for d in self.preferred:
  368.                 if d in delims.keys():
  369.                     skipinitialspace = (data[0].count(d) ==
  370.                                         data[0].count("%c " % d))
  371.                     return (d, skipinitialspace)
  372.  
  373.         # nothing else indicates a preference, pick the character that
  374.         # dominates(?)
  375.         items = [(v,k) for (k,v) in delims.items()]
  376.         items.sort()
  377.         delim = items[-1][1]
  378.  
  379.         skipinitialspace = (data[0].count(delim) ==
  380.                             data[0].count("%c " % delim))
  381.         return (delim, skipinitialspace)
  382.  
  383.  
  384.     def has_header(self, sample):
  385.         # Creates a dictionary of types of data in each column. If any
  386.         # column is of a single type (say, integers), *except* for the first
  387.         # row, then the first row is presumed to be labels. If the type
  388.         # can't be determined, it is assumed to be a string in which case
  389.         # the length of the string is the determining factor: if all of the
  390.         # rows except for the first are the same length, it's a header.
  391.         # Finally, a 'vote' is taken at the end for each column, adding or
  392.         # subtracting from the likelihood of the first row being a header.
  393.  
  394.         rdr = reader(StringIO(sample), self.sniff(sample))
  395.  
  396.         header = next(rdr) # assume first row is header
  397.  
  398.         columns = len(header)
  399.         columnTypes = {}
  400.         for i in range(columns): columnTypes[i] = None
  401.  
  402.         checked = 0
  403.         for row in rdr:
  404.             # arbitrary number of rows to check, to keep it sane
  405.             if checked > 20:
  406.                 break
  407.             checked += 1
  408.  
  409.             if len(row) != columns:
  410.                 continue # skip rows that have irregular number of columns
  411.  
  412.             for col in list(columnTypes.keys()):
  413.  
  414.                 for thisType in [int, float, complex]:
  415.                     try:
  416.                         thisType(row[col])
  417.                         break
  418.                     except (ValueError, OverflowError):
  419.                         pass
  420.                 else:
  421.                     # fallback to length of string
  422.                     thisType = len(row[col])
  423.  
  424.                 if thisType != columnTypes[col]:
  425.                     if columnTypes[col] is None: # add new column type
  426.                         columnTypes[col] = thisType
  427.                     else:
  428.                         # type is inconsistent, remove column from
  429.                         # consideration
  430.                         del columnTypes[col]
  431.  
  432.         # finally, compare results against first row and "vote"
  433.         # on whether it's a header
  434.         hasHeader = 0
  435.         for col, colType in columnTypes.items():
  436.             if type(colType) == type(0): # it's a length
  437.                 if len(header[col]) != colType:
  438.                     hasHeader += 1
  439.                 else:
  440.                     hasHeader -= 1
  441.             else: # attempt typecast
  442.                 try:
  443.                     colType(header[col])
  444.                 except (ValueError, TypeError):
  445.                     hasHeader += 1
  446.                 else:
  447.                     hasHeader -= 1
  448.  
  449.         return hasHeader > 0
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement