Advertisement
Guest User

Untitled

a guest
Jan 17th, 2019
100
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 8.08 KB | None | 0 0
  1. \documentclass{article}
  2. \usepackage[utf8]{inputenc}
  3.  
  4. \title{hahaha}
  5. \author{olekgryga }
  6. \date{January 2019}
  7.  
  8. \usepackage{natbib}
  9. \usepackage{graphicx}
  10.  
  11. \begin{document}
  12.  
  13. Aleksander Gryga
  14. $${\bf Zadanie 50}$$
  15. Rozwiazac rownanie lub uklad rownan przy uzyciu transformaty Laplacea.
  16. $$p^2y-py(0)-y^\prime(0)-5(py-y(0))+14y=\frac{9}{p}+\frac{1}{p-3}+\frac{4}{(p-1)^2}.$$
  17. $$p^2y-10-5py-14y=\frac{9}{p}+\frac{1}{p-3}+\frac{4}{(p-1)^2}.$$
  18. $$y(p^2-5p-14)=\frac{9}{p}+\frac{1}{p-3}+\frac{4}{(p-1)^2}+10.$$
  19. $$\Delta=25+56=81, \sqrt{\Delta}=9, p1=-2, p2=7.$$
  20. $$y=\frac{9}{(p+2)(p-7)p}+\frac{1}{(p+2)(p-7)(p-3)}+\frac{4}{(p+2)(p-7)(p-1)^2}+\frac{10}{(p+2)(p-7)}.$$
  21. Znajdujemy oryginaly lewych stron po kolei.
  22. $$(1)\alpha^-1=(\frac{9}{(p+2)(p-7)p})=\alpha^-1(\frac{9}{p^3-5p^2-14p})$$
  23. $$dla \hspace{2} p=0\hspace{2} mamy \hspace{2}V^\prime(p)=3p^2-10p-14, V^\prime(0)=-14$$
  24. $$dla\hspace{2} p=-2 \hspace{2}mamy\hspace{2} V^\prime(-2)=18$$
  25. $$dla \hspace{2}p=7\hspace{2} mamy \hspace{2}V^\prime(7)=63$$
  26. $$f1(t)=\frac{-9}{14}e^(0t)+\frac{9}{18}e^(-2t)+\frac{9}{63}e^(7t)=\frac{-9}{14}+\frac{1}{2}e^(-2t)+\frac{1}{7}e^(7t)$$
  27. $$(2)\alpha^-1=(\frac{1}{(p+2)(p-7)(p-3)}), V(p)=(p^2-5p+14)(p-3)=p^3-8p^2+p+42, V^\prime(p)=3p^2-16p+1$$
  28. $$dla\hspace{2} p=-2\hspace{2} mamy\hspace{2} V^\prime(-2)=12+32+1=45$$
  29. $$dla\hspace{2} p=7\hspace{2} mamy\hspace{2} V^\prime(7)=157-112+1=46$$
  30. $$dla \hspace{2}p=3\hspace{2} mamy\hspace{2} V^\prime(3)=27-48+1=-20$$
  31. $$f2(t)=\frac{1}{45}e^(-2t)+\frac{1}{46}e^(7t)-\frac{1}{20}e^(3t)$$
  32. $$(3)\alpha^-1(\frac{10}{(p+2)(p-7)}$$
  33. $$V(p)=p^2-5p-14, V^\prime(p)=2p-5$$
  34. $$dla\hspace{2} p=-2\hspace{2} mamy\hspace{2} V^\prime(-2)=-9$$
  35. $$dla \hspace{2}p=7\hspace{2} mamy\hspace{2} V^\prime(7)=9$$
  36. $$f3(t)=-\frac{1}{9}e^(-2t)+\frac{1}{9}e^(7t)$$
  37. $$(4)\frac{1}{(p+2)(p-7)(p-1)^2}=\frac{A}{p+2}+\frac{B}{p-7}+\frac{C}{p-1}+{D}{(p-1)^2}=$$
  38. $$\frac{A(p^3-9p^2+15p-7)+B(p^3-3p+2)+C(p^3-7p^2-9p+14)+D(p^2-5p+14)}{(p+2)(p-7)(p-1)^2}$$\end{align}
  39. $$\left\{ \begin{array}{ll}
  40. A+B+C=0\\
  41. -9A-7C+D=0\\
  42. 15A-3B-9C-5D=0\\
  43. -7A+2B+14C+14D=4
  44. \end{array}\right.$$
  45. $$A=\frac{2}{3}, B=-\frac{1}{3}, C=-\frac{1}{3}, D=\frac{11}{3}$$
  46. $$f4(t)=\frac{2}{3}e^(2t)-\frac{1}{3}e^(7t)+\frac{1}{3}e^t+\frac{11}{3}te^t$$
  47. $$H=f1(t)+f2(t)+f3(t)+f4(t)$$
  48.  
  49.  
  50. $${\bf Zadanie 18}$$
  51. $$t^2(T+1)^\prime^\prime-2y=0$$
  52. $$y_{1}(t)=1+\frac{1}{t}$$
  53. $$y{2}(t)=y_{1}(t)\int{\frac{e^{-\int a_{n}(t)dt}}{y^\prime_{1}(t)}$$
  54. $$y^\prime^\prime+a_{1}y^\prime+a_{0}y=0$$
  55. $$a_{1}=0$$
  56. Szukamy: $$y(t)=u(t)y_{1}(t)$$
  57. Liczymy:
  58. $$y^\prime_{1}(t)=-t^{-2}$$
  59. $$y^\prime^\prime_{1}(t)=2t^{-3}$$
  60. $$y_{2}(t)=(1+\frac{1}{t}\int{\frac{e^0}{(1+\frac{1}{t})^2})$$
  61. $$y_{2}(t)=(1+\frac{1}{t})(t-\frac{1}{t+1}-2ln(t+1))$$
  62.  
  63.  
  64. $${\bf Zadanie 60}$$
  65. Zbadać stabilność rozwiązania zerowego dla następujących układów równań
  66. $$X^\prime=
  67. \left( \begin{array}{ccc}
  68. {6} & {1} \\
  69. {-2} & {-3} \\
  70. \end{array} \right)X
  71. $$
  72. $$det
  73. \left( \begin{array}{ccc}
  74. {-6-1} & {1} \\
  75. {-2} & {-3-1} \\
  76. \end{array} \right)=(6+1)(3+1)+2=l^2+9l+20
  77. $$
  78. $$l^2+9l+20=0 $$
  79. $$\Delta=81-80=1, \sqrt{\Delta=1}$$
  80. $$l1=\frec{-9-1}{2}=-5, l2=\frec{-9+1}{2}=-4$$
  81. l1,l2 sa ujemne, wiec mamy wezel stabilny asymptotycznie
  82.  
  83. $${\bf Zadanie 37}$$
  84. Wyznaczyć rozwiązanie ogólne równania niejednorodnego o stałych współczynnikach
  85. $$y^\prime^\prime-8y^\prime+17y=e^(4t)(t^2-3tsint)$$
  86. $$l^2-8l+17=0$$
  87. $$\Delta=64-68=-4, \sqrt{\Delta}=2i$$
  88. $$l1=\frac{8-2i}{2}=4-i, l2=4+i$$
  89. $$l1=4-i, l2=4+i$$
  90. $$v1=e^(4t)\cos{t},v2=e^(4t)(\cos{t}+4\sin{t})$$
  91. $$y=C_{1}V_{1}+C_{2}V_{2}$$
  92. Zastosujemy metode uzmienniania stalych C_{1}, C_{2}\\
  93. $$
  94. \left[
  95. \begin{array}{cc}
  96. v_{1} & v_{2}\\
  97. v_{1}^\prime & v_{2}^\prime
  98. \end{array}
  99. \right]
  100. \qquad
  101. \left[
  102. \begin{array}{cc}
  103. C_{1}^\prime\\
  104. C_{2}^\prime
  105. \end{array}
  106. \right]=
  107. \left[
  108. \begin{array}{cc}
  109. 0\\
  110. f(t)
  111. \end{array}
  112. \right]$$\\
  113. $$\\$$
  114. $$\left| \begin{array}{ccc}
  115. v_{1} & v_{2} \\
  116. v_{1}^\prime & v_{2}^\prime \\
  117. \end{array} \right|=
  118. \left| \begin{array}{ccc}
  119. e^{4t}\cos{t} & e^{4t}\sin{t}\\
  120. e^{4t}(4\cos{t}-\sin{t}) & e^{4t}(\cos{t}+4\sin{t}) \\
  121. \end{array} \right|$$
  122. $$=e^{8t}(\cos^2{4t}+4\cos{t}\sin{t}-4\cos{t}\sin{t}+\sin^2{t})=e^{8t}>0$$\\
  123. $$\left[
  124. \begin{array}{cc}
  125. v_{1} & 0\\
  126. v_{1}^\prime & f(t)
  127. \end{array}
  128. \right]
  129. \qquad=
  130. \left| \begin{array}{ccc}
  131. e^{4t}\cos{t} & 0\\
  132. e^{4t}(4\cos{t}-\sin{t}) & e^{4t}(t^2-3t\sin{t}) \\
  133. \end{array} \right|=e^{8t}(t^2\cos{t}-3t\sin{t}\cos{t})$$
  134. $$C_{1}^\prime=\frac{WC_{1}}{W}=-t^2\sin{t}+3t\sin^2{t}=-t^2\sin{t}+\fraq{3}{2}t(1-\cos{2t})$$\\
  135. (1)
  136. $$C_{1}(t)=\int C^\prime_{1}(t)=\int -t^2\sin{t}+\frac{3}{2}t(1-\cos{2t})$$
  137. Obliczamy \hspace{2}najpierw
  138. $$I_{1}=\int t^2\sin{t}dt=
  139. \left| \begin{array}{ccc}
  140. u=t^2 & dv=\sin{t}dt \\
  141. du=2tdt & v=-\cos{t} \\
  142. \end{array} \right|
  143. $$
  144. $$=-t^2\cos{t}+2\int t\cos{t}dt=
  145. \left| \begin{array}{ccc}
  146. u=t & dv=\cos{t}dt \\
  147. du=dt & v=-\sin{t} \\
  148. \end{array} \right|
  149. =-t^2\cos{t}+2(t\sin{t}-\int \sin{t}dt)=$$
  150. $$=-t^2\cos{t}+2t\sin{t}+2\cos{t}+D_{1}$$
  151. Obliczamy\hspace{2}$$I_{2}=\int \frac{3}{2}t(1-\cos{2t})dt=\int (\frac{3}{2}t-\frac{3}{2}t\cos{2t})dt=$$
  152. $$\frac{3}{4}t^2-\frac{3}{2}\int t\cos{2t}dt=
  153. \left| \begin{array}{ccc}
  154. u=t & dv=\cos{2t}dt \\
  155. du=dt & v=\frac{1}{2}\sin{2t} \\
  156. \end{array} \right|
  157. =$$
  158. $$
  159. =\frac{3}{4}t^2-\frac{3}{2}(\frac{1}{2}t\sin{2t}-\int \frac{1}{2}\sin{2t}dt)=$$
  160. $$=\frac{3}{4}t^2-\frac{3}{4}t\sin{2t}-\frac{3}{8}\cos{2t}+D_{2}
  161. $$
  162. $$C_{1}(t)=I_{1}+I_{2}=-t^2\cos{t}+2t\sin{t}+2\cos{t}+\frac{3}{4}t^2-\frac{3}{4}t\sin{2t}-\frac{3}{8}\cos{2t}+D$$
  163. $$D=D_{1}+D_{2}
  164. $$(2)C_{2}(t)=\int C_{2}^\prime(t)=\int(t^2\cos{t}-\frac{3}{2}t\sin{2t})dt$$\\
  165. Obliczamy J_{1}:
  166. $$J_{1}=\int t^2\cos{t}dt=
  167. \left| \begin{array}{ccc}
  168. u=t^2 & dv=\cos{t}dt &\\
  169. du=2tdt & v=-\sin{t} & \\
  170. \end{array} \right|=-t^2\sin{t}+2\int t\sin{t}dt=
  171. \left| \begin{array}{ccc}
  172. u=t & dv=\sin{t}dt \\
  173. du=dt & v=-\cos{t} \\
  174. \end{array} \right|=
  175. -t^2\sin{t}=2(-t\cos{t}+\int \cos{t}dt)=
  176. -t^2\sin{t}-2t\cos{t}-\sin{t}+E_{1}$$\\
  177. Obliczamy J_{2}:
  178. $$J_{2}=-\frac{3}{2}\int t\sin{2t}dt=
  179. \left| \begin{array}{ccc}
  180. u=t & dv=\sin{2t}dt \\
  181. du=dt & v=-\frac{1}{2}\cos{2t} \\
  182. \end{array} \right|= -\frac{3}{2}(-\frac{1}{2}t\cos{2t}+\frac{1}{2}\int \cos{2t}dt)= \frac{3}{4}t\cos{2t}+\frac{1}{4}\sin{2t}+E2$$
  183. $$C_{2}(t)=J_{1}+J_{2}=-t^{2}\sin{t}-2t{t}\cos{t}-\sin{t}+\frac{3}{4}t\cos{2t}+\frac{1}{4}\sin{2t}+E$$\\
  184. Wstawiamy\hspace{2} znalezione\hspace{2} wartosci \hspace{2}C_{1} i C_{2}\hspace{2} do\hspace{2} wzoru
  185. $$y=C_{1}V_{1}+C_{2}V_{2}$$\\
  186. i \hspace{2}otrzymujemy\hspace{2} rozwiazanie\hspace{2} ogolne \hspace{2}rownania \hspace{2}niejednorodnego.\\
  187. $$\\
  188. $${\bf Zadanie 45}$$\end{align}
  189. Następujące układy równań rozwiązać metodą operatorową lub sprowadzając je do układów równań różniczkowych rzędu pierwszego w postaci normalnej.
  190. $$ \left\{ \begin{array}{ll}
  191. X^\prime^\prime-2y^\prime^\prime+y^\prime+x-3y=0\\
  192. -2x^\prime^\prime+4y^\prime^\prime-x^\prime-2x+5y=0}
  193. \end{array} \right.$
  194. $$\\
  195. \left\{ \begin{array}{ll}
  196. D^2x-2d^2y+Dy+x-3y=0\\
  197. -2D^2x+4D^2y-Dx-2x+5y=0
  198. \end{array} \right.
  199. $$\\
  200. $$
  201. \left\{ \begin{array}{ll}
  202. (D^2+1)x-(2D^2-D+3)y=0\\
  203. -(2D^2+D+2)x+(4D^2+5)y=0
  204. \end{array} \right.
  205. $$\\
  206. $$
  207. \mathbf{W} =
  208. \left| \begin{array}{ccc}
  209. D^2+1 & -(2D^2-D+3) \\
  210. -(2D^2+D+2) & 4D^2+5
  211. \end{array} \right|
  212. =
  213. (D^2+1)(4D^2+5)-(2D^2-D+3)(2D^2+D+2)=$$
  214. $$=4D^4+(D^2+5-(4D^4+4D^2-D^2-2D+6D^2+3D+6)=4D^4+9D^2+5-(4D^4+9D^2+D+6)=$$
  215. $$=5-D-6=-D-1=0$$
  216. $$-(D+1)x=0 /*(-1)$$
  217. $$(D+1)x=0$$
  218. $$x^\prime+x=0$$
  219. $$i+1=0$$
  220. $$i=-1$$
  221. $$x=C_{1}e^{-t}$$//
  222. analogicznie \hspace{2}mamy
  223. $$y=c_{2}e^{-t}$$
  224. Podstawiamy \hspace{2}do\hspace{2} układu\hspace{2} równań\hspace{2} i skracamy\hspace{2} przez\hspace{2} e^{-t}\hspace{2} otrzymujemy:
  225. \end{align}
  226. $$\left\{ \begin{array}{ll}
  227. 2C_{1}-6C_{2}=0 /:2\\
  228. -3C_{1}+9C_{2}=0 /:3\
  229. \end{array} \right.$$\end{align}
  230. $$\left\{ \begin{array}{ll}
  231. C_{1}=3C_{3}\\
  232. C_{2}=C\\
  233. C_{1}=3C
  234. \end{array} \right.
  235. \end{array} \right$$\end{align}
  236. $$\left\{ \begin{array}{ll}
  237. x=3Ce^{-t}\\
  238. y=Ce^{-t}
  239. \end{array} \right.
  240. \end{array} \right$$
  241. \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement