Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- (* Mathematica start *)
- Clear[s, f, zeta];
- zeta = Normal[Series[Zeta[s], {s, 1, 0}]]
- f[s_] := EulerGamma + 1/(-1 + s)
- Reduce[f[s]*f[Conjugate[s]]/f[s + Conjugate[s]] == 0, s]
- nn = 100;
- s = 7;
- c = 8;
- N[Sum[Sum[If[GCD[n, k] == 1, 1/(n^s*k^c), 0], {k, 1, nn}], {n, 1,
- nn}], 20]
- N[Zeta[s]*Zeta[c]/Zeta[s + c], 20]
- (* Mathematica end *)
- Output:
- EulerGamma + 1/(-1 + s)
- s == (-1 + EulerGamma)/EulerGamma || Re[s] == 1/2
- 1.0124297081184290727
- 1.0124297081185925265
- Maybe relevant:
- (*start*)
- nn = 200;
- s = N[8, 20];
- (Sum[Sum[If[Mod[n, k] == 0, (MoebiusMu[k])^(1/2)/n^s, 0], {k, 1,
- nn}], {n, 1, nn}])^2
- (A = Table[
- Table[If[Mod[n, k] == 0, (MoebiusMu[k])^(1/2)/n^s, 0], {k, 1,
- nn}], {n, 1, nn}]);
- N[Total[Total[A.Transpose[A]]], 20]
- Zeta[s]*Zeta[s]/Zeta[2*s]
- (*end*)
- Output:
- 1.00815593032900188265 + 0.008189189928767649031 I
- 1.0081559303290019133
- 1.008155930329001935
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement