Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import matplotlib.pyplot as plt
- import numpy as np
- import urllib
- import matplotlib.dates as mdates
- def bytespdate2num(fmt, encoding='utf-8'):
- strconverter = mdates.strpdate2num(fmt)
- def bytesconverter(b):
- s = b.decode(encoding)
- return strconverter(s)
- return bytesconverter
- def graph_data():
- stock_price_url = 'https://pythonprogramming.net/yahoo_finance_replacement'
- source_code = urllib.request.urlopen(stock_price_url).read().decode()
- stock_data = []
- split_source = source_code.split('\n')
- for line in split_source:
- split_line = line.split(',')
- if len(split_line) == 7:
- if 'Volume' not in line:
- stock_data.append(line)
- date, openp, highp, lowp, closep, adjustedp, volume = np.loadtxt(stock_data,
- delimiter=',',
- unpack=True,
- converters={0: bytespdate2num('%Y-%m-%d')} )
- plt.plot_date(date, closep, '-')
- plt.xlabel('date')
- plt.ylabel('price')
- plt.title('Interesting graph\nCheck it out')
- plt.legend()
- plt.show()
- graph_data()
Advertisement
Add Comment
Please, Sign In to add comment