Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- Parametric Equations of a 3-3 Duoprism, with yw, zw rotation and xyz projection
- 1D Elements
- • 18 edges:
- 1. { -sqrt(3)(t-1) , 3t+1 , -2*sqrt(3) , -2 }
- x = (-sqrt(3)(t-1))/((-2*sqrt(3))*sin(c) + ((3t+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- y = ((3t+1)*cos(b) - (-2)*sin(b))/((-2*sqrt(3))*sin(c) + ((3t+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- z = ((-2*sqrt(3))*cos(c) - ((3t+1)*sin(b) + (-2)*cos(b))*sin(c))/((-2*sqrt(3))*sin(c) + ((3t+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- ---
- 2. { -sqrt(3)(t-1) , 3t+1 , 2*sqrt(3) , -2 }
- x = (-sqrt(3)(t-1))/((2*sqrt(3))*sin(c) + ((3t+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- y = ((3t+1)*cos(b) - (-2)*sin(b))/((2*sqrt(3))*sin(c) + ((3t+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- z = ((2*sqrt(3))*cos(c) - ((3t+1)*sin(b) + (-2)*cos(b))*sin(c))/((2*sqrt(3))*sin(c) + ((3t+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- ---
- 3. { -sqrt(3)(t-1) , 3t+1 , 0 , 4 }
- x = (-sqrt(3)(t-1))/((0)*sin(c) + ((3t+1)*sin(b) + (4)*cos(b))*cos(c) + a)
- y = ((3t+1)*cos(b) - (4)*sin(b))/((0)*sin(c) + ((3t+1)*sin(b) + (4)*cos(b))*cos(c) + a)
- z = ((0)*cos(c) - ((3t+1)*sin(b) + (4)*cos(b))*sin(c))/((0)*sin(c) + ((3t+1)*sin(b) + (4)*cos(b))*cos(c) + a)
- ---
- -------
- 4. { sqrt(3)(t-1) , 3t+1 , -2*sqrt(3) , -2 }
- x = (sqrt(3)(t-1))/((-2*sqrt(3))*sin(c) + ((3t+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- y = ((3t+1)*cos(b) - (-2)*sin(b))/((-2*sqrt(3))*sin(c) + ((3t+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- z = ((-2*sqrt(3))*cos(c) - ((3t+1)*sin(b) + (-2)*cos(b))*sin(c))/((-2*sqrt(3))*sin(c) + ((3t+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- ---
- 5. { sqrt(3)(t-1) , 3t+1 , 2*sqrt(3) , -2 }
- x = (sqrt(3)(t-1))/((2*sqrt(3))*sin(c) + ((3t+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- y = ((3t+1)*cos(b) - (-2)*sin(b))/((2*sqrt(3))*sin(c) + ((3t+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- z = ((2*sqrt(3))*cos(c) - ((3t+1)*sin(b) + (-2)*cos(b))*sin(c))/((2*sqrt(3))*sin(c) + ((3t+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- ---
- 6. { sqrt(3)(t-1) , 3t+1 , 0 , 4 }
- x = (sqrt(3)(t-1))/((0)*sin(c) + ((3t+1)*sin(b) + (4)*cos(b))*cos(c) + a)
- y = ((3t+1)*cos(b) - (4)*sin(b))/((0)*sin(c) + ((3t+1)*sin(b) + (4)*cos(b))*cos(c) + a)
- z = ((0)*cos(c) - ((3t+1)*sin(b) + (4)*cos(b))*sin(c))/((0)*sin(c) + ((3t+1)*sin(b) + (4)*cos(b))*cos(c) + a)
- ---
- ------
- 7. { 2*sqrt(3)t , -2 , -2*sqrt(3) , -2 }
- x = (2*sqrt(3)t)/((-2*sqrt(3))*sin(c) + ((-2)*sin(b) + (-2)*cos(b))*cos(c) + a)
- y = ((-2)*cos(b) - (-2)*sin(b))/((-2*sqrt(3))*sin(c) + ((-2)*sin(b) + (-2)*cos(b))*cos(c) + a)
- z = ((-2*sqrt(3))*cos(c) - ((-2)*sin(b) + (-2)*cos(b))*sin(c))/((-2*sqrt(3))*sin(c) + ((-2)*sin(b) + (-2)*cos(b))*cos(c) + a)
- ---
- 8. { 2*sqrt(3)t , -2 , 2*sqrt(3) , -2 }
- x = (2*sqrt(3)t)/((2*sqrt(3))*sin(c) + ((-2)*sin(b) + (-2)*cos(b))*cos(c) + a)
- y = ((-2)*cos(b) - (-2)*sin(b))/((2*sqrt(3))*sin(c) + ((-2)*sin(b) + (-2)*cos(b))*cos(c) + a)
- z = ((2*sqrt(3))*cos(c) - ((-2)*sin(b) + (-2)*cos(b))*sin(c))/((2*sqrt(3))*sin(c) + ((-2)*sin(b) + (-2)*cos(b))*cos(c) + a)
- ---
- 9. { 2*sqrt(3)t , -2 , 0 , 4 }
- x = (2*sqrt(3)t)/((0)*sin(c) + ((-2)*sin(b) + (4)*cos(b))*cos(c) + a)
- y = ((-2)*cos(b) - (4)*sin(b))/((0)*sin(c) + ((-2)*sin(b) + (4)*cos(b))*cos(c) + a)
- z = ((0)*cos(c) - ((-2)*sin(b) + (4)*cos(b))*sin(c))/((0)*sin(c) + ((-2)*sin(b) + (4)*cos(b))*cos(c) + a)
- ---
- ------
- 10. { -2*sqrt(3) , -2 , -sqrt(3)(t-1) , 3t+1 }
- x = (-2*sqrt(3))/((-sqrt(3)(t-1))*sin(c) + ((-2)*sin(b) + (3t+1)*cos(b))*cos(c) + a)
- y = ((-2)*cos(b) - (3t+1)*sin(b))/((-sqrt(3)(t-1))*sin(c) + ((-2)*sin(b) + (3t+1)*cos(b))*cos(c) + a)
- z = ((-sqrt(3)(t-1))*cos(c) - ((-2)*sin(b) + (3t+1)*cos(b))*sin(c))/((-sqrt(3)(t-1))*sin(c) + ((-2)*sin(b) + (3t+1)*cos(b))*cos(c) + a)
- ---
- 11. { -2*sqrt(3) , -2 , sqrt(3)(t-1) , 3t+1 }
- x = (-2*sqrt(3))/((sqrt(3)(t-1))*sin(c) + ((-2)*sin(b) + (3t+1)*cos(b))*cos(c) + a)
- y = ((-2)*cos(b) - (3t+1)*sin(b))/((sqrt(3)(t-1))*sin(c) + ((-2)*sin(b) + (3t+1)*cos(b))*cos(c) + a)
- z = ((sqrt(3)(t-1))*cos(c) - ((-2)*sin(b) + (3t+1)*cos(b))*sin(c))/((sqrt(3)(t-1))*sin(c) + ((-2)*sin(b) + (3t+1)*cos(b))*cos(c) + a)
- ---
- 12. { -2*sqrt(3) , -2 , 2*sqrt(3)t , -2 }
- x = (-2*sqrt(3))/((2*sqrt(3)t)*sin(c) + ((-2)*sin(b) + (-2)*cos(b))*cos(c) + a)
- y = ((-2)*cos(b) - (-2)*sin(b))/((2*sqrt(3)t)*sin(c) + ((-2)*sin(b) + (-2)*cos(b))*cos(c) + a)
- z = ((2*sqrt(3)t)*cos(c) - ((-2)*sin(b) + (-2)*cos(b))*sin(c))/((2*sqrt(3)t)*sin(c) + ((-2)*sin(b) + (-2)*cos(b))*cos(c) + a)
- ---
- ------
- 13. { 2*sqrt(3) , -2 , -sqrt(3)(t-1) , 3t+1 }
- x = (2*sqrt(3))/((-sqrt(3)(t-1))*sin(c) + ((-2)*sin(b) + (3t+1)*cos(b))*cos(c) + a)
- y = ((-2)*cos(b) - (3t+1)*sin(b))/((-sqrt(3)(t-1))*sin(c) + ((-2)*sin(b) + (3t+1)*cos(b))*cos(c) + a)
- z = ((-sqrt(3)(t-1))*cos(c) - ((-2)*sin(b) + (3t+1)*cos(b))*sin(c))/((-sqrt(3)(t-1))*sin(c) + ((-2)*sin(b) + (3t+1)*cos(b))*cos(c) + a)
- ---
- 14. { 2*sqrt(3) , -2 , sqrt(3)(t-1) , 3t+1 }
- x = (2*sqrt(3))/((sqrt(3)(t-1))*sin(c) + ((-2)*sin(b) + (3t+1)*cos(b))*cos(c) + a)
- y = ((-2)*cos(b) - (3t+1)*sin(b))/((sqrt(3)(t-1))*sin(c) + ((-2)*sin(b) + (3t+1)*cos(b))*cos(c) + a)
- z = ((sqrt(3)(t-1))*cos(c) - ((-2)*sin(b) + (3t+1)*cos(b))*sin(c))/((sqrt(3)(t-1))*sin(c) + ((-2)*sin(b) + (3t+1)*cos(b))*cos(c) + a)
- ---
- 15. { 2*sqrt(3) , -2 , 2*sqrt(3)t , -2 }
- x = (2*sqrt(3))/((2*sqrt(3)t)*sin(c) + ((-2)*sin(b) + (-2)*cos(b))*cos(c) + a)
- y = ((-2)*cos(b) - (-2)*sin(b))/((2*sqrt(3)t)*sin(c) + ((-2)*sin(b) + (-2)*cos(b))*cos(c) + a)
- z = ((2*sqrt(3)t)*cos(c) - ((-2)*sin(b) + (-2)*cos(b))*sin(c))/((2*sqrt(3)t)*sin(c) + ((-2)*sin(b) + (-2)*cos(b))*cos(c) + a)
- ---
- ------
- 16. { 0 , 4 , -sqrt(3)(t-1) , 3t+1 }
- x = (0)/((-sqrt(3)(t-1))*sin(c) + ((4)*sin(b) + (3t+1)*cos(b))*cos(c) + a)
- y = ((4)*cos(b) - (3t+1)*sin(b))/((-sqrt(3)(t-1))*sin(c) + ((4)*sin(b) + (3t+1)*cos(b))*cos(c) + a)
- z = ((-sqrt(3)(t-1))*cos(c) - ((4)*sin(b) + (3t+1)*cos(b))*sin(c))/((-sqrt(3)(t-1))*sin(c) + ((4)*sin(b) + (3t+1)*cos(b))*cos(c) + a)
- ---
- 17. { 0 , 4 , sqrt(3)(t-1) , 3t+1 }
- x = (0)/((sqrt(3)(t-1))*sin(c) + ((4)*sin(b) + (3t+1)*cos(b))*cos(c) + a)
- y = ((4)*cos(b) - (3t+1)*sin(b))/((sqrt(3)(t-1))*sin(c) + ((4)*sin(b) + (3t+1)*cos(b))*cos(c) + a)
- z = ((sqrt(3)(t-1))*cos(c) - ((4)*sin(b) + (3t+1)*cos(b))*sin(c))/((sqrt(3)(t-1))*sin(c) + ((4)*sin(b) + (3t+1)*cos(b))*cos(c) + a)
- ---
- 18. { 0 , 4 , 2*sqrt(3)t , -2 }
- x = (0)/((2*sqrt(3)t)*sin(c) + ((4)*sin(b) + (-2)*cos(b))*cos(c) + a)
- y = ((4)*cos(b) - (-2)*sin(b))/((2*sqrt(3)t)*sin(c) + ((4)*sin(b) + (-2)*cos(b))*cos(c) + a)
- z = ((2*sqrt(3)t)*cos(c) - ((4)*sin(b) + (-2)*cos(b))*sin(c))/((2*sqrt(3)t)*sin(c) + ((4)*sin(b) + (-2)*cos(b))*cos(c) + a)
- ---------------
- 2D Elements:
- • 6 triangles: [ 2D elem A x 0D elem B ] + [ 0D elem A x 2D elem B ]
- 1. { sqrt(3)(v-1)u , 3v+1 , -2*sqrt(3) , -2 }
- x = (sqrt(3)(v-1)u)/((-2*sqrt(3))*sin(c) + ((3v+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- y = ((3v+1)*cos(b) - (-2)*sin(b))/((-2*sqrt(3))*sin(c) + ((3v+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- z = ((-2*sqrt(3))*cos(c) - ((3v+1)*sin(b) + (-2)*cos(b))*sin(c))/((-2*sqrt(3))*sin(c) + ((3v+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- ---
- 2. { sqrt(3)(v-1)u , 3v+1 , 2*sqrt(3) , -2 }
- x = (sqrt(3)(v-1)u)/((2*sqrt(3))*sin(c) + ((3v+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- y = ((3v+1)*cos(b) - (-2)*sin(b))/((2*sqrt(3))*sin(c) + ((3v+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- z = ((2*sqrt(3))*cos(c) - ((3v+1)*sin(b) + (-2)*cos(b))*sin(c))/((2*sqrt(3))*sin(c) + ((3v+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- ---
- 3. { sqrt(3)(v-1)u , 3v+1 , 0 , 4 }
- x = (sqrt(3)(v-1)u)/((0)*sin(c) + ((3v+1)*sin(b) + (4)*cos(b))*cos(c) + a)
- y = ((3v+1)*cos(b) - (4)*sin(b))/((0)*sin(c) + ((3v+1)*sin(b) + (4)*cos(b))*cos(c) + a)
- z = ((0)*cos(c) - ((3v+1)*sin(b) + (4)*cos(b))*sin(c))/((0)*sin(c) + ((3v+1)*sin(b) + (4)*cos(b))*cos(c) + a)
- ---
- ------
- 4. { -2*sqrt(3) , -2 , sqrt(3)(v-1)u , 3v+1 }
- x = (-2*sqrt(3))/((sqrt(3)(v-1)u)*sin(c) + ((-2)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- y = ((-2)*cos(b) - (3v+1)*sin(b))/((sqrt(3)(v-1)u)*sin(c) + ((-2)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- z = ((sqrt(3)(v-1)u)*cos(c) - ((-2)*sin(b) + (3v+1)*cos(b))*sin(c))/((sqrt(3)(v-1)u)*sin(c) + ((-2)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- ---
- 5. { 2*sqrt(3) , -2 , sqrt(3)(v-1)u , 3v+1 }
- x = (2*sqrt(3))/((sqrt(3)(v-1)u)*sin(c) + ((-2)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- y = ((-2)*cos(b) - (3v+1)*sin(b))/((sqrt(3)(v-1)u)*sin(c) + ((-2)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- z = ((sqrt(3)(v-1)u)*cos(c) - ((-2)*sin(b) + (3v+1)*cos(b))*sin(c))/((sqrt(3)(v-1)u)*sin(c) + ((-2)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- ---
- 6. { 0 , 4 , sqrt(3)(v-1)u , 3v+1 }
- x = (0)/((sqrt(3)(v-1)u)*sin(c) + ((4)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- y = ((4)*cos(b) - (3v+1)*sin(b))/((sqrt(3)(v-1)u)*sin(c) + ((4)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- z = ((sqrt(3)(v-1)u)*cos(c) - ((4)*sin(b) + (3v+1)*cos(b))*sin(c))/((sqrt(3)(v-1)u)*sin(c) + ((4)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- ---
- • 9 squares: 1D elem A x 1D elem B
- 7. { -sqrt(3)(u-1) , 3u+1 , -sqrt(3)(v-1) , 3v+1 }
- x = (-sqrt(3)(u-1))/((-sqrt(3)(v-1))*sin(c) + ((3u+1)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- y = ((3u+1)*cos(b) - (3v+1)*sin(b))/((-sqrt(3)(v-1))*sin(c) + ((3u+1)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- z = ((-sqrt(3)(v-1))*cos(c) - ((3u+1)*sin(b) + (3v+1)*cos(b))*sin(c))/((-sqrt(3)(v-1))*sin(c) + ((3u+1)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- ---
- 8. { -sqrt(3)(u-1) , 3u+1 , sqrt(3)(v-1) , 3v+1 }
- x = (-sqrt(3)(u-1))/((sqrt(3)(v-1))*sin(c) + ((3u+1)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- y = ((3u+1)*cos(b) - (3v+1)*sin(b))/((sqrt(3)(v-1))*sin(c) + ((3u+1)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- z = ((sqrt(3)(v-1))*cos(c) - ((3u+1)*sin(b) + (3v+1)*cos(b))*sin(c))/((sqrt(3)(v-1))*sin(c) + ((3u+1)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- ---
- 9. { -sqrt(3)(u-1) , 3u+1 , 2*sqrt(3)v , -2 }
- x = (-sqrt(3)(u-1))/((2*sqrt(3)v)*sin(c) + ((3u+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- y = ((3u+1)*cos(b) - (-2)*sin(b))/((2*sqrt(3)v)*sin(c) + ((3u+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- z = ((2*sqrt(3)v)*cos(c) - ((3u+1)*sin(b) + (-2)*cos(b))*sin(c))/((2*sqrt(3)v)*sin(c) + ((3u+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- ---
- ------
- 10. { sqrt(3)(u-1) , 3u+1 , -sqrt(3)(v-1) , 3v+1 }
- x = (sqrt(3)(u-1))/((-sqrt(3)(v-1))*sin(c) + ((3u+1)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- y = ((3u+1)*cos(b) - (3v+1)*sin(b))/((-sqrt(3)(v-1))*sin(c) + ((3u+1)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- z = ((-sqrt(3)(v-1))*cos(c) - ((3u+1)*sin(b) + (3v+1)*cos(b))*sin(c))/((-sqrt(3)(v-1))*sin(c) + ((3u+1)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- ---
- 11. { sqrt(3)(u-1) , 3u+1 , sqrt(3)(v-1) , 3v+1 }
- x = (sqrt(3)(u-1))/((sqrt(3)(v-1))*sin(c) + ((3u+1)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- y = ((3u+1)*cos(b) - (3v+1)*sin(b))/((sqrt(3)(v-1))*sin(c) + ((3u+1)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- z = ((sqrt(3)(v-1))*cos(c) - ((3u+1)*sin(b) + (3v+1)*cos(b))*sin(c))/((sqrt(3)(v-1))*sin(c) + ((3u+1)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- ---
- 12. { sqrt(3)(u-1) , 3u+1 , 2*sqrt(3)v , -2 }
- x = (sqrt(3)(u-1))/((2*sqrt(3)v)*sin(c) + ((3u+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- y = ((3u+1)*cos(b) - (-2)*sin(b))/((2*sqrt(3)v)*sin(c) + ((3u+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- z = ((2*sqrt(3)v)*cos(c) - ((3u+1)*sin(b) + (-2)*cos(b))*sin(c))/((2*sqrt(3)v)*sin(c) + ((3u+1)*sin(b) + (-2)*cos(b))*cos(c) + a)
- ---
- ------
- 13. { 2*sqrt(3)u , -2 , -sqrt(3)(v-1) , 3v+1 }
- x = (2*sqrt(3)u)/((-sqrt(3)(v-1))*sin(c) + ((-2)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- y = ((-2)*cos(b) - (3v+1)*sin(b))/((-sqrt(3)(v-1))*sin(c) + ((-2)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- z = ((-sqrt(3)(v-1))*cos(c) - ((-2)*sin(b) + (3v+1)*cos(b))*sin(c))/((-sqrt(3)(v-1))*sin(c) + ((-2)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- ---
- 14. { 2*sqrt(3)u , -2 , sqrt(3)(v-1) , 3v+1 }
- x = (2*sqrt(3)u)/((sqrt(3)(v-1))*sin(c) + ((-2)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- y = ((-2)*cos(b) - (3v+1)*sin(b))/((sqrt(3)(v-1))*sin(c) + ((-2)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- z = ((sqrt(3)(v-1))*cos(c) - ((-2)*sin(b) + (3v+1)*cos(b))*sin(c))/((sqrt(3)(v-1))*sin(c) + ((-2)*sin(b) + (3v+1)*cos(b))*cos(c) + a)
- ---
- 15. { 2*sqrt(3)u , -2 , 2*sqrt(3)v , -2 }
- x = (2*sqrt(3)u)/((2*sqrt(3)v)*sin(c) + ((-2)*sin(b) + (-2)*cos(b))*cos(c) + a)
- y = ((-2)*cos(b) - (-2)*sin(b))/((2*sqrt(3)v)*sin(c) + ((-2)*sin(b) + (-2)*cos(b))*cos(c) + a)
- z = ((2*sqrt(3)v)*cos(c) - ((-2)*sin(b) + (-2)*cos(b))*sin(c))/((2*sqrt(3)v)*sin(c) + ((-2)*sin(b) + (-2)*cos(b))*cos(c) + a)
Advertisement
Add Comment
Please, Sign In to add comment