Advertisement
tinyevil

Untitled

Feb 22nd, 2018
186
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 0.55 KB | None | 0 0
  1. Lemma reflect_back : forall b P,
  2. (b = true <-> P) -> (b = false <-> ~P).
  3. Proof.
  4. intros b P H.
  5. split; try firstorder.
  6. - intros nP.
  7. assert (b = true). { firstorder. }
  8. congruence.
  9. - destruct b; try firstorder.
  10. Qed.
  11.  
  12. Definition Reflects_P_b (b:bool) (P:Prop) := (b = true <-> P).
  13.  
  14. Fixpoint leb (n m : nat) : bool :=
  15. match n with
  16. | O => true
  17. | S n' =>
  18. match m with
  19. | O => false
  20. | S m' => leb n' m'
  21. end
  22. end.
  23.  
  24. Lemma le_reflects_LE : forall n m,
  25. Reflects_P_b (leb n m) (n <= m).
  26. Proof.
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement