Advertisement
MatsGranvik

Dirichlet generating function with infinitely many zeros with real part 1/2

Nov 4th, 2022 (edited)
130
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 0.91 KB | None | 0 0
  1. (* Mathematica start *)
  2. Clear[s, f, zeta];
  3. zeta = Normal[Series[Zeta[s], {s, 1, 0}]]
  4. f[s_] := EulerGamma + 1/(-1 + s)
  5. Reduce[f[s]*f[Conjugate[s]]/f[s + Conjugate[s]] == 0, s]
  6.  
  7. nn = 100;
  8. s = 7;
  9. c = 8;
  10. N[Sum[Sum[If[GCD[n, k] == 1, 1/(n^s*k^c), 0], {k, 1, nn}], {n, 1,
  11. nn}], 20]
  12. N[Zeta[s]*Zeta[c]/Zeta[s + c], 20]
  13. (* Mathematica end *)
  14.  
  15. Output:
  16.  
  17. EulerGamma + 1/(-1 + s)
  18.  
  19. s == (-1 + EulerGamma)/EulerGamma || Re[s] == 1/2
  20.  
  21. 1.0124297081184290727
  22.  
  23. 1.0124297081185925265
  24.  
  25. Maybe relevant:
  26. (*start*)
  27. nn = 200;
  28. s = N[8, 20];
  29. (Sum[Sum[If[Mod[n, k] == 0, (MoebiusMu[k])^(1/2)/n^s, 0], {k, 1,
  30. nn}], {n, 1, nn}])^2
  31. (A = Table[
  32. Table[If[Mod[n, k] == 0, (MoebiusMu[k])^(1/2)/n^s, 0], {k, 1,
  33. nn}], {n, 1, nn}]);
  34. N[Total[Total[A.Transpose[A]]], 20]
  35. Zeta[s]*Zeta[s]/Zeta[2*s]
  36. (*end*)
  37.  
  38. Output:
  39.  
  40. 1.00815593032900188265 + 0.008189189928767649031 I
  41.  
  42. 1.0081559303290019133
  43.  
  44. 1.008155930329001935
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement