Advertisement
Guest User

Untitled

a guest
Jan 18th, 2019
87
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 3.26 KB | None | 0 0
  1. # TODO: Build your pipeline that will draw lane lines on the test_images
  2. # then save them to the test_images_output directory.
  3.  
  4. class Line:
  5. def __init__(self, x1, y1, x2, y2):
  6. self.x1 = np.float32(x1)
  7. self.x2 = np.float32(x2)
  8. self.y1 = np.float32(y1)
  9. self.y2 = np.float32(y2)
  10.  
  11. self.get_slope()
  12.  
  13. def get_slope(self):
  14. self.slope = (self.y2 - self.y1) / (self.x2 - self.x1 + np.finfo(float).eps)
  15.  
  16. # Get all images
  17. images = []
  18. for image_name in os.listdir("test_images/"):
  19. image = mpimg.imread('test_images/solidWhiteRight.jpg')
  20. images.append(image)
  21. np_images = np.array(images)
  22.  
  23. # Loop over all images
  24. for image in images:
  25. # Convert to grayscale
  26. image_gray = grayscale(image)
  27.  
  28. # Gaussian smooth the image
  29. image_smoothed = gaussian_blur(image_gray, 7)
  30.  
  31. # Run canny edge detector on image
  32. image_canny = canny(image_smoothed, 50, 150)
  33.  
  34. # Run an "opening" morphological filter
  35. #image_canny = cv2.morphologyEx(image_canny, cv2.MORPH_OPEN, (50, 50))
  36. #image_canny = cv2.dilate(image_canny, (50,50), iterations = 5)
  37.  
  38. # Apply hough transform to get image with lines
  39. #def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap):
  40. #image = hough_lines(image_canny, 400, 45, 5, 5, 100)
  41. detected_lines, line_image = hough_lines(img=image_canny,
  42. rho=1,
  43. theta=np.pi / 180,
  44. threshold=1,
  45. min_line_len=15,
  46. max_line_gap=5)
  47.  
  48. # Run RANSAC on lines?
  49. # python scikit: linear_model.RANSACRegressor(linear_model.LinearRegression()
  50.  
  51. # Filter lines and interpolate lines to find both lanes
  52. preferred_lines = np.array([])
  53. for detected_line in detected_lines:
  54. # Only lines with slope between 30 and 120 degrees
  55. line = Line(detected_line[0][0], detected_line[0][1], detected_line[0][2], detected_line[0][3])
  56. if (np.pi / 6) <= np.abs(line.slope) <= (2 * np.pi / 3):
  57. np.append(preferred_lines, [detected_line[0][0],
  58. detected_line[0][1],
  59. detected_line[0][2],
  60. detected_line[0][3]])
  61. # interpolate lines candidates to find both lanes
  62. #lane_lines = compute_lane_from_candidates(candidate_lines, img_gray.shape)
  63.  
  64. # Draw lines on a clear mask
  65. image_with_lines = np.zeros((image.shape[0], image.shape[1], 3), dtype=np.uint8)
  66. draw_lines(image_with_lines, preferred_lines)
  67.  
  68. # Select the region of interest in image
  69. region = [[[0, int(image.shape[0] / 2)],
  70. [image.shape[1], int(image.shape[0] / 2)],
  71. [image.shape[1], image.shape[1]],
  72. [0, image.shape[1]]]]
  73. image_roi = region_of_interest(image_with_lines, np.array(region))
  74.  
  75. # Created weighted masked_image
  76. weighted_image = weighted_img(image_roi, image, α=0.8, β=1., γ=0.)
  77.  
  78. # Show and save image to the new folder
  79. plt.figure()
  80. plt.imshow(image_roi, cmap='gray')
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement