Advertisement
Guest User

A9.2

a guest
Dec 9th, 2019
121
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 3.01 KB | None | 0 0
  1. Theorem “Modal rule”:
  2. (Q ⨾ R) ∩ S ⊆ (Q ∩ S ⨾ R ˘) ⨾ R
  3. Proof:
  4. (Q ⨾ R) ∩ S
  5. ⊆⟨ “Dedekind rule” ⟩
  6. (Q ∩ S ⨾ R ˘) ⨾ (R ∩ Q ˘ ⨾ S)
  7. ⊆⟨ Monotonicity with “Weakening for ∩” ⟩
  8. (Q ∩ S ⨾ R ˘) ⨾ R
  9.  
  10. Theorem “Modal rule”:
  11. (Q ⨾ R) ∩ S ⊆ Q ⨾ (R ∩ Q ˘ ⨾ S)
  12. Proof:
  13. (Q ⨾ R) ∩ S
  14. ⊆⟨ “Dedekind rule” ⟩
  15. (Q ∩ S ⨾ R ˘) ⨾ (R ∩ Q ˘ ⨾ S)
  16. ⊆⟨ Monotonicity with “Weakening for ∩” ⟩
  17. Q ⨾ (R ∩ Q ˘ ⨾ S)
  18.  
  19. Theorem “Hesitation”: R ⊆ R ⨾ R ˘ ⨾ R
  20. Proof:
  21. R
  22. =⟨ “Idempotency of ∩” ⟩
  23. R ∩ R
  24. =⟨ “Identity of ⨾” ⟩
  25. Id ⨾ R ∩ R
  26. ⊆⟨ “Modal rule” ⟩
  27. (Id ∩ R ⨾ R ˘) ⨾ R
  28. ⊆⟨ Monotonicity with “Weakening for ∩” ⟩
  29. R ⨾ R ˘ ⨾ R
  30.  
  31. Theorem “PER factoring”:
  32. is-symmetric Q ⇒ is-transitive Q ⇒ Q ⨾ R ∩ Q = Q ⨾ (R ∩ Q)
  33. Proof:
  34. Assuming `is-symmetric Q` and using with “Definition of symmetry”,
  35. `is-transitive Q` and using with “Definition of transitivity”:
  36. Q ⨾ (R ∩ Q)
  37. ⊆⟨ “Sub-distributivity of ⨾ over ∩” ⟩
  38. Q ⨾ R ∩ Q ⨾ Q
  39. ⊆⟨ Monotonicity with assumption `is-transitive Q` ⟩
  40. Q ⨾ R ∩ Q
  41. ⊆⟨ “Modal rule” ⟩
  42. Q ⨾ (R ∩ Q ˘ ⨾ Q)
  43. ⊆⟨ Monotonicity with assumption `is-symmetric Q` ⟩
  44. Q ⨾ (R ∩ Q ⨾ Q)
  45. ⊆⟨ Monotonicity with assumption `is-transitive Q` ⟩
  46. Q ⨾ (R ∩ Q)
  47.  
  48. Theorem “Reflexive implies total”:
  49. is-reflexive R ⇒ is-total R
  50. Proof:
  51. Assuming `is-reflexive R` and using with “Definition of reflexivity”:
  52. Side proof for `Id ⊆ R ˘`:
  53. Id ⊆ R — This is assumption `is-reflexive R`
  54. ≡⟨ “Isotonicity of ˘” ⟩
  55. Id ˘ ⊆ R ˘
  56. ≡⟨ “Converse of `Id`” ⟩
  57. Id ⊆ R ˘
  58. Continuing:
  59. Id ⊆ R — This is assumption `is-reflexive R`
  60. ⇒⟨ “Monotonicity of ⨾” ⟩
  61. Id ⨾ R ˘ ⊆ R ⨾ R ˘
  62. ≡⟨ “Identity of ⨾” ⟩
  63. R ˘ ⊆ R ⨾ R ˘
  64. ⇒⟨ “Transitivity of ⊆” with local property `Id ⊆ R ˘` ⟩
  65. Id ⊆ R ⨾ R ˘
  66. ≡⟨ “Definition of totality” ⟩
  67. is-total R
  68.  
  69. Theorem “Swapping mapping across ⊆”:
  70. is-mapping F ⇒ (R ⨾ F ⊆ S ≡ R ⊆ S ⨾ F ˘)
  71. Proof:
  72. Assuming `is-mapping F` and using with “Definition of mappings”:
  73. R ⊆ S ⨾ F ˘
  74. ⇒⟨ “Monotonicity of ⨾” ⟩
  75. R ⨾ F ⊆ S ⨾ F ˘ ⨾ F
  76. ⇒⟨ Monotonicity with assumption `is-mapping F` ⟩
  77. R ⨾ F ⊆ S ⨾ Id
  78. ≡⟨ “Identity of ⨾” ⟩
  79. R ⨾ F ⊆ S
  80. ⇒⟨ “Monotonicity of ⨾” ⟩
  81. R ⨾ F ⨾ F ˘ ⊆ S ⨾ F ˘
  82. ⇒⟨ “Transitivity of ⊆” with Monotonicity with assumption `is-mapping F` ⟩
  83. R ⨾ Id ⊆ S ⨾ F ˘
  84. ≡⟨ “Identity of ⨾” ⟩
  85. R ⊆ S ⨾ F ˘
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement