Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- Lemma reflect_back : forall b P,
- (b = true <-> P) -> (b = false <-> ~P).
- Proof.
- intros b P H.
- split; try firstorder.
- - intros nP.
- assert (b = true). { firstorder. }
- congruence.
- - destruct b; try firstorder.
- Qed.
- Definition Reflects_P_b (b:bool) (P:Prop) := (b = true <-> P).
- Fixpoint leb (n m : nat) : bool :=
- match n with
- | O => true
- | S n' =>
- match m with
- | O => false
- | S m' => leb n' m'
- end
- end.
- Lemma le_reflects_LE : forall n m,
- Reflects_P_b (leb n m) (n <= m).
- Proof.
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement