Advertisement
bolverk

chemical_potential_equilibrium

Aug 17th, 2015
436
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 0.99 KB | None | 0 0
  1. \begin{matrix}
  2. Z = \frac{1}{N!} \left[ 2 V \int_0^{\infty} \frac{4 \pi  p^2 dp}{\hbar^3} \exp \left(- \frac{p^2}{2 m k T} \right )\right]^N =
  3. \\
  4. = \frac{1}{N!} \left[ \frac{8 \pi V}{\hbar^3} \left(2 m k T \right )^{3/2} \int_0^{\infty} \xi^2 \exp(-\xi^2) d\xi \right ]^N =
  5. \\
  6. = \frac{1}{N!} \left[ \frac{2 V}{\hbar^3} \left(2 \pi m k T \right )^{3/2} \right ]^N \approx \left[ \frac{2 V}{N \hbar^3} \left(2 \pi m k T \right )^{3/2} \right ]^N
  7. \\
  8.  
  9. \mu = - k T \frac{\partial}{\partial N} \ln Z = - k T \ln \left[ \frac{2 e V}{N \hbar^3} \left(2 \pi m k T \right )^{3/2} \right ]
  10.  
  11. \\
  12.  
  13. \textup{When the particles are in chemical equilibrium with photons}
  14.  
  15. \\
  16.  
  17. \mu + m c^2 = 0
  18.  
  19. \\
  20.  
  21. m c^2 = k T \ln \left[ \frac{2 e V}{N \hbar^3} \left( 2 \pi m k T \right )^{3/2} \right ] \Rightarrow
  22. m c^2 = k T \ln \left[ \frac{2 e V}{N \hbar^3} \left( 2 \pi m k T \right )^{3/2} \right ]
  23.  
  24. \\
  25.  
  26. n = 2 e \left( 2 \pi \right )^{3/2} \lambda^{-3} \exp \left( -\frac{1}{\theta} \right ) \theta^3
  27.  
  28. \end{matrix}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement