Guest User

csv file in excel looks like this!

a guest
Nov 19th, 2022
212
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 6.76 KB | None | 0 0
  1. %%-*- text -*-
  2. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3. % This is a PROMISE Software Engineering Repository data set made publicly
  4. % improvable predictive models of software engineering.
  5. %
  6. % follow the acknowledgment guidelines posted on the PROMISE repository
  7. % web page http://promise.site.uottawa.ca/SERepository .
  8. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9. % 1. Title/Topic: cocomo81/software cost estimation
  10. @relation cocomo81
  11. % 2. Sources:
  12. "% Year = 1981}"
  13. %
  14. % then converted by Tim Menzies from
  15. % http://www.vuse.vanderbilt.edu/~dfisher/tech-reports/raw-TSE-95
  16. % to arff fort.
  17. %
  18. % -- Donor: Tim Menzies [email protected]
  19. %
  20. % -- Date: December 2 2004
  21. % 3. Past Usage
  22. % 4. Relevant Information
  23. %
  24. % The COCOMO software cost model measures effort in calendar months
  25. % of 152 hours (and includes development and management hours).
  26. % COCOMO assumes that the effort grows more than linearly on
  27. % domain-specific parameters; "KSLOC" is estimated directly or
  28. % computed from a function point analysis; and "c" is the product
  29. % of over a dozen "effort multipliers". I.e.
  30. %
  31. % months=a*(KSLOC^b)*(EM1* EM2 * EM3 * ...)
  32. %
  33. % The effort multipliers are as follows:
  34. %
  35. % increase | acap | analysts capability
  36. % these to | pcap | programmers capability
  37. % decrease | aexp | application experience
  38. % effort | modp | modern programing practices
  39. % | tool | use of software tools
  40. % | vexp | virtual machine experience
  41. % | lexp | language experience
  42. % ----------+------+---------------------------
  43. % | sced | schedule constraint
  44. % ----------+------+---------------------------
  45. % decrease | stor | main memory constraint
  46. % these to | data | data base size
  47. % decrease | time | time constraint for cpu
  48. % effort | turn | turnaround time
  49. % | virt | machine volatility
  50. % | cplx | process complexity
  51. % | rely | required software reliability
  52. %
  53. % issues such as ``have we built this kind of system before?''. The
  54. % COCOMO~II effort multipliers are similar but COCOMO~II dropped one
  55. % of the effort multiplier parameters; renamed some others; and
  56. %
  57. % The effort multipliers fall into three groups: those that are
  58. % positively correlated to more effort; those that are
  59. % negatively correlated to more effort; and a third group
  60. % U-shaped correlation to effort; i.e. giving programmers either
  61. % too much or too little time to develop a system can be
  62. % detrimental.
  63. %
  64. % The standard numeric values of the effort multipliers are:
  65. %
  66. "% very very extra productivity"
  67. "% low low nominal high high high range"
  68. % ---------------------------------------------------------------------
  69. "% acap 1.46 1.19 1.00 0.86 0.71 2.06"
  70. "% pcap 1.42. 1.17 1.00 0.86 0.70 1.67"
  71. "% aexp 1.29 1.13 1.00 0.91 0.82 1.57"
  72. "% modp 1.24. 1.10 1.00 0.91 0.82 1.34"
  73. "% tool 1.24 1.10 1.00 0.91 0.83 1.49"
  74. "% vexp 1.21 1.10 1.00 0.90 1.34"
  75. "% lexp 1.14 1.07 1.00 0.95 1.20"
  76. "% sced 1.23 1.08 1.00 1.04 1.10 e"
  77. "% stor 1.00 1.06 1.21 1.56 -1.21"
  78. "% data 0.94 1.00 1.08 1.16 -1.23"
  79. "% time 1.00 1.11 1.30 1.66 -1.30"
  80. "% turn 0.87 1.00 1.07 1.15 -1.32"
  81. "% virt 0.87 1.00 1.15 1.30 -1.49"
  82. "% cplx 0.70 0.85 1.00 1.15 1.30 1.65 -1.86"
  83. "% rely 0.75 0.88 1.00 1.15 1.40 -1.87"
  84. %
  85. % These were learnt by Barry Boehm after a regression analysis of the
  86. % projects in the COCOMO I data set.
  87. "% Year = 1981}"
  88. %
  89. % The last column of the above table shows max(E)/min(EM) and shows
  90. % increasing "acap" (analyst experience) from very low to very
  91. % high will most decrease effort while increasing "rely"
  92. % (required reliability) from very low to very high will most
  93. % increase effort.
  94. %
  95. % There is much more to COCOMO that the above description. The
  96. % COCOMO~II text is over 500 pages long and offers
  97. % all the details needed to implement data capture and analysis of
  98. % COCOMO in an industrial context.
  99. % Author = "Barry Boehm and Ellis Horowitz and Ray Madachy and
  100. % Donald Reifer and Bradford K. Clark and Bert Steece
  101. % ibsn = "0130266922"}
  102. %
  103. % Included in that book is not just an effort model but other
  104. % (?all) of the validation work on COCOMO has focused on the effort
  105. % model.
  106. "% title = ""Bayesian Analysis of Empirical Software Engineering"
  107. "% year = ""1999""}"
  108. %
  109. % The value of an effort predictor can be reported many ways
  110. % including MMRE and PRED(N).MMRE and PRED are computed from the
  111. % difference between the actual and estimated value:
  112. %
  113. % RE.i = (estimate.i - actual.i) / (actual.i)
  114. %
  115. % averaged over the "T" items in the "Test" set; i.e.
  116. %
  117. % MRE.i = abs(RE.i)
  118. % MMRE.i = 100/T*( MRE.1 + MRE.2 + ... + MRE.T)
  119. %
  120. % PRED(N) reports the average percentage of estimates that were
  121. % within N% of the actual values:
  122. %
  123. % count = 0
  124. % for(i=1;i<=T;i++) do if MRE.i <= N/100 then count++ fi done
  125. % PRED(N) = 100/T * count
  126. %
  127. % within 30% of the actual. Shepperd and Schofield comment that
  128. % "MMRE is fairly conservative with a bias against overestimates
  129. % while Pred(25) will identify those prediction systems that are
  130. % generally accurate but occasionally wildly inaccurate".
  131. % note="Available from
  132. % \url{http://www.utdallas.edu/~rbanker/SE_XII.pdf}"}
  133. % 5. Number of instances: 63
  134. % one for LOC and one for actual development effort.
  135. % 7. Attribute information:
  136. @attribute rely numeric
  137. @attribute data numeric
  138. @attribute cplx numeric
  139. @attribute time numeric
  140. @attribute stor numeric
  141. @attribute virt numeric
  142. @attribute turn numeric
  143. @attribute acap numeric
  144. @attribute aexp numeric
  145. @attribute pcap numeric
  146. @attribute vexp numeric
  147. @attribute lexp numeric
  148. @attribute modp numeric
  149. @attribute tool numeric
  150. @attribute sced numeric
  151. @attribute loc numeric
  152. @attribute actual numeric
  153. % 8. Missing attributes: none
  154. % 9: Class distribution: the class value (actual) is continuous.
  155. % distribution was found:
  156. % Instances Range
  157. % --------- ----------------
  158. "% 1 .. 10 5.9 .. 15"
  159. "% 11 .. 20 18 .. 47"
  160. "% 21 .. 30 50 .. 87"
  161. "% 31 .. 40 88 .. 218"
  162. "% 41 .. 50 230 .. 539"
  163. "% 51 .. 60 605 .. 2455"
  164. "% 61 .. 63 6400 .. 11400"
  165. @data
  166.  
Advertisement
Add Comment
Please, Sign In to add comment