Advertisement
Guest User

ur mum

a guest
Jan 17th, 2018
81
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 6.05 KB | None | 0 0
  1. \documentclass[a4paper]{article}
  2.  
  3. \usepackage[a4paper, margin=0.35in]{geometry}
  4. \usepackage{multicol}
  5. \usepackage{amssymb}
  6. \usepackage{amsmath}
  7. \usepackage{centernot}
  8. \usepackage{framed}
  9. \usepackage{bm}
  10.  
  11. \begin{document}
  12.  
  13. \pagenumbering{gobble}
  14.  
  15. \begin{center}
  16. \huge{\textbf{algebraic structures (i)}}\\
  17. \end{center}
  18. \begin{multicols}{2}
  19.  
  20. % Section 1
  21. \begin{framed}
  22. \begin{center}
  23. \textbf{1 - groups}
  24. \end{center}
  25. \end{framed}
  26.  
  27. % Section 2
  28. \begin{framed}
  29. \begin{center}
  30. \textbf{2 - subgroups}
  31. \end{center}
  32.  
  33. \noindent
  34. \textbf{\underline{def 2.1}}
  35. If $(G,*)$ is group and $H (\ne \emptyset) \subseteq G$ and $H$ is \textbf{closed} under $*$, then $H$ is a \textbf{subgroup} of $G$ IFF $H$ is a group itself under $*$ and $H \leq G$.
  36.  
  37. \noindent
  38. \textbf{\underline{thm 2.2}}
  39. Suppose $(G,*)$ is a group and $H \subseteq G$. Then $H \leq G$ provided that
  40.  
  41. (i) $H \ne \emptyset$
  42.  
  43. (ii) $\forall x,y \in H, x*y\in H$
  44.  
  45. (iii) $\forall x \in H, x^{-1} \in H $(where $x^{-1}$ is inverse from $G$)
  46.  
  47. \noindent
  48. \textbf{\underline{thm 2.3}}
  49. Suppose $G$ is a group and $H \leq G$ and $K \leq G$. Then $H \cap K \leq G$.\\
  50.  
  51. \noindent
  52. \textbf{\underline{lem 2.4}}
  53. Let $G$ be a group, $g \in G$. Then $\langle g \rangle \leq G$.\\
  54.  
  55. \noindent
  56. \textbf{\underline{def 2.5}}
  57. Let $G$ be a group, $g \in G$. The smallest natural number $m$ such that $g^m = e$ is called the \textbf{order} of g.
  58. If no such natural number exists, we say g has \textbf{infinite order}.
  59.  
  60. \noindent
  61. \textbf{\underline{lem 2.6}}
  62. Suppose $G$ is a group and $g \in G$ and $g$ has \textbf{infinite} order. Then for $n,m \in \mathbb{Z}$ with $n \neq m$, $g^n \neq g^m$.
  63.  
  64. \noindent
  65. \textbf{\underline{col 2.7}}
  66. Suppose $G$ is a group and $g \in G$, $g$ having infinite order. Then $\langle g \rangle$ is an infinite subgroup of $G$.
  67.  
  68. \noindent
  69. \textbf{\underline{lem 2.8}}
  70. Let $g \in G$ and has \textbf{finite} order $n$. Then:
  71.  
  72. (i) The elements $g,g^2,...,g^{n-1},g^n = e$ are all distinct
  73.  
  74. (ii) Suppose $s,r \in \mathbb{Z}$ with $s=kn+r$, $k\in \mathbb{Z}$ and $0 \leq r \le n$. Then $g^s=g^r$.
  75.  
  76. (iii) If $s,r \in \mathbb{Z}$, then $g^s=g^r \iff s \equiv r \mod n$.
  77.  
  78. (iv) $g^s=e \iff n|s$.
  79.  
  80. \noindent
  81. \textbf{\underline{col 2.9}}
  82. If $G$ is a group and $g \in G$ with $g$ having order $n$. Then the order of $\langle g \rangle = \{g,g^2,...,g^{n-1},e\}$ is $n$.\\
  83.  
  84. \noindent
  85. \textbf{\underline{def 2.10}}
  86. Suppose $G$ is a group, $g \in G$. The centraliser of $g$ is defined as $C(g) = \{x \in g | xg=gx\}$
  87.  
  88. \noindent
  89. \textbf{\underline{lem 2.11}}
  90. Suppose $G$ is a group, $g \in G$. Then $C(g) \leq G$.
  91.  
  92. \noindent
  93. \textbf{\underline{def 2.12}}
  94. Let $G$ be any group. Then the \textbf{centre} of $G$ is
  95.  
  96. $Z(G)=\{x\in G | xg=gx, \forall g\in G \}$
  97.  
  98. \noindent
  99. \textbf{\underline{lem 2.13}}
  100. Let $G$ be any group. Then $Z(G) \leq G$.\\
  101.  
  102. \noindent
  103. \textbf{\underline{remarks and friends}}
  104. \begin{enumerate}
  105. \item If $H\leq G$, then $e\in H$ (where $e$ is the \textbf{identity element} of G).
  106.  
  107. \item If $H,K\leq G$, then $H\cup K$ is not necessarily a subgroup of $G$.
  108.  
  109. \item Suppose $G$ a group. Then $e$ is the \textbf{only} element of $G$ to have order 1.
  110.  
  111. \item $Scal(n,\mathbb{R}) \leq Diag(n, \mathbb{R}) \leq Tr(n, \mathbb{R}) \leq GL_n(\mathbb{R})$, and $UT(n,\mathbb{R}) \leq GL_n(\mathbb{R})$
  112.  
  113. \item We can have similar subgroups of $GL_n(\mathbb{Q}), GL_n(\mathbb{C})$, and $GL_n(\mathbb{Z}_{p})$, $p$ prime.
  114.  
  115. \item $g \in C(g)$
  116.  
  117. \item In any group $G$, $C(e)=G$
  118.  
  119. \item $\langle g \rangle \subseteq C(g)$
  120.  
  121. \item $G$ is abelian $\iff C(g)=G, \forall g \in G$
  122.  
  123. \end{enumerate}
  124.  
  125. \end{framed}
  126.  
  127. % Section 3
  128. \begin{framed}
  129. \begin{center}
  130. \textbf{3 - cyclic groups}
  131. \end{center}
  132. \end{framed}
  133.  
  134. % Section 4
  135. \begin{framed}
  136. \begin{center}
  137. \textbf{4 - cosets and lagrange's theorem}
  138. \end{center}
  139. \end{framed}
  140.  
  141. % Section 5
  142. \begin{framed}
  143. \begin{center}
  144. \textbf{5 - homomorphisms and isomorphisms}
  145. \end{center}
  146.  
  147. \noindent
  148. \textbf{\underline{def 5.1}}
  149. A \textbf{homomorphism} from a group $(G,*)$ to a group $(H, \circ)$ is a map $\varphi:G\to H$ such that $\forall a,b\in G$
  150.  
  151. $\varphi(a*b) = \varphi(a)\circ\varphi(b)$
  152.  
  153. \noindent
  154. \textbf{\underline{lem 5.2}}
  155. Suppose G and H are groups and $\varphi:G\to H$ is a homomorphism. Then:
  156.  
  157. (i) $\varphi(e_G)=e_H$
  158.  
  159. (ii) $\forall g \in G$, $\varphi(g^{-1}) = \varphi(g)^{-1}$
  160.  
  161. (iii) $\text{Im}\varphi=\{\varphi(g) | g \in G \} \leq H$\\
  162.  
  163. \noindent
  164. \textbf{\underline{def 5.3}}
  165. A homomorphism $\varphi:G\to H$ is an \textbf{isomorphism} if $\varphi$ is both $\bm{1-1}$ and \textbf{onto}.\\
  166.  
  167. \noindent
  168. \textbf{\underline{group theoretic properties}}\\
  169. Let $P$ be a property of groups. P is a \textbf{group theoretic property} if $G$ has $P$ and if $G\cong H$, then $H$ has $P$ too.
  170. \begin{enumerate}
  171. \item Being finite
  172. \item Being infinite
  173. \item Being abelian
  174. \item Being cyclic
  175. \item Having an element of order $n$
  176. \item Having a non-trivial centre
  177. \item Having a trivial centre
  178. \item Having an element of infinite order
  179. \end{enumerate}
  180.  
  181.  
  182. \end{framed}
  183.  
  184. % Section 6
  185. \begin{framed}
  186. \begin{center}
  187. \textbf{6 - conjugacy}
  188. \end{center}
  189. \end{framed}
  190.  
  191. % Section 7
  192. \begin{framed}
  193. \begin{center}
  194. \textbf{7 - normal subgroups}
  195. \end{center}
  196. \end{framed}
  197.  
  198. % Section 8
  199. \begin{framed}
  200. \begin{center}
  201. \textbf{8 - factor groups and first isomorphism theorem}
  202. \end{center}
  203. \end{framed}
  204.  
  205. % Repertoise
  206. \begin{framed}
  207. \begin{center}
  208. \textbf{some subgroups of $\bm{GL_n(\mathbb{R})}$ }
  209. \end{center}
  210. \end{framed}
  211.  
  212. \end{multicols}
  213. \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement